Detecting Extra Relationships for Design Patterns Roles

Emiliano Tramontana
Dipartimento di Matematica e Informatica
University of Catania, Italy
tramontana@dmi.unict.it

ABSTRACT

When using design patterns, classes and their relationships
should conform to prescribed solutions. However, several ad-
hoc design choices are often made and, as a result, variants
of the design pattern appears, which, though keeping most
of the original structure intact, could alter the intended aim.
Variants are more likely to emerge in large software systems
and detecting them during development is not trivial, due
to the many classes and relationships.

This paper proposes a solution to automatically detect
variants by leveraging the relationships that classes have
with roles of design patterns. Our approach comprises some
rules for detecting the extra relationships and provides a sup-
port to check an implementation. The checks put into place
act as an executable documentation for the desired design
patterns, warning developers should any change occur.

1. INTRODUCTION

While developing large software systems, some of the aris-
ing design issues are solved by resorting to well-known design
patterns and, accordingly, some classes play the prescribed
design pattern roles [9]. However, the design must accommo-
date many other issues and further classes and relationships
emerge, which are superimposed on the chosen design pat-
terns. As a result, some relationships between classes could
be arranged in such a way to become detrimental to some
features the design patterns try to achieve: e.g. relation-
ships between classes could appear in places where the de-
sign patterns would instead prescribe a clean separation be-
tween classes. A class could also play multiple roles in one or
several design patterns, which could indicate that the class
intertwines several concerns [26]. Therefore, though some of
the classes are mapped according to design patterns, some
spurious (i.e., unwanted) features could emerge that could
alter the aim of some design patterns.

Generally, refactoring techniques are used to perform pre-
ventive changes, hence improving the quality of design and
code, and some of these techniques have been tailored to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

detect code smells that indicate a suitable design pattern [8,
17]. Some other techniques have been proposed to detect oc-
currences of design patterns within systems, e.g., [27]. How-
ever, such approaches are not aiming at analysing the ex-
tra relationships that classes may have with design patterns
roles, hence are not concerned with finding spurious relation-
ships. Similarly to detection, a verification approach checks
that required characteristics are exposed by the respective
roles of a design pattern on a minimal implementation [3].
However, further (system-wide) extra relationships with re-
lated classes, possibly deviating from the proper structure,
are not considered.

We propose to set up some rules for classes playing a role
in a design pattern and other related classes to automati-
cally check system-wide relationships and assess deviations
(from the proper version) on relationships. The proposed ap-
proach is novel, as it aims at finding spurious relationships
that might appear as a side-effect of some design issues, i.e.,
once other characteristics typical of a design pattern have
been properly put into place. Moreover, our approach lets
developers define when a design pattern variant can be con-
sidered appropriate.

Rules to be checked can be implemented as pointcut-based
expressions. Pointcuts are language constructs available for
the aspect-oriented programming (AOP) paradigm [18] and
AspectJ language [19]. They can be used to find matchings
between defined rules and a design. Therefore, AOP greatly
reduces the effort otherwise needed for developing a tool that
analyse design and code. Nevertheless, our approach can be
considered general and independent of the language used for
implementing design patterns and the analysing tool.

Our approach provides developers with an executable doc-
umentation for the desired design choices, i.e., defined design
rules can be automatically and continuously checked at de-
sign time, hence without any overhead at runtime. Detect-
ing variations prevents introducing a design solution that
can bring problems in the long term.

The rest of the paper is structured as follows. The next
section describes the proposed approach. Sections 3, 4, and 5
express the rules for design patterns Adapter, Observer, and
Factory Method, respectively. Section 6 shows the results
obtained on a case study. Section 7 analyses the related
work, and finally conclusions are drawn in Section 8.

