
A Pattern Language for Mobile Application Development

Steve Ng
National University of Singapore
steveng.1988@gmail.com

Bimlesh Wadhwa
National University of Singapore

 dcsbw@nus.edu.sg

ABSTRACT
The number of developers for the mobile application platform is
increasing and there is always a set of inherent design problems
such as handling data synchronization or application design that
developer will have to tackle in order to create an optimized
mobile application. In this paper, we introduce the notion of
pattern language for the mobile application development.

1. INTRODUCTION
Mobile application design involves many design considerations
such as the user interface of the application, device constraints
and the architecture of the application [1]. In this paper, we look
at mobile application design in both the front and backend
design. Design patterns are enhanced guidelines in software
design that follow a problem-solution structure within a given
context or situation [2]. It is reusable in many situations as a
pattern captures the commonality that exists in design found in
many different applications. Particularly, we provide a pattern
language initiative following which future developers can
reference when designing mobile applications. Pattern language
refers to a set of design patterns that are related and can be used
together to solve a problem [3]. The contribution of this papers
focuses on discovering patterns that address non-functional
requirements in mobile application development. These patterns
will then be used to guide developers in the design of mobile
applications. In doing so, we hope to provide new mobile
application developer with a guideline in developing each
component.

Most of the design patterns studied for the mobile application
design are related to the aesthetic aspect of the application.
Mobile Design Pattern Gallery: UI Patterns for iOS, Android
and More by Niel [4] have a good description on designing the
navigation on mobile application. Welie and Trattenberg [5]
have created a list of interaction patterns in user interfaces.
Google has also provided a pattern write-up for developers of
Android application on the best practice for interaction [6].
Similarly, Apple has also provided a set of guidelines and
principles towards designing for Apple application.

McCormick and Schmidt presented a list of data synchronization
patterns in Mobile Application Design [7]. We find the patterns
listed in the paper relevant and have included them into our
pattern language.

Gu, March and Lee came up with the idea of offloading
expensive computational tasks to cloud which will reduce the
battery consumption of the mobile application [8]. However, the
work only presents the concept; developers interested would be
required to dig deeper into the possibilities of implementing it,
which discourages them often. This leads to the need of
formulating a design pattern, which will not only contain the
concept of the solution but also implementation details such as
the components required.

2. MOBILE APPLICATION PATTERN
LANGUAGE (MAPL)

The main intent of MAPL is to serve as an overview of the best
practices used in mobile application design for different area of
non-functional concerns such as architecture for maintainability
or testability, data synchronization for optimizing network
usage. In order to provide such an overview, design patterns are
grouped into area of concerns that the design pattern is
attempting to tackle.

Mobile application developers can refer to this pattern language
and look for patterns that can be applied to their current mobile
application in an attempt to refactor their mobile application
design or solve a problem elegantly. On the other hand, students
or anyone who are looking into mobile application development
can refer to this document for an understanding of the possible
area of concerns for mobile application development and the
possible solutions to them. However, readers are assumed to
have general idea of what design patterns are and knowledge of
basic design patterns such as singleton pattern [9].

By no means is this pattern language comprehensive in covering
all possible area of concerns, but this will be a start to inspire
other industry mobile application developers to also contribute
some of the design patterns that they have applied in their
mobile application.

As shown in figure 1, the pattern language contains 21 design
patterns distributed into 4 sub-domains and they are:

Architecture
This problem area deals with the baseline architecture of your
program; they help in structuring your program into general area
of concerns (model, views and controllers) to improve
maintainability and testability of your mobile application.
Patterns included: Model View Controller, Model View
Presenter and Model View ViewModel.

View concern
This problem area deals with both the user experience and user
interfaces concerns. They help in providing an idea of how to
design your UI structure or how developer can provide a better
overall user experience in their mobile application. Patterns
included: Spinners, Fixed Tabs and Navigation Drawers and
Offline Usability

Controller concerns
This area deals with concerns about requests (HTTP) coming
into the mobile application. It includes issues such as refactoring
for reusability of cross cutting concerns such as logging or
authentication. Patterns included: Front Controller and Page
Controller, Template View and Application Controller

Model concerns
This problem area covers a huge domain such as concerns in
data access from both database and REST API or reduces the
battery consumption of the mobile application. This area help
developers in understanding the various possible problems in
data access or device related concerns and provides possible
solutions to them. Patterns included: Strategy Cache and Proxy
Cache, Repository and Data Access Object, Timestamp transfer,
Mathematical Transfer, Exponential Back-off, Partner Cloud
and Sensor Manager

