
Patterns to Introduce Continuous Integration to
Organizations

Kenichiro Ota
Shift inc.
Tokyo
Japan

oota_ken@hotmail.com
kenichiro.ota@shiftinc.jp

Hiroko Tamagawa
Shift inc.
Tokyo
Japan

hiroko.tamagawa@shiftinc.jp

Lei Wang
Shift inc.
Tokyo
Japan

lei.wang@shiftinc.jp

ABSTRACT
Continuous Integration (CI) is to incrementally integrate software
development work within a team by executing a build process
whenever changes of work occur. This build process includes
compilation, automated testing, static analysis and finally
deployment.

From our experiences of introducing the concept of CI to several
organizations applying to different projects, we noticed common
successful patterns and anti-patterns, which are further organized
into a pattern catalog. This paper uses pattern languages to
describe the relationship of those patterns.

We believe that people in such roles as team leaders, software
configuration management engineers, test automation engineers
and process improvement engineers can benefit from our pattern
catalog when employing CI in their organizations.

Categories and Subject Descriptors

Continuous Integration

Agile Development

DevOps

Test Automation

General Terms
Development Process

Automation

Verification

1. INTRODUCTION
As agile development methodology prevails in contemporary
software development practices [1], CI, one of the key concepts in
agile development practice has become prominent because it can
greatly reinforce software quality. But if organizations or teams
have no experiences of automations in CI, they may soon face
anti-patterns and fail the same way as dealing with automations in
other domains.

Coming along with CI, we will introduce several automations that
are static analysis, code coverage analysis, test automation,
packaging deployment and provisioning for test environment all
together which will be more difficult than just one singular
automation such as test automation though the subjects in both
cases are similar.

This pattern catalog explains typical anti-patterns that could
happen in the introduction of CI to organizations. Followed by

identification and resolution of anti-patterns, we explain patterns
that should be adopted.

We list categories of patterns by grouping them, and draw a
pattern map that describes the relationship of the patterns.

2. Pattern Category List
We classify patterns into management, introduction and operation
categories.

Table 1. Pattern Category List

 Anti-patterns Patterns

Management Over expectation of
stakeholders

Temporary expedient
and effective expedient

Involve architect

Local CI

Introduction Automated test first

Automate all

Procedure first

Write tests for new
code

Static analysis for
testability

Operation Over dependency
on CI Server

Use existing codes as
baseline

Operation without CI
server

Table 2. Category Description

Management Patterns of managing expectations and
requirements of stakeholder when introducing
CI

Introduction Patterns of priorities and scopes when
introducing CI

Operation Patterns of scopes and metrics of operation of
CI

3. Pattern Map
Pattern map describes relationship and orders of patterns. The
simplex arrow shows the order to adopt patterns: from an anti-
pattern to a pattern, we can adopt a pattern after we identify and
resolve its corresponding anti-pattern. Lines without arrows are
not directional, meaning there are feedbacks between two patterns.

It is recommended to start with the identification of Automated
test first anti-pattern though the automation of testing process is a
benefit from CI. In this case one should start to resolve
Automated tests first anti-pattern.

A better approach to demonstrating the advantages of CI is to
adopt Temporary expedient and effective expedient pattern and
then to share the results with stakeholders.

Figure 1. Pattern map of patterns to introduce CI

4. Pattern template

4.1 Template for patterns
We use the following templates for patterns.

Name Coined word that explain pattern name properly

Context Context that we adopt this pattern

Problem Problem that we must resolve

Solution Solution for the problem

Result Situation that we can resolve the problem

Cause Cause that we select the solution

4.2 Template for anti-patterns
We use the following templates for anti-patterns. These templates
are from “AntiPatterns: Refactoring Software, Architectures, and
Projects in Crisis “[2].

Name Coined word that explain the anti-pattern

Background Process that the anti-pattern occurs

Symptom and
consequences

Negative results if the ant-pattern is
adopted

Anecdotal evidence Conversations being heard in context of
the anti-pattern

Typical causes Typical causes of the anti-pattern

Refactored patterns Refactored patterns that can resolve the
anti-pattern

Refactored solution Specific solution for the anti-pattern

Related anti-
patterns

Any other anti-patterns that are related to
this one

5. Anti-Patterns
In the introduction of CI, we sometimes have to confront anti-
patterns before we can adopt proper patterns. Therefore describing
those potential anti-patterns are necessary.