2. DETECTING EXTRA RELATIONSHIPS

For each design pattern, the solution describes the roles,
with names and responsibilities, and their relationships. Roles
are mapped into classes of the software system and class re-

lationships describe the dependencies to be created, which
comprise generalisation/specialisation, method call, and in-
stantiation [9]. Generally, for a large software system, fur-
ther portions of code appear that represent additional re-
sponsibilities and, often, further relationships. Approaches
detecting occurrences of a design pattern can find extra re-
lationships, e.g., [27], however their aim is to recognise the
minimum set of satisfied relationships not extra, spurious
relationships.

Our approach aims at finding the following categories of
extra relationships. We analyse for a class playing a de-
sign pattern role whether the class: (i) implements one or
several interfaces, (ii) extends a superclass, (iii) is instanti-
ated or used by several client classes, (iv) depends on other
roles of the same design pattern. Which extra relationships,
among the above categories, are to be considered inappropri-
ate, hence spurious, depend on the specific design pattern.
The following sections provide the definitions of inappropri-
ate relationships for a few design patterns, the approach is
however viable for others as well.

Some relationships are not mentioned by the solutions pre-
scribed by the GoF’s catalogue [9], hence for classifying some
extra ones as inappropriate (or otherwise correct), we have
tapped into the experience gained in using design patterns
and developing components having a low degree of coupling
and internal complexity, while having a high degree of func-
tional cohesion [4, 6, 11, 12, 14, 22, 23, 24]. Additionally, our
approach can bring the developer’s point of view in, as s/he
can express quality requirements for the system at hand.
Hence, though some extra relationships are filtered out au-
tomatically as inappropriate, developers can fine-tune the
provided filter mechanism.

Detection of extra relationships is performed automati-
cally. Automation is needed because the relationships that
a few roles for a design pattern play potentially extend to
several dozens of classes in industrial software systems. Once
detection rules have been conceived, a static analysis is re-
quired for checking conformance and some analysing tool
can be developed for the desired programming language. In
this paper, we express the rules finding extra relationships in
terms of AspectJ constructs and its standard compiler suf-
fices, hence no ad-hoc tools are needed. Software aspects are
components allowing the developer to implement pointcuts
and advices. The former provide developers with means to
define rules for intercepting some points during the compi-
lation and execution of a system, the latter are similar to
methods, hence allow a sequence of operations to be im-
plemented, which are executed when the associated point-
cut matches the currently executed point [12, 13, 14, 18,
19]. Aspects and classes are compiled together by means of
a weaver. In AspectJ, the most robust and feature-ready
aspect-oriented language, based on Java, the weaver gener-
ates standard bytecode that can be executed on any JVM [1].

Using AspectJ, the developer can drive the weaver to per-
form some checks at compile-time, i.e., the compiler matches
pointcuts and portions of a system. This is possible only
when the pointcuts depend on the structure of the classes,
i.e., pointcuts are independent of values of attributes, ex-
ecution flow, etc. For the developers to have the results
of the matching, pointcuts must be inserted into a declare
construct. Therefore, our rules are described by means of
the declare construct, as we aim at checking structural de-
pendencies, which can be found at compile-time, and find

Adaptee Target

request()

N

/

specificRequest()
7

Adapter

request()

Figure 1: UML class diagram showing extra rela-
tionships, as dotted lines, between roles for Adapter

all existing occurrences of extra relationships. The follow-
ing provides for each design pattern analysed the pointcuts
capturing extra relationships. Pointucts are implemented in
terms of the names of the roles for a design pattern. For the
actual version of the aspects that can be weaved to a soft-
ware system, it suffices to substitute the name of the role
with that of the corresponding class playing the role.

3. ADAPTER

Design pattern Adapter aims at letting a client class inter-
act with a server class, even though the interface provided
by the server class is not that expected by the client class.
The suggested solution consists of roles Target, Adapter, and
Adaptee. Target defines the interface that the client class
expects. Adapter implements the Target interface and redi-
rects calls to the corresponding operation provided by server
class Adaptee.

The following provides the extra (i.e., spurious) relation-
ships that we propose to check for validating the implemen-
tation of design pattern Adapter. Figure 1 shows such extra
relationships as dotted directed lines.

e Condition 1. Client classes should not call operations
on Adaptee, only Adapter is allowed.