3. ARCHITECTURE PATTERNS
The architectural Patterns in this section here are not of much
relevance for mobile native developer as the architecture pattern
is dictated by the platform. For example in Android, developers
have to define views inside the layout folder, and the controllers
are the activity class that will render the views and listen for
events from the user. However for Android, there is no explicit
model class. Each application could have different needs; for
example, Instagram would use the model classes for logic on
uploading or application of filter on images. On the other end of
the application spectrum, a chess application would not require
data from external source; hence, the model would contain the
algorithm to calculate the next best AI move instead.

However, the patterns in this section are highly relevant for
mobile web developer. In this section, we would elaborate on
the kind of architecture design pattern that are utilize by
different JavaScript frameworks. This section should allow
mobile web developers to decide on which framework might be
a better choice. However, do note that this should not be the
only factor in deciding which frameworks to use. Other factors
such as the community support of the framework and
documentation should be considered too.

3.1 MVC
Intent
Separate the User Interface code from the application's logic

Forces
A mobile application like any application can evolve rapidly
through iteration. Changing any component (user interface, logic
or data source) should not affect any other components.

Solution
Separate your application into three key components: model,
view and controller.

Figure 1: MAPL concerns

Structure

Figure2: MVC Structure

§ Model: This component contains the business logic and
data access of the application.

§ Controller: This component listens for UI interaction
events from the user, and handles the request routing.

§ View: This component contains the look of the mobile
application.

Consequences
Benefits
§ Increase maintainability of the system with a clear

separation of concern.

Liabilities
§ Views are calling the model directly, which may pose a

security concern if there are model data that are not
supposed to be shown and no security mechanism is in
place.

Known uses
Maria.JS framework [10]

Related Works
This pattern is documented in the POSA (Pattern-Oriented
Software Architecture) series [2].

3.2 MVVM
Intent
Separate the user interface code from the application's logic

Forces
User interfaces evolve rapidly; changes to the UI should not
affect the application logic. Testability of the application is of
concern too. You also want to be able to develop in parallel with
the UI designer working on the views and the other
programmers on the other components. Finally, for a more
complex application, they can be multiple views for the same set
of data (admin/user) and you would like to reuse the same
controller for the set of views.

Solution
Separate your application into three key components: model,
view and ViewModel.

Structure

Figure 3: MVVM Structure

§ Model: This component contains the business logic and
data access of the application.

§ ViewModel: contains the values and method that the view
can call

§ View: utilize data-bind to get both values and return UI
events

Consequences
Benefits
§ Improve overall maintainability of the code
§ Increases testability of the application than MVC as view is

only coupled to ViewModel
§ Support parallel development of both components

Liabilities
§ Data-binding can be complicated to understand initially

Known uses
The following three javascript framework implements this
pattern: KendoUI [11], Knockout.JS [12], angularJS [13]. A
developer has also created a framework to implement such
pattern in Android [14].

3.3 MVP (Passive View)
Intent
Separate the User Interface code from the application's logic
(Similar to MVVM)

Forces
User interfaces evolve rapidly; changes to the UI should not
affect the application logic. Testability of the application is of
concern too. You also want to be able to develop in parallel with
the UI designer working on the views and the other
programmers on the other components. Finally, for a more
complex application, they can be multiple views for the same set
of data (admin/user) and you would like to reuse the same
controller for the set of views.

Note: This is similar to MVVM. MVP Passive View is another
alternative way of implementation.

Solution
Separate your application into three key components: model,
view and Presenter.

Structure

Figure 4: MVP Structure

§ Model: This component contains the business logic and
data access of the application.

§ Presenter: Has method that Views can call when UI event
is triggered, update views through an interface provided by
view

§ View: call presenter method when UI event is triggered.

Consequences	
Benefits	 	
§ Improve overall maintainability of the code
§ Increases even more testability of the application (highest

among the 3 architecture pattern)
§ Support parallel development of both components (views

and presenter)

Liabilities
§ More effort is required than the other 2 pattern above due

to an interface to update view is required

Known uses
There is no mobile web JavaScript framework that supports this
pattern off the shelf currently. This pattern is used more often
for Google Web Toolkit project: particularly GWTP. [15]

Related Works
Martin fowler has documented this pattern for the enterprise
domain [16].