5.1 Management anti-patterns
5.1.1 Over expectation of stakeholders

Name Over expectation of stakeholders

Background Investigation when introducing CI

Symptom and
consequences

If adopting Automated test first anti-
pattern, one starts test automation first
and only focuses on it, then the
introduction of CI fails.

If adopting Automate all anti-pattern,
one automates all build process. Cost of
maintenance and operations will greatly
increase.

Anecdotal
evidence

If we introduce CI, we will be able to
automate tests.

If we install CI servers, then all
development process will be automated.

Typical causes Lack of understanding of CI among
stakeholders

Lack of breakdown and priority
management for tasks that we can do in
order to introduce CI

Refactored patterns Temporary expedient and effective
expedient

Involve architect

Refactored solution If adopting Temporary expedient and
effective expedient pattern, one can
classify build process to temporary
expedient and effective expedient. Tasks
of temporary expedient including
compilation and deployment can take
effects immediately. Tasks of effective
expedient including test automation and
use of metrics require process
improvement.

One can breakdown tasks of temporary
expedient and effective expedient and
calculate cost and profit. Thus the
results of breakdown and the orders of
priority of the tasks can be shared with
stakeholders.

If adopting effective expedient, process
and product improvements are needed.
Therefore the Involve architect pattern
is also required, which basically asks to

work with the architect and improve
process and product together.

Related anti-
patterns

Automated all

5.2 Introduction anti-patterns
5.2.1 Automated test first

Name Automated test first

Background Investigation when introducing CI

Symptom and
consequences

When trying to automate test first in the
environment where there are no
automated tests, the introduction of CI
fails.

Anecdotal
evidence

If we introduce CI, we will be able to
automate tests.

Typical causes Lack of understanding of the position of
test automation in CI

Refactored
patterns

Temporary expedient and effective
expedient

Static analysis for testability

Write tests for new codes

Involve architect

Refactored
solution

It is commonly perceived that CI and test
automation are the necessary pair and the
most effective automation within CI is
test automation.

However test automation is not
temporary expedient but effective
expedient that requires process
improvement.

Therefore test automation can only be
achieved after Temporary expedient
and effective expedient pattern is
adopted and the order of priority is
clarified.

If trying to automate tests for legacy
code that has no previously automated
tests, 	
 we adopt Static analysis for
testability pattern and Write tests for
new code pattern for new code to
improve members’ skills and product
testability.

If product testability is low, adopting
Involve architect pattern is necessary to
change the architecture and design of the
product.

Related anti-
patterns

Automated all

5.2.2 Automate all

Name Automate all

Background Introduction of CI

Symptom and
consequences

If trying to automate all tasks including
testing and maintenance, cost will be
greatly increased and the execution of
automated tests will be time consuming.

Anecdotal
evidence

We should automate all tasks including
GUI testing

We can see results of static analysis and
metrics from a CI server too.

Typical causes Lack of analysis of cost and effect for
tasks that can be accomplished by CI

Refactored
patterns

Procedure first

Involve architect

Refactored
solution

Although having enough skills, server
capacity and capability to automate all,
rapidly increased cost of maintenance
and execution occurs.

One can adopt Procedure first pattern
and automate only the tasks of temporary
expedient.

If improving testability by change of
architecture and design is needed, one
can adopt Involve architect pattern to
cooperate with the architect to automate
tests.

Related anti-
patterns

Automated test first

5.3 Operation anti-patterns
5.3.1 Over dependency on CI Server

Name Over dependency on CI Server

Background Operation of CI

Symptom and
consequences

Build process can be automated, but if
the CI server stops, nothing can be built
anymore. Even worse, build with manual
or semi-automated process cannot be
done as well.

Anecdotal
evidence

As our CI server stops, we can build
nothing.

Typical causes Over dependency on CI servers

Lack of understanding of the
responsibilities of the necessary tools

Refactored
patterns

Operation without CI Server

Refactored
solution

Over dependency on the CI server
should be avoided. Otherwise the CI
server will be the single point of failure
during the build process. Its risk is same

as manual build or specific machine
build.

It is suggested to adopt Operation
without CI Server pattern, by
separating responsibilities between CI
servers and other tools like building tools
or testing tools. A CI server should be
the hub that links all the other tools
together.