Calls from client classes to Adaptee would introduce
an extra relationship, bypassing Adapter, which is in-
appropriate because Adapter acts as intermediary. De-
pendencies between client classes and Adaptee would
unexpectedly break should Adaptee change its inter-
face. Moreover, such relationship would let a client
be directly coupled with Adaptee role. From the func-
tional point of view, Adapter might provide additional
functionalities, such as caching, guarding, etc., bypass-
ing it would give unexpected results.

o Condition 2. Client classes should not create instances
of Adaptee, only Adapter is allowed.

This follows from the same reason as above of having
Adaptee hidden by Adapter and no direct coupling be-
tween the former and client classes. When the Class
version of Adapter is used, i.e., Adapter is a subclass of
Adaptee, Adapter should not instantiate Adaptee. Oth-
erwise, for the Object Adapter version, only Adapter
can instantiate Adaptee.

e (Condition 3. Adaptee should neither call methods of
Adapter, nor instantiate Adapter.

This condition expresses the decision by which Adaptee
should have no knowledge of its Adapter, hence no cou-

1+ public aspect AdapterCheck {

// Condition 1: check calls to Adaptee
declare warning :

2
3
4 call(x Adaptee.x(..)) && !within(Adaptee)
5 && 'within(Adapter)

6 ”Disallow calls to Adaptee’s methods™

s // Condition 2: check instantiation of Adaptee
s declare warning :

10 call (Adaptee.new(..))

11 && 'within(Adapter)

12 . "Only for the Object Adapter solution,

13 Adapter creates an instance of Adaptee”,

s // Condition 3: check calls from Adaptee to Adapter
16 declare warning :

17 (call(Adapter.new(..)) || call(x Adapter.x(..)))

18 && within(Adaptee)

19 : "Adaptee should not know about Adapter”,

Figure 2: Aspect with pointcuts detecting extra re-
lationships for Adapter

pling. This lets Adapter be changed without triggering
changes to Adaptee.

In our solution, checks for the above conditions have been
implemented as corresponding pointcuts in AspectJ. Fig-
ure 2 shows the aspect-oriented code. Each pointcut finds,
at compile-time, the classes violating the corresponding con-
dition. Violation of Condition 1 is traced by pointcut in
lines 4 to 5; Condition 2 as pointcut in lines 10 to 11, for
the Object Adapter version, and as line 10 only for the Class
Adapter version; Condition 8 as pointcut in lines 17 to 18.
Designator call() matches method calls toward the signature
given as a parameter and wildcards allow any occurrence
to match. Designator within() matches the points found in-
side the class given as a parameter. Matching expressions
are combined using boolean operators. Section 6 shows the
findings when using the above pointcuts on a system.

4. OBSERVER

For design pattern Observer, the solution prescribes an
interface Observer that classes named ConcreteObservers im-
plement to be notified by a change of state within an ob-
served class ConcreteSubject. Moreover, a Subject holds a
list of Observers and notifies instances when the state of
ConcreteSubject changes. ConcreteSubject is a subclass of
Subject and communicates its state changes to Subject by
calling method setChanged(), likewise triggers updates by
calling method notifyObservers().

Figure 3 shows, as dotted directed lines, the undesired ex-
tra relationships. Each dotted line represents any category
of relationships, i.e., method call, instantiation, inheritance,
etc. The extra relationships are described, along with con-
ditions and motivations, in the following.

e Condition 1. No instances of Subject should be cre-
ated.

This condition follows from the decision that Subject
is only responsible for handling Observers. Having no

Subject
listObservers Observer
attach()
detach() update()
notify()
‘ﬂ %
r |
.~ [ConcreteSubject |.. |
o . - '
_______ “*-..\[ConcreteObserver
........ >update()

Figure 3: UML class diagram showing extra rela-
tionships, as dotted lines, between roles for Observer

other functionalities, no classes need to handle its in-
stances, instead ConcreteSubject inherits from Subject.
Violations of such a condition reveal that Subject has
been given several responsibilities, hence its internal
complexity could be considered high, as several con-
cerns are mixed in it.

e Condition 2. Only ConcreteSubject should invoke meth-
ods setChanged() and notifyObservers(), inherited from
Subject.