4. MODELS CONCERNS
Model concerns are highly relevant regardless of mobile web or
native mobile application; in both type of mobile applications,
there will definitely be business logic and most of the time there
will be some form of CRUD (create, read, update and delete)
operations as too. In this section, we would elaborate the kind of
design pattern developers can use in their models. For example,
to separate business and data access logic, a combination of
repository and data access object design pattern can be used.

Also, to improve performance of your mobile application,
adding proxy cache will help too.

As shown below are the design patterns in this category and how
the patterns can be linked together. Some patterns are not
included in this paper as extensive documentation can be found
elsewhere. Repository pattern can be found from Microsoft
Developer Network documentation [17]. Data Access Object
can be found from Oracle’s documentation [18]. McCormick
and Schmidt of Data Synchronization Pattern in Mobile
Application Design documented both timestamp transfer and
mathematical transfer [7].

Figure 5: Model concerns

4.1 Proxy Cache
Intent
Re-use data instead of pulling the same dataset when the
application requires data.

Forces
Some data does not change at all such as historical stock price,
pulling the data each time the user request on it wastes
bandwidth.

Solution
Cache data that will not change into device’s cache

Structure

Figure 6: Proxy Cache Structure

§ Interface for Model: setter and getter method that will be
implemented by both ModelDAO and ModelCache

§ ModelCache: Implement the method stated for the model.
§ ModelDAO: Data access object, queries from the data

source. (refer to data access object pattern)

Figure 7: Proxy Cache Interaction

Consequences	
Benefits	 	
§ Reduces network calls which saves mobile devices

bandwidth
§ Increase performance when the data is already in cache

Liabilities
§ Developers have to understand the different ways to cache

and also the cons of each caching strategy. For example
caching in-memory will consume the memory space of the
mobile device and caching in local storage occupies disk
storage.

Known uses
Android’s Volley networking library utilized some form of this
pattern for caching when making network request [19].

4.2 Strategy Cache
Intent
Common location for caching mechanism

Forces
There can be multiple ways to cache data (in plaintext, in local
database or even in memory). Directly accessing such caching
mechanism will result in duplication of code.

Solution
Have a default cache interface that is implemented by each
caching method.

Structure

Figure 8: Strategy Cache Structure

§ Interface for Cache: methods that all the cache should
implement such as storeInCache and getFromCache

§ MemoryCache: Implementation of caching in memory
§ DiskCache: Implementation of caching in disk

Consequences
Benefits	 	
§ Reduces duplication code
§ Increased flexibility to add or edit cache mechanism

4.3 Exponential back-off
Intent
When retrying failed data synchronization, instead of retrying
immediately, retry at after a delay.

Context
A mobile application is required to make a lot of data
synchronization calls, however at times they might fail but the
data still must be sent to the remote server. Hence the mobile
phone retries, however the mobile phone might be in a subway,
constant immediate retry of data synchronization is fruitless and
will drain the battery instead.

Forces
Battery usage – The battery consumption of a mobile
application should be as minimal as possible.

Usability – A sudden disrupt of connectivity should not disrupt
the usability of the application.

Solution
Implement a retry mechanism that retry at a fixed interval and if
it fails again, retry at an even later interval.

Structure
There is no structure for this pattern as it is a timer that increases
after each retry.

	
Consequences
Benefits	 	
§ Prevents unnecessary network calls, which reduce battery

consumption of the application.

4.4 Partner Cloud
Intent
Reduces the battery consumption and improve the execution
speed of the application by offloading computational intensive
tasks on cloud.

Context
Mobile devices have limited computational power and running
algorithms which take a considerable amount of time not only
cause the user to wait if they are dependent on the algorithm
which result in bad usability, it also drains the battery life.

Forces
Battery usage – The battery consumption of a mobile
application should be as minimal as possible.

Solution
Instead of using the mobile phone to compute all the tasks
required of the mobile application, partition the application with
the computationally intensively tasks to the cloud.

Structure

Figure 9 : Partner Cloud Structure

Figure 10: Partner Cloud Interaction

Consequences
Benefits
• Computations that wasn’t possible due to the processing

power of the device is no longer a concern.
• Battery life/ availability of the application is improved –

Mobile resources are less heavily taxed as computationally
intensive tasks are offloaded to cloud.