Related anti-
patterns

Automated all

6. Patterns
After the above anti-patterns are identified, we can start to draw
and adopt patterns to solve the corresponding problems. Some
patterns are particularly aiming to resolve a particular anti-pattern,
and if that is the case, we also mention that anti-pattern in the
form.

6.1 Management Patterns
6.1.1 Temporary expedient and effective expedient

Name Temporary expedient and effective expedient

Context Automated build tasks in CI include automated
testing, deployment and provisioning, static
analysis, and metrics measurement.

Problem The first automated task needs to be decided

Solution Tasks in CI are classified into temporary
expedient and effective expedient. Temporary
expedient doesn’t have to improve development
process or product, while effective expedient
needs. Which to choose depends on the
requirements from stakeholders.

If stakeholders want immediate outputs, one can
adopt Procedure first pattern, and the tasks of
temporary expedient can be firstly attempted.

If stakeholders agree on the introduction of CI for
a long-term improvement, One could firstly
estimate ROI and then adopt Write tests for new
code pattern, thus try the tasks of effective
expedient.

Result One can clarify the first automated task.

One can avoid Automated test first anti-pattern.

One can avoid Over expectation of stakeholders
anti-pattern.

Cause Automated tasks in CI have two types: tasks of
temporary expedient and tasks of effective
expedient. Temporary expedient automates tasks
that we already execute many times manually
including compilation and deployment. Its cost
effectiveness is low, but it is easy to try and its
benefit of saving time is clear.

Tasks of effective expedient require process and
product improvement including automated testing

and use of metrics.

6.1.2 Involve architect

Name Involve architect

Context Trying test automation and use of metrics, which
are the tasks of effective expedient, have been
decided.

Problem Because of low testability of the product, it is
difficult to automate tests.

Solution It is required to involve the architect who is the
original or current designer by explaining the need
of product improvement and profit after the
improvement.

One can change architecture and design with the
architect.

Working with the architect one can develop
template code of test scripts which can be used
within the team to facilitate test automation easily.

If the architect is skeptical to test automation, one
can adopt Write tests for new code pattern and
automate tests for utility modules that are
independent to the existing architecture.

Result One can try the tasks of effective expedient that
needs the change of architecture and design.
Therefore CI adoption can be promoted.

Cause Testability is low because of the architecture and
design of product. Thus to improve testability one
needs to change architecture and design.

If it is the case, one needs an agreement from the
original designers and team.

As the change of architecture and design affects
productivity of the team, the engineer that the
entire team relies on should lead it.

6.1.3 Local CI

Name Local CI

Context We are investigating CI. But we can’t see what we
can do.

Problem How to find out automated tasks that the team can
introduce and work on.

Solution One can create CI servers and examine feasibility
in the local environment.

If trying to change the design and source code of
the product, a local branch can be created in the
version control system.

With provisioning tools one can automate the
configuration of the CI servers that is for
deployment for the team.

If under examination the architecture and design

are required to change, adopting Involve
architect pattern is suggested.

Result One can find out tasks to do for the team.

Because the configuration of CI servers can be
automated, one can complete deployment tasks
fairly quickly.

Cause Because of cost restriction it is difficult to set up
physical servers on which investigation can be
performed.

Creating virtual servers in local environment is
easy due to rapid evolution of virtualization
technology.

Using provisioning tools one can copy the
configurations of CI servers that are created on a
virtual server.

6.2 Introduction Patterns
6.2.1 Procedure first

Name Procedure first

Context Although stakeholders agree on the introduction
of CI, they expect immediate outputs.

Problem The most effective task that has high profit in a
short period of time is expected.

Solution One can start procedure tasks. Procedure tasks
include compilation, deployment and packaging.
Procedure tasks are tasks that we run manually or
semi-automatically with many times.

Automation for procedure tasks doesn’t have to
change architecture and design of the product. So
particular members can do the work and the team
workload will be low.

Result One can have outputs in a short period of time.

One can prepare for the tasks of effective
expedient.

Cause Tasks of effective expedient are of high cost and
take a long time to take effects.

Tasks of effective expedient need to change
development process and need all members to get
involved.

Tasks of effective expedient include procedure
tasks such as compilation, deployment and
packaging.

As procedure tasks are tasks that we run manually
or semi-automatically with many times, we can
automate them in a short period of time thus save
execution time.