This indicates the decision to have only ConcreteSub-
ject manage its state and notifications. Violating such
a condition reveals that other classes are handling the
state of ConcreteSubject, which could contrast with the
information hiding principle. A client class would be
better call a proper method of ConcreteSubject instead,
to preserve the logic that the final decision for updating
Observers is taken within ConcreteSubject. Subclasses
of ConcreteSubject are considered as playing the same
role as their superclass.

e Condition 3. ConcreteObserver should not call Con-
creteSubject’s methods and instead should call Sub-
ject’s methods.

The aim of Observer is to have a loose coupling be-

tween ConcreteObserver and ConcreteSubject, hence, when

interaction is needed, ConcreteObserver should call meth-
ods by means of a variable having type Subject.

e Condition 4. Only Subject should invoke the notify
method update() on ConcreteObserver.

For having the desired loose coupling, calls to Con-
creteObserver’s methods are restricted. This condition
applies, among other classes, to ConcreteSubject, i.e.,
the latter should not call ConcreteObserver’s methods.

e Condition 5. ConcreteObserver should not call update()
on an implementation of Observer. If a class exists that
violates this condition and satisfies Condition 4 at the
same time, then the class is both a subclass of Subject
and implements Observer.

Violation of this condition means that the same class
has been given the two roles: ConcreteSubject and Con-
creteObserver, hence it is mixing portions of code re-
lated to different responsibilities. Possibly, the com-
plexity of such a class is high.

1+ public aspect ObserverCheck {
// Condition 1: check Subject’s instantiations
declare warning :

call (Subject.new(..))

2
3
4
5 ”Subject should not be instantiated

v // Condition 2: check state changes and updates

s declare warning :

9 (call(x Subject.setChanged()) ||

10 call(x Subject.notifyObservers(..)))

11 && 'within(Subject+)

12 . "ConcreteSubject only should change its state or

”,

13 start mnotification 7

s // Condition 3: check calls back to ConcreteSubject
16 declare warning :
17 call(x ConcreteSubject.x(..)) && within(Observer+)

18 && 'within(ConcreteSubject+)
19 1 "ConcreteObserver should call Subject’s methods™

2 // Condition 4: check calls to ConcreteObserver

2 declare warning :

2 call(x Observer+.update(..)) && !within(Subject)
2 1 ”Only Subject should call ConcreteObserver”,

s // Condition 5: check ConcreteObserver’s calls to

o // other ConcreteObservers

28 declare warning :

29 call(x Observer+.update(..)) && within(Observer+)
30 : 7A ConcreteObserver calls Observer”,

a2 // Condition 6: check ConcrObserver’s calls to Subject
33 declare warning :

% (call(x Subject.setChanged()) ||

3 call(x Subject.notifyObservers(..)))

3 && within(Observer+)

a7 1 7A ConcreteObserver calls Subject™,

Figure 4: Pointcuts detecting extra relationships for
Observer

e Condition 6. ConcreteObserver should not call Sub-
ject’s methods for updating the state and start notify-
ing Observers (other methods can be called). A class
violating this condition and satisfying Condition 2, is
both a subclass of Subject and implements Observer.

Similarly as Condition 5, this would reveal a class be-
ing both the originator and destination of a notification
of state change, hence two roles for the same class.

Figure 4 shows the aspect-oriented code to detect whether
the above conditions have been violated by an implementa-
tion. A pointcut matching one or more classes reveals the
extra relationships expressed by the corresponding condi-
tion. Each implemented pointcut follows from the negation
of the condition to be satisfied.

