Continuous Inspection

A Pattern for Keeping your Code Healthy
and Aligned to the Architecture

Paulo Mersort, Joseph Yodef,
Eduardo Guerra®, Ademar Aguiar4
YFederal Court of Accounts (TCU), Brasilia, Brazil
*The Refactory, Inc.
3National Institute for Space Research (INPE) - Braz

‘FEUP.

prmerson@cm org, joe@efactory.com
guerraem@nai | . com ademar. agui ar @ e. up. pt

Abstract. Agile software development methodologies are piilsnan iterative
and incremental development process usually dorghant sprints allowing
the requirements and software to evolve based apombusiness needs. This
is done through a close collaboration between sejfinizing and cross-
functional teams. Larger systems can evolve witsingss needs over many
months and years including enterprise architectu®hen this happens, it is
important to make sure the core principles of thehdecture are maintained
or else the system can evolve to something thabeamard to maintain. This
paper examines the Continuous Inspection patteahdhn help insure that as
the systems evolves using an agile developmenegspoew code can evolve
to still map well to the expected architecture.

Categories and Subject Descriptors
D.1.5 [Programming Techniqueg: Object-oriented Programming; D.ZResign Tools and Techniqugs Object
oriented design methods; D.2.[Boftware Architectures]: Patterns

General Terms
Architecture, Design

Keywords

Continuous Integration, Code Analysis, Static AsayArchitecture Conformance

Permission to make digital or hard copies of all opart of this work for personal or classroom use iggranted without fee
provided that copies are not made or distributed fo profit or commercial advantage and that copies bar this notice and the
full citation on the first page. To copy otherwiseto republish, to post on servers or to redistribu¢ to lists, requires prior
specific permission. Preliminary versions of thespapers were presented in a writers' workshop at th@™ Asian Conference
on Pattern Languages of Programs (AsianPLoP). Asid®LoP'2013, March 5-7, Tokyo, Japan. Copyright 2018 held by the
author(s). ACM 978-1-XXXX-XXXX-X.

Introduction

Agile software development is an iterative andencental development process, where
the software evolves and adapts to changing regeinés through self-organizing and
cross-functional teams. Most agile processes embrudck responses to change
through feedback loops and short sprints with Bexiplanning and incremental
delivery. Quite often the software development arantenance effort involves many
programmers and can span many months or years. Wierhappens, a common
phenomenon can take place: the architecture andesaode can evolve to something
that can be hard to maintain and evolve. Continulesigection helps with the evolution
of a system by spotting problems early in the pgecét helps to ensure that new code
complies with the intended architecture and othesigh restrictions and coding
guidelines in place.

This paper describes the continuous inspectiorativhich consists of best practices
to preserve the quality of your source code andlighment to the architecture in an
agile environment. The intent of this paper is dowment the main pattern that captures
the overall practice of continuous inspection. Ehare two key aspects of continuous
inspection—inspection moment and inspection type-pt@sented in Figure 1. Each
aspect gives you alternatives that are discusseslghout the paper. Specialized
patterns inside the Continuous Inspection domaamsfrom combinations of the
alternatives for these two aspects. These Contsdospection specialized patterns
represent recurrent solutions that can be useddreas more specific needs and should
be explored in future work.

inspection
moment IDE Editor

| Validation |

Continupus Compile-time
Inspection Verification

Server
| Processing |
inspection ”

type

Figure 1 — Continuous Inspection aspects that engder specialized patterns

Context

A core agile development principle is that the tesdmould respond to change. Changing
the software with agility relies heavily on the ééwf modifiability of the code. That is
why agile development uses techniques to continydogprove the software quality.
Continuous care for the quality of implementatiotetacts is important to reduce the

Continuous Inspection - 2

impact of the risk of changing code, allowing imoental evolution in short iterations.
Some important characteristics of agile softwareettgoment that allow us to change
code more easily and safely are:

e The presence of automated tests to allow chandas performed safely;

e Good modularization to avoid changes to have bnogéct; and

e Clean code [Mar08] that is easy to understand amtd easier to maintain and
evolve.

During the iterations, the code grows and beconaed to manage. It can be hard to
know if an architectural rule was violated or ietbode needs refactoring in some place.
If things get out of control, the code structura cketeriorate and generate significant
technical debt.