6.2.2 Write tests for new code

Name Write tests for new code

Context Trying test automation in the introduction of CI.

Problem Need to identify the areas of the product in which
test automation can be introduced.

Solution One can create automated tests for newly added
product code.

One can create automated tests for utility classes
in newly added code. Utility classes are stateless
and independent to architecture and design of the
product.

If can adopt Involve architect pattern, one can
change architecture and design of the product for
testability.

Result One can automate tests without changing the
existing architecture and design.

Cause If for current product code there are no automated
tests, the testability of the code must be low. In
this case it is difficult to automate tests for the
existing code.

Therefore the architecture and design of the
product need to change in order to improve the
testability. But it is very hard.

6.2.3 Static analysis for testability

Name Static analysis for testability

Context When trying test automation in the introduction of
CI.

Problem Member’s skills are not enough for test
automation

Solution One can use static analysis tools and metrics
measurement tools to improve testability.

As static analysis tools and metrics measurement
tools can detect code that is nested deeply or high
coupling, from which team members can learn
how to write testable code.

As rules of static analysis tools are in large
quantity, we must select essential rules that can
effectively help improve the testability and detect
critical bugs.

One should run those essential rules on CI servers
and create reports from static analysis.

After team members acquire enough skills to
write testable codes, Write tests for new code
pattern can be adopted.

Result Team members can acquire enough skills to write
testable codes.

Team members can adopt Write tests for new
codes pattern.

Cause If trying to adopt Write tests for new codes
pattern, developers must know how to write
testable codes.

It is very difficult to write automated tests for the

code with low testability.

Static analysis tools can check testability of code.

6.3 Operation Patterns
6.3.1 Use existing codes as baseline

Name Use existing codes as baseline

Context Stakeholders request to use existing code on CI.

Problem When trying to use existing codes on CI, one does
not possess finance and skill to do tasks of
effective expedient like test automation.

Solution One can use static analysis report, code metrics
and code coverage of existing code as baseline.

Existing code does not need to be corrected but
used as baseline by which the quality of new code
can be measured.

Result One can fulfil stakeholders’ request of using
existing code as baseline.

Existing code can be used not to increase
workload of team members.

Cause It takes time and cost to adopt effective expedient
for existing code.

It is easy to run static analysis tools or metrics
measurement tools for existing code.

Static analysis tools or metrics measurement tools
can identify many potential issues.

6.3.2 Operation without CI Server

Name Operation without CI Server

Context Running so many tasks like compilation,
deployment, static analysis, metrics measurement
and provisioning on the CI server.

Problem Even if CI servers have stopped, build process
still needs to continue.

Solution One should automate or semi-automate build
tasks without CI servers.

A CI server is the hub to run some automated
tasks. But one still can run other tasks from build
tools.

One can manage configurations of build tasks on
version management systems. Thus they can be
reverted whenever necessary.

Result Even if CI servers have stopped, one can still
build in our local environment.

Even if the configurations of build tasks become
invalid, one can still revert them easily.

Cause If depending on CI servers heavily and when CI
servers have stopped, build processes become
discontinued.

One should be able to build manually or semi-
automatically even if CI servers have stopped.

Version management of CI servers is not enough
comparing to version management system.

One should manage all configurations of build
tasks in a version management system.

One should use tools for the objectives.

7. Relationship with other CI patterns and
Best Practice
There exist many literatures discussing patterns and anti-patterns
about CI in which ”Continuous Integration Patterns and Anti-
patterns”[3] describes a lot of patterns and anti-patterns especially
for CI operations.

Moreover, ”Automation for the people: Continuous Integration
anti-patterns”[4] explains operational anti-patterns in greater
depth.

“Practices of Continuous Integration”[5] describes best practices
of CI including its introduction. Best practices are not patterns,
but if the best practices have valid reasons, they can be treated as
patterns.

We describe relationship between our patterns and those patterns
as following.

7.1.1 Local CI and Private Workspace
We can start our investigation for CI by adopting Private
Workspace pattern from ”Continuous Integration Patterns and
Anti-patterns”[2]. Private Workspace pattern prevents our
investigation effecting mainstream tasks.

7.1.2 Operation without CI Server, Minimal
Dependencies and Single Command
We should keep minimal dependencies not only on CI servers, but
also on pre-installed tools.