For Condition 3, the implemented pointcut checks whether
a call from a ConcreteObserver is performed to a Concrete-
Subject (line 17). Additionally, the check excludes calls from
ConcreteSubject (line 18), this latter check would be unneces-
sary if the two roles are implemented as two different classes.
However, the case study that we used showed that this is not
always true. Section 6 shows our findings.

| Product | Creator

4 factoryMethod()
l
|
.. |

| ConcreteCreator
&| ConcreteProduct |<—
factoryMethod()

Figure 5: UML class diagram showing extra rela-
tionships, as dotted lines, between roles for Factory
Method

1 public aspect FactoryMethodCheck {

// Condition 1: check instantiation of ConcreteProduct
declare warning :
call (ConcreteProduct.new(..)) && !within(Creator+)

3
4
5
6 ”Only Creator should instantiate a ConcreteProduct™,

// Condition 2: check use of ConcreteProduct
s declare warning :
10 call(x ConcreteProduct.*(..)) && !within(Creator+)
11 : "Client classes should only interact with Product”,

2}

Figure 6: Pointcuts detecting extra relationships for
Factory Method

5. FACTORY METHOD

For design pattern Factory Method, a class ConcreteCre-
ator extends an abstract class Creator and implements a
method that selects and instantiates one among several Con-
creteProduct classes that implement an interface Product.
Figure 5 shows the extra relationships, whereas the rules
provided to find them are given in the following.

e Condition 1. Client classes, other than a ConcreteCre-
ator, should not instantiate a ConcreteProduct.

This condition has been derived from the aim of the
design pattern, i.e., to confine within ConcreteCreator
only the decision about which ConcreteProduct to in-
stantiate, hence supporting the information hiding prin-
ciple.

e Condition 2. Client classes should not hold a variable
of type ConcreteProduct.

This condition checks that, according to the aim of
Factory Method, classes ConcreteProducts are all im-
plementing the same interface Product, without adding
any public method, in such a way that ConcreteProd-
ucts are hidden and interchangeable.

Figure 6 shows the code of pointcuts that detect violations
for the said conditions as lines 4 and 9 for Condition 1 and
Condition 2, respectively, and the finding are in Section 6.

6. ANALYSING JHOTDRAW

The above conditions have been checked for JHotDraw
version 6.0 [2], a software system comprising 600 classes and
72 K LOC, which is considered a reference implementation

Adapter, Adaptee, Target
Condition Matching classes

DiamondFigureGeometricAdapter, DiamondFigure, Figure
Condition 2 DiamondFigureTest, JavaDrawApp, JavaDrawAp-
plet, UndoableToolTest

EllipseFigureGeometricAdapter, EllipseFigure, Figure
Condition 2 EllipseFigureTest, JavaDrawApp, JavaDrawApplet,
NothingApp, NothingApplet

RoundRectangleGeometricAdapter, RoundRectangleFigure, Figure
Condition 1 RadiusHandle
Condition 2 JavaDrawApp,

JavaDrawApplet, NothingApp,

NothingApplet, RoundRectangleFigureTest

PolygonFigureGeometricAdapter, PolygonFigure, Figure

Condition 1 ~ ChopPolygonConnector, = DiamondFigure, Poly-
gonHandle, PolygonHandleTest, PolygonScaleHan-
dle, PolygonTool, TriangleFigure

Condition 2 PolygonFigureTest, PolygonHandleTest, Poly-

gonTool

TriangleFigureGeometricAdapter, TriangleFigure, Figure
Condition 1 TriangleRotationHandle

Condition 2 JavaDrawApp, JavaDrawApplet, TriangleFigureTest

Table 1: JHotDraw classes violating Adapter’s rules

for the design patterns in GoF’s catalogue [9]. We have cho-
sen JHotDraw because it can be considered an industrial
software system that reveals many more interactions for de-
sign pattern roles than the minimum documented, hence it
is prone not to conform to some of the conditions proposed
in this paper. A trivial implementation of design patterns,
such that that can be found, e.g., in [25], would instead
easily conform to all conditions.

Table 1 shows the classes playing a role for design pattern
Adapter as well as the classes that have been found to vio-
late the conditions described in Section 3. Very few classes
violate Condition 1, i.e., calling methods of a class playing
as Adaptee. The small number of found classes confirms that
developers aimed to have the Adaptee shielded by Adapter.