• Response time of the application increases – cloud will
compute the tasks at a much faster speed as compared to
mobile device.

Liabilities
• Low network bandwidth might results in an even slower

execution time than computing locally on the mobile.
• Unstable network might result in not receiving the cloud’s

reply, which will result in an even slower execution time.
• Offline usability – the mobile phone should still be able to

compute the intensive algorithm by itself if there is not
network available.

• Security concerns – since data are transmitted over the
network, there is a chance of data being eavesdropped.

• If overused, it might create a heavy load on the server.

Known uses
No examples of industry mobile application that utilize this
pattern are available. A possible use case is to offload
calculation of the next move by an AI in a chess game to the
cloud.

Related patterns
Data Transfer Object Pattern

Related works
CloneCloud [20] is a system in place that also offload
computationally intensive task to the cloud. It automatically and
seamlessly off-loads part of the execution of mobile applications
from mobile devices onto the device clones in a computational
cloud. The concept is worth a try if the offloaded task requires
the state of the Android app, however the complexity of this is
much higher as well.

µCloud [21] shares the same key concept of separation of
components (either in Android or in Cloud) and having the
components call one another. However, they didn’t take into the
account of the possibility that the algorithm might require
information such as the current state of the Android application.
Also, communication protocol component was not present as
well.

4.5 Sensor Manager
Intent
Make device optimal decision based on the current application’s
connectivity and battery state.

Context
Mobile devices have limited battery life, and consumer typically
has a limited data usage on the mobile imposed by the telecoms.
Also, Android can display each individual application’s data and

battery usage. If a mobile device has high data or battery usage,
user will be inclined to uninstall them.

Forces
Network usage – Mobile application have to be prudent in
network usage when the user is on 3G or 4G.
Battery usage –Battery consumption of mobile application
should be as minimal as possible.
Usability – Mobile application has to be usable still.

Solution
Whenever performing a data synchronization task that might
potentially drain battery or consume large amount of data
(determined by developer), take into consideration of the user’s
current battery and connectivity status.

Structure

Figure 11 : Sensor Manager Structure

§ Battery Monitor – this component role is to provide the
battery status of the mobile phone
Connectivity Monitor – this component role is to provide
the connectivity status of the mobile phone

§ Component – this set of components are the main logic of
the mobile application, it will ask the sensor manager the
best way to perform each data synchronization task.

§ Sensor Manager – Based on the input from connectivity
and battery monitor, this component will make the decision
for the best way for each data synchronization task.

Figure 12 : Sensor Manager Interaction

The above shows the general interactions between the
components. When the component wishes to perform a data
synchronization task, it will ask the sensor manager (with the
performTask() method). Next, the sensor manager will based on
the current connectivity and battery state, it will reply the best
way to perform a task.

For example:

1) Streaming video -- if the connectivity is slow, sensor
manager will inform the component to stream low quality

2) Sending big files – if the user is on 3G, sensor manager will
inform component not to send now but to only send when
it’s connected to wifi. (refer to Offline Usability pattern for
a way to implement that sends automatically when the user
connects to wifi). Also if there is low battery, the sensor
manager can advise only to send the file when the device is
charging or reach a satisfactory battery level

Consequences
Benefits
• Mobile data usage is improved – tasks that consumed huge

data plan can be performed only when there’s Wi-Fi.
• Battery consumption improves.

Liabilities
• Usability might suffer if the interaction is not handled

correctly – For example even though the sensor manager
might advise not to send the file, the final say should be
given to the user.

Known uses
Funf, is an open sensing framework that utilize a form of this
pattern with SensorManager as FunfManager and monitor as
probe [22].

This pattern is also common in video streaming application and
Android Play store. As shown in figure 13 is a video streaming
application which keep tracks of the user’s mobile connectivity
status and selects video quality accordingly for streaming.
Figure 14 shows Android Play store informing user that a
download task will potentially cause data usage charge or delay
if the user wants to download when the device is not on wifi.

Figure 13: NextVid App

Figure 14: Android Play Store

Related patterns
Observer Pattern
Offline Usability

Related works
Reto Mier, a tech lead at Google discussed a similar form of this
pattern [23].