Minimal Dependencies pattern from ”Continuous Integration
Patterns and Anti-patterns”[3] recommends minimal dependencies
on pre-installed tools.

Single Command pattern from ”Continuous Integration Patterns
and Anti-patterns”[3] recommends using single command on
build tasks. We can use Single Command pattern to accomplish
Operation without CI Server pattern.

7.1.3 Use existing codes as baseline and Continuous
Inspection
We can use Continuous Inspection pattern from ”Continuous
Integration Patterns and Anti-patterns”[3] for Use existing codes
as baseline pattern.

7.1.4 Automate all, Bloated builds delay rapid
feedback and Keep the Build Fast
Automate all anti-pattern leads to long build time. If we can
resolve Bloated builds delay rapid feed anti-pattern from
“Automation for the people: Continuous Integration anti-
patterns”[4] and Keep the Build Fast practice from “Practices of
Continuous Integration”[5] by using build pipeline, problem of
long build time can be resolved. This is another solution for slow
build.

7.1.5 Procedure first and Automate Deployment
Procedure first pattern recommends automating deployment as
task of temporary expedient. Automate deployment practice
from “Practices of Continuous Integration”[5] also asks to
automate deployment by other reasons. The reasons are safe
deployment and easy rollback. Automated deployment can reduce
cost by reducing mistakes of the manual operations.

8. Use cases of Patterns
We below describe some use cases of patterns for some particular
situations.

8.1.1 Stakeholders’ expectation is high
Some stakeholders think that if CI is introduced, one can automate
everything. By identifying Automate all and Over expectation
of stakeholders anti-patterns, one can resolve the issues and
adopt the appropriate patterns.

8.1.2 Stakeholders can’t decide what should start
One can classify tasks in CI into tasks of temporary expedient and
effective expedient. Temporary expedient does not have to
improve development process or product, but effective expedient
does need. Thus one can adopt Temporary expedient and
effective expedient pattern and reach at the same page with
stakeholders on ROI of the tasks.

If one selects temporary expedient as first task, Procedure first
pattern can be used. One should evaluate automated tasks of
procedure by adopting Local CI pattern, then spread to the team.

8.1.3 Want to start tasks of effective expedient
As tasks of effective expedient need cooperation of the architect
who understands the existing architecture and design of the
product, one can adopt Involve architect pattern.

Even if one can refactor architecture and design, existing code
may not have automated tests and may not be testable. In that case,
one can adopt Use existing code as baseline pattern and Write
test code for new code pattern.

8.1.4 Can’t build without CI servers
Often Over dependency for CI Server anti-pattern brings
challenge, but one can resolve this anti-pattern by adopting
Operation without CI Server pattern, Minimal Dependencies
pattern and Single Command pattern.

9. ACKNOWLEDGMENTS
We created this pattern catalog from our experience of
introducing CI to several organizations for various projects. My
appreciation goes to the architects and team members who have
inspired us.

And we also would like to thank our colleagues, CI experts and CI
community members who reviewed our paper.

Lastly we want to thank the authors who wrote CI patterns such as
from “Continuous Integration Patterns and Anti-patterns [2]” for
sharing their profound knowledge.

We hope that this pattern catalog can bring beneficial outcomes to
team leaders, software configuration management engineers, test
automation engineers and process improvement engineers when
trying to employ CI within organizations.

10. REFERENCES
[1] State of Agile Report

http://stateofagile.versionone.com/

[2] William J. Brown, Raphael C. Malveau, Hays W. "Skip"
McCormick, Thomas J. Mowbray. AntiPatterns: Refactoring
Software, Architectures, and Projects in Crisis. ISBN-13:
978-0471197133

[3] Continuous Integration Patterns and Anti-pattern.
http://refcardz.dzone.com/refcardz/continuous-
integration#refcard-download-social-buttons-display

[4] Automation for the people: Continuous Integration anti-
patterns
http://www.ibm.com/developerworks/java/library/j-ap11297/

[5] Practices of Continuous Integration
http://martinfowler.com/articles/continuousIntegration.html

[6] John Ferguson Smart. Jenkins: The Definitive Guide.
O'Reilly Media. ISBN-13: 978-1449305352

[7] Paul M. Duvall, Steve Matyas, Andrew Glover. Continuous
Integration: Improving Software Quality and Reducing Risk.
ISBN-13: 978-0321336385