Several classes violate Condition 2, i.e., creating an in-
stance of a class playing as Adaptee. Among such classes,
the ones having the suffix Test are likely to have been imple-
mented to test the functionalities of the Adaptee class, hence
such a violation can be considered not a relevant problem.
By visually inspecting the code of some of the classes vio-
lating Condition 2 though not Condition 1, we can see that
the created instance is not used.

Table 2 shows JHotDraw classes playing the roles for de-
sign pattern Observer and the classes matching the checks
for the Observer’s, hence violating the conditions described
in Section 4. For class StandardDrawing playing as Sub-
ject and BouncingDrawing playing as ConcreteSubject, some
classes violate Condition 1, i.e., they create instances of
class StandardDrawing. By inspecting the code, we observe
that StandardDrawing offers several functionalities and is a
subclass of CompositeFigure and the latter is a subclass of
AbstractFigure. StandardDrawing implements more than the
Subject role and for this reason it has been instantiated. A
suggested refactoring would be to better isolate the Subject

Subject, Observer
ConcreteSubject
Condition Matching classes

StandardDrawing, DrawingChangeListener

Condition 1 DrawApplet, DrawApplication, Draw-
JavaDrawViewer, JDOS-

torageFormat, NullDrawingView, StandardDraw-

ingChangeEventTest,
ingTest, StandardDrawingViewTest

AbstractFigure, FigureChangeListener

Condition 2 PolygonScaleHandle, TriangleRotationHandle

Condition 3

DecoratorFigure

BouncingDrawing

Condition 4 CompositeFigure, DecoratorFigure, Fig-

ureChangeEventMulticaster, TextAreaFigure,
TextFigure

Condition 5 CompositeFigure, DecoratorFigure, Fig-

ureChangeEventMulticaster, TextAreaFigure,
TextFigure

Condition 6 ElbowConnection, GraphicalCompositeFigure,
HTMLTextAreaFigure, LineConnection, NodeFig-

ure, PertFigure, TextAreaFigure, TextFigure

Table 2:
rules

JHotDraw classes violating Observer’s

role, by having a separate extra class for handling additional
responsibilities. Such an extra class could be acting as Con-
creteSubject by using subclassing.

For class AbstractFigure playing as Subject, some classes
violate Condition 2 to Condition 6. For Condition 2, i.e.,
change state methods on Subject are called by two matching
classes, not having a hierarchy relationships with Concrete-
Subject nor Subject. It would be suggested that the change
state method is redefined in ConcreteSubject to avoid this
direct call.

Condition 4 and Condition 5 are matched by the same
classes because of the class hierarchy in JHotDraw. Class
AbstractFigure acts as Subject and has several children classes
acting as ConcreteSubject: AttributeFigure, CompositeFigure,
DecoratorFigure, PolyLineFigure. Class CompositeFigure im-
plements interface FigureChangelistener, i.e., the Observer
role. This means multiple roles are played by Composite-
Figure. A better separation between concerns would be
achieved by separating into different classes the functionali-
ties pertaining to the two roles, then using the notify mecha-
nism already in place, however for additional method pairs.

The classes matching Condition 5 or Condition 6 are play-
ing both roles ConcreteSubject and ConcreteObserver. This
has been confirmed by visually inspecting the code.

Table 3 shows the classes playing a role for Factory Method
and the results of the checks described in Section 5 for JHot-
Draw. Only three classes violate Condition 1, i.e., create
an instance of a ConcreteProduct. Two of the classes have
the suffix Test, hence it would be advisable to have the
other class (StandardDrawingView) revised to use the factory
method.

7. RELATED WORK

Previous works proposed some approaches to recognise
which classes play a role for a design pattern [7, 15, 23,

ConcreteProduct, Creator
Condition Matching classes

HandleEnumerator, Figure
Condition 1 HandleAndEnumeratorTest,
torTest, StandardDrawingView

HandleEnumera-

Table 3: JHotDraw classes violating Factory
Method’s rules

27]. Such approaches essentially match the relationships
that classes have with the relationships that design pattern
roles should have.