5. CONTROLLERS CONCERNS
Controllers deals with handling user’s interaction at the UI and
calling the appropriate model if there is any CRUD to be
performed. Figure 15 shows the design patterns that can deals
with the possible concerns found in the controller. Both mobile
web and mobile native developers will find these patterns very
useful. All the patterns listed in this category are documented in
the POSA series. [24]

6. VIEWS CONCERNS
Views concerns deals with structuring of the user interface or
providing a good user experience for the user. As shown below
are the design patterns in this category. Views pattern are very
well documented for mobile applications in the different
literatures, hence, mobile developers who are interested to know
more can search over the net for mobile application UI design
pattern.

The three navigation patterns in Figure 16 are documented in
Android’s developer documentation [25][26][27].

Figure 15: Controller concerns

Figure 16: View concerns

6.1 Offline usability
Intent
Allow user to perform data synchronization tasks even when
they are offline.

Context
Mobile devices stays connected to the Internet most of the time.
However there are cases when the connectivity can be disrupted
(in the subway or when the network is congested). In the times
when there’s no connectivity, user would still like to perform
data synchronization task such as sending email or sending a
message.

Forces
Usability –the usability of the application should not be affected
by disruption of connectivity.

Solution
Whenever user does not have a connection and perform a data
synchronization task, add the task to an queue and perform it
when the user is back online.

Structure

Figure 17: Offline Usability Structure

§ Connectivity Monitor – this component role is to provide

the connectivity status of the mobile phone
§ Sender Manager – This component manages the sending of

message. When it receive a message, it will check if there
is connectivity and if there isn’t, add the message to a
queue and listen for publish event from the monitors and
ask the sender to send the message from the queue as soon
as connectivity is restored. If there is a connection, ask the
sender to send immediately.

§ Component – this set of components are the main logic of
the mobile application.

§ Sender – this component provides the method on
communicating with the cloud’s receiver.

Figure 18 shows the general interactions between the
components. When the component wishes to perform a data
synchronization task, it will pass the message to the sender
manager to perform the task. The sender manager will then
check for the connectivity state of the mobile phone. If there is
connectivity, it will perform the data synchronization task.

If there is no connectivity, the sender manager will add the
message to a queue and listen for event from connectivity
monitor. The moment there is a connection, the connectivity
monitor will send an event to the sender manager where the
sender manager can loop through all the messages in the queue
and send it.

Figure 18: Offline Usability Interaction

Consequences
Benefits
§ Usability improves – user will not get error message trying

to perform data synchronization when they are lost
connectivity. Also if there is low battery, huge data
synchronization can be delayed till the user has charged the
phone till a certain level.

Liabilities
§ Developer have to have a way to inform the user that the

data synchronization task is added to the queue or the user
might feel that it’s a bug from the application when the user
checked and noticed that the task was not performed.

Known uses
This pattern is heavily used in the industry. If a user were to use
Google’s Gmail application to send an email when they are not
connected, Google adds the email to the queue and only send
when the user is connected back to the Internet.

Whatsapp [28] utilize a form of this pattern too, if a user were to
send a message when they are not connected, Whatsapp will add
the message to the queue and send only when the user is
connected back to the Internet.

Related patterns
Sensor Manager

Related works
This pattern was discussed during the Google IO 2012 by Reto
Meier, a tech lead at Google [23].

7. CONCLUSION AND FUTURE WORK
In this paper, we have presented a pattern language initiative by
compiling 20 design patterns into 4 categories: architecture,
controller, view and model concerns. We believe this is useful
for new mobile application developer to understand the different
type of concerns for mobile application. However, this
compilation by no means is comprehensive to cover all the
possible concerns of mobile application domain. In the POSA
series, a total of 13 possible concerns areas have been identified
for the enterprise application domain and we’ve only covered 4
in this paper for the mobile application domain. Future work
will be to continue exploration of possible concerns and design
patterns and document the pattern down into the same format as
this paper.

8. ACKNOWLEDGEMENTS
We would like to thank our shepherd Prof. Youngsu Son for his
useful feedback for polishing the paper. We would also like to
thank the following people for their help reviewing in this paper
at AsianPLoP 2014: Ademar Aguiar, Ed Fernandez, Oscar
Encina, Yu Chin Cheng and Emilian Tramontana.

9. REFERENCES
[1] Chapter 24: Designing Mobile Applications. (n.d.).

Retrieved from http://msdn.microsoft.com/en-

us/library/ee658108.aspx

[2]Buschmann, F. Pattern-Oriented Software Architecture

Volume 1: A System of Patterns. Wiley, 1996.