In [3], authors described the characteristics that a design
pattern should exhibit by means of conditions to be checked
on the source code using Prolog-like statements. In [21], au-
thors provided a support for checking that the source code
conforms to the intended structure, separately documented.
Both the above works aim at representing the essential struc-
tural features that have to be found, whereas unwanted rela-
tionships are not considered, which, instead, provide lever-
age for our proposed checks.

The importance of indicating design decisions, which how-
ever cannot be easily documented, has been stated in [16].
Some approaches used architectural languages for document-
ing design choices. However, in such approaches, architec-
ture description and code are separated and the description
is at a high-level of abstraction. Hence, the produced code
can not be automatically checked [5, 10].

In [20], a machine learning technique unveiled occurrences
of anti-patterns, after having trained a classifier with class-
related metrics and tagged classes as an anti-pattern occur-
rence or not. Unlike the said anti-pattern detection, our
approach is very fine-grained, i.e., uncovers a single extra
relationship indicating a significant variation for the design
pattern. Moreover, our approach need not training set, thus
is protected from a possible bias that could originate in the
amount and variety of tagged classes.

In [4], authors described an approach to allow develop-
ers express many different design decisions to which classes
should conform. Such design decisions are not concerned
with extra relationship, nor with design patterns. Checks
on the existing code is possible thanks to their fine-grained
description using Java annotations and aspect-orientation.

Unlike the above related works, the approach proposed
here assumes that the role played by a class in a design
pattern is known and proposes to describe unwanted rela-
tionships. We focus on the extra relationships that could
be found and aim at stating whether the resulting design
is still conforming to the main aim of the design pattern.
Moreover, our approach aims at analysing relationships that
client classes have with design pattern roles, not only be-
tween roles themselves.

8. CONCLUSIONS

This paper provided definitions of rules that allow check-
ing the proper implementations of a few well-known de-
sign patterns. Devised rules make sure that additional de-
sign choices and continuous changes during development and
evolution are not adding extra relationships and roles. Al-
though for a simple implementation of a design pattern all
our rules confirm that relationships are as expected, for
larger software systems this is not always true, because it is

much harder to avoid conflicting design choices. Moreover,
the proposed approach provides developers with a means
to automatically check the correctness of a design, hence a
framework that they can customise. This framework allows
writing tests targeting the design and is helpful for achieving
high-quality code.

Our related future work aims at conceiving useful rules
finding extra relationships for additional design patterns and
checking occurrences of the rules presented here, and further
ones, in other large software systems, such as e.g., JUnit and
ArgoUML.

Acknowledgment

This work has been supported by project JACOS funded
within POR FESR Sicilia 2007-2013 framework, and project
PRISMA PONO04a2 A/F funded by the Italian Ministry of
University and Research within PON 2007-2013 framework.

9. REFERENCES

[1] Aspect] Home page. http://www.eclipse.org/aspect;.

[2] JHotDraw Home page. http://jhotdraw.org.

[3] A. Blewitt, A. Bundy, and I. Stark. Automatic
verification of design patterns in Java. In Proceedings
of international Conference on Automated software
engineering (ASE), pages 224-232. ACM, 2005.

[4] A. Calvagna and E. Tramontana. Delivering
dependable reusable components by expressing and
enforcing design decisions. In Proceedings of Computer
Software and Applications Conference (COMPSAC)
Workshop QUORS, pages 493-498. IEEE, July 2013.

[5] P. C. Clements. A survey of architecture description
languages. In Proceedings of International workshop
on software specification and design. IEEE, 1996.

[6] A. Di Stefano, M. Fargetta, G. Pappalardo, and
E. Tramontana. Metrics for Evaluating Concern
Separation and Composition. In Proceedings of
Symposium on Applied Computing (SAC). ACM,
March 2005.

[7] J. Dong, Y. Zhao, and Y. Sun. A matrix-based
approach to recovering design patterns. IEEE
Transactions on Systems, Man and Cybernetics, Part
A: Systems and Humans, 39(6), nov 2009.

[8] M. Fowler, K. Beck, J. Brant, W. Opdyke, and
D. Roberts. Refactoring: Improving the Design of
Ezisting Code. Addison-Wesley, 1999.

[9] E. Gamma, R. Helm, R. Johnson, and R. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994.

[10] D. Garlan, R. Monroe, and D. Wile. Acme: an
architecture description interchange language. In
CASCON First Decade High Impact Papers, pages
159-173. IBM Corp., 2010.

[11] R. Giunta, F. Messina, G. Pappalardo, and
E. Tramontana. Providing qos strategies and
cloud-integration to web servers by means of aspects.
Concurrency and Computation: Practice and
Ezperience, 2013.

[12] R. Giunta, G. Pappalardo, and E. Tramontana. Using
Aspects and Annotations to Separate Application
Code from Design Patterns. In Proceedings of
Symposium on Applied Computing (SAC). ACM,
March 2010.

[13]

[14]

R. Giunta, G. Pappalardo, and E. Tramontana.
AODP: refactoring code to provide advanced
aspect-oriented modularization of design patterns. In
Proceedings of Symposium on Applied Computing
(SAC), pages 1243-1250. ACM, 2012.

R. Giunta, G. Pappalardo, and E. Tramontana.
Superimposing roles for design patterns into
application classes by means of aspects. In Proceedings
of the ACM Symposium on Applied Computing, SAC,
pages 1866-1868. ACM, March 2012.

DOLI: 10.1145/2245276.2232082.

Y .-G. Guéhéneuc and G. Antoniol. Demima: A
multilayered approach for design pattern
identification. IEEE Transactions on Software
Engineering, 34(5):667-684, 2008.

N. B. Harrison, P. Avgeriou, and U. Zdlin. Using
patterns to capture architectural decisions. Software,
IEEE, 24(4):38-45, 2007.

J. Kerievsky. Refactoring to patterns. Addison-Wesley,
2005.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J. Loingtier, and J. Irwin. Aspect-oriented
programming. In Proceedings of ECOOP, volume 1241
of LNCS, 1997.

R. Laddad. AspectJ in Action: Enterprise AOP with
Spring Applications. Manning, 2nd ed., 2009.

A. Maiga, N. Ali, N. Bhattacharya, A. Sabane, Y.-G.
Gueheneuc, and E. Aimeur. Smurf: a svm-based
incremental anti-pattern detection approach. In
Proceedings of Working Conference on Reverse
Engineering (WCRE), pages 466-475. IEEE, 2012.

K. Mens and A. Kellens. Intensive, a toolsuite for
documenting and checking structural source-code
regularities. In Proceedings of CSMR. TEEE, 2006.

C. Napoli, G. Pappalardo, and E. Tramontana. Using
modularity metrics to assist move method refactoring
of large systems. In Proceedings of Complex,
Intelligent and Software Intensive Systems (CISIS),
pages 529-534. IEEE, 2013.

G. Pappalardo and E. Tramontana. Automatically
discovering design patterns and assessing concern
separations for applications. In Proceedings of
Symposium on Applied Computing (SAC), pages
1591-1596. ACM, 2006.

G. Pappalardo and E. Tramontana. Suggesting extract
class refactoring opportunities by measuring strength
of method interactions. In Proceedings of Asia Pacific
Software Eng. Conference (APSEC). IEEE, 2013.

S. Stelting and O. Maassen. Applied Java Patterns.
Prentice Hall, 2001.

E. Tramontana. Automatically characterising
components with concerns and reducing tangling. In
Proceedings of Computer Software and Applications
Conference (COMPSAC) workshop QUORS, pages
499-504. IEEE, 2013.

N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and
S. Halkidis. Design Pattern Detection Using Similarity
Scoring. Transactions on Software Engineering,
32(11), 2006.