[3] Alexander, C. (1977). A Pattern Language: Towns,

Buildings, Construction. USA: Oxford University Press. ISBN

978-0-19-501919-3.

[4] Mobile Design Pattern Gallery. (n.d) Retrieved from

http://www.mobiledesignpatterngallet.com/

[5] Welie, M. V., & Trætteberg, H. (2000). Interaction patterns

in user interfaces.

[6] Patterns | Android Developers. (n.d.). Retrieved from

http://developer.android.com/design/patterns/index.html

[7] McCormick, Z., & Schmidt, D. C. (2012). Data

Synchronization Patterns in Mobile Application Design.

[8] Gu, Y., March, V., & Lee, B. S. (2012). GMoCA:

GreenMobile Cloud Applications.

[9] Richard, E. H. Design Patterns: Elements of Reusable

Object-Oriented Software (Addison-Wesley Professional

Computing Series). Addison-Wesley Professional, 1995.

 [10] Michaux, P. (n.d.). Maria - The MVC Framework for

JavaScript Application. Retrieved September 9, 2013, from

http://peter.michaux.ca/maria/

 [11] Kendo UI - jQuery HTML5 framework for desktop,

mobile app development, HTML5 data visualization. (n.d.).

Retrieved September 9, 2013, from http://www.kendoui.com/

[12] Knockout : Home. (n.d.). Retrieved September 9, 2013,

from http://knockoutjs.com/

[13] AngularJS — Superheroic JavaScript MVW Framework.

(n.d.). Retrieved September 9, 2013, from http://angularjs.org/

[14] android-binding - Providing a framework that enabes the

binding of android view widgets to data model. It helps to

implement MVC or MVVM patterns in android applications. -

Google Project Hosting. (n.d.). Retrieved February 4, 2014,

from https://code.google.com/p/android-binding/

[15] Arcbees (n.d.). ArcBees/GWTP · GitHub. Retrieved

October 12, 2013, from https://github.com/ArcBees/GWTP

[16] Fowler, M. (n.d.). Passive View. Retrieved September 1,

2013, from http://martinfowler.com/eaaDev/PassiveScreen.html

[17] Repository Pattern. (n.d.). Retrieved from

http://msdn.microsoft.com/en-us/library/ff649690.aspx

[18] Core J2EE Patterns - Data Access Object. (n.d.). Retrieved
from http://www.oracle.com/technetwork/java/dataaccessobject-
138824.html
[19] Parmer, K. (2013, May 24). Volley: Easy, Fast Networking

for Android - Example | KP Bird. Retrieved February 4, 2014,

from http://www.kpbird.com/2013/05/volley-easy-fast-

networking-for-android.html

[20] B. Chun and P. Maniatis, “Augmented smart phone

applications through clone cloud execution,” in Proceedings of

the 12th Workshop on Hot Topics in Operating Systems

(HotOS), 2009.

 [21] March, V., Gu, Y., Leonardia, E., Goh, G., Kirchberga,,

M., & Lee, B. S. (2011). µCloud: Towards a New Paradigm of

Rich Mobile Applications.

 [22] FunfArchitecture - funf-open-sensing-framework - An

overview of the Funf package structure - Android-based

framework for phone-based sensing and data-collection. -

Google Project Hosting. (n.d.). Retrieved February 4, 2014,

from https://code.google.com/p/funf-open-sensing-

framework/wiki/FunfArchitecture

 [23] Google (2013, June 30). Google I/O 2012 - Making Good

Apps Great: More Advanced Topics for Expert Android

Developers [Video file].

 [24], F., Henney, K., & Schmidt, D. C. (2007). Pattern-oriented

software architecture: V. 4. Chichester, England: John Wiley.

[25] Navigation Drawer | Android Developers. (n.d.). Retrieved

from http://developer.android.com/design/patterns/navigation-

drawer.html

[26] Spinners|Android Developers. (n.d.). Retrieved from

http://developer.android.com/guide/topics/ui/controls/spinner.ht

ml

[27] Tabs | Android Developers. (n.d.). Retrieved from
http://developer.android.com/design/building-blocks/tabs.html
[28] WhatsApp :: Home. (n.d.). Retrieved September 9, 2013,
from http://www.whatsapp.com/