When the software development and maintenanceteffoolves several programmers
and/or several teams, and spans months or yeamnmmon phenomenon takes place:
the source code exhibits an actual architectur¢ ¢nadually diverges from the
intended architecture created to address the functional apality attribute
requirements of the application. The reasons far ey include:

e The intended architecture is not properly commusitato everybody who's
writing code.

e There’s high turnover in the team, and newcomees raot familiar with the
architecture.

e Developers are assigned maintenance tasks and stadecuts in the code,
disregarding the now-forgotten intended architextur

e Developers of large systems focus on small tasid,dan’t see the big picture of
the system.

e The initial architecture should be evolved becao$enew requirements or
technology innovations.

Problem
How to detect architecture and code problems as s@opossible?
Forces

* Awareness. When developers focus on introducing new feafuiteis common to
ignore existing design decisions. This is espectalle if a developer that is making
the change is not aware of the details of the sctire (new person).

» Detectability: In a large project, sometimes it is hard to eatducode quality and if
the architecture is being followed throughout tbarse code. The code may grow
to a very large code base using different technefyghus making it difficult to
evaluate and detect violations in the architecture.

* Early Diagnosis: problems in the architecture are easier to beesddd when they
are detected early. One reason for that is the tfaatt architecture issues that
transpire to the source code tend to propagatdaluepy and paste programming.
However, it is hard to identify an architecture lgeon before the implementation is

! We use “intended architecture” to refer to theigtespecifications carefully created based on ymesi
experience of the designers as well as knowledd#ied as architecture and design patterns. The
intended architecture also evolves and changescanamodate new requirements, design patterns,
technologies and frameworks. This evolution ofahehitecture is natural and welcomed.

Continuous Inspection - 3

already in place. In fact, some architecture isstheg affect throughput and
reliability are often only spotted once the apglmais rolled out.

» Software Qualities. On the one hand, we would like to ensure that ghality
attributes (e.g., modifiability, performance, pditdy) resulting from design
decisions in the architecture are preserved inntipdementation; on the other hand,
as new requirements come in, it is important topadhe software to implement
them with agility. Many teams focus on addressiag functional requirements and
often overlook software qualities.

» Architecture Evolution: the original architecture may need to change lszaf
new requirements (e.g., ‘the application shall pteva native Android front-end’)
or adoption of technology innovations (e.g., aduptithe Spring Security
Framework for web authentication/authorization).wHoan we safely evolve the
architecture keeping things working and stayingufsd on the top priority
requirements? It is important that as the systemlves, that the architecture
evolves as well.

» Technical Debt: as changes are introduced into the system, fibisnal to have
some technical debt. If the debt goes uncheckeall immever paid back, the
software can become muddy [FYOO] and the actuahitcture of the existing
implementation may not exhibit the desired modtyainteroperability, portability,
and other qualities. In particular, any maintendmeeomes a costly and risky task.

* Ingpection Cost: To manually inspect code and detect problems;iSpaly with
the architecture, can be very difficult and timexgaming. This kind of inspection
requires an experienced person with good knowleddke architecture and coding
guidelines, and can require a lot of time. It i®fusif these can be automated,
however automated tools often require an experigmeeson to describe the
important rules for the architecture.

* Time: Many times lack of code quality or problems og #pplication architecture
are identified, but the team does not have time @rot given time to stop adding
features to correct them. Agile teams in generaugoon features based upon the
backlog items. If time is not allocated to refadioe code and to keep things clean,
the system can erode to something muddy [FY0O].

Solution

Use available automated tools to continuously iospede, generate a report on the
overall code health, and point out if any violatimas detected. These tools can be
execute locally on the developer's machine alonel &y having the system
communicate with a continuous integration servet thuilds the code at specific time
intervals, or upon each code commit. This soludoes require describing the intended
architecture as part of the process where an expamaintaining the rules for the
desired architecture. Figure 2 represents therpattain idea.

Continuous Inspection - 4

) create and 0101010101
modify code

[- -

automated
code analysis

N

—

Cas P o .
Rar®r
feedback to NSV oS
improve the code /
report

generation

Figure 2 — Continuous Inspection pattern representi@on

There are some alternatives about how the toolldhHmandle the violation found. The
less invasive approach is to create a report ankkntaavailable to the entire team.
Another alternative is to generate warnings that@esented each time the project is
build. Finally, when the violation is severe, inogenerate a build error.

Some teams adopts a zero-warning policy, thatlisj@ations should be fixed for the
code to be considered complete. If warnings areed, they tend to grow in number
and eventually become ignored by the team. Suckcypohay sound too strict or
unattainable. In practice, the different verifioas can be classified in categories (e.qg.,
show-stopper, critical, major, minor), so the zesrning policy can be adopted for the
most important categories only.

The continuous integration server has access tappécation source code and all the
resources necessary to build it. As part of thddbigome tools that perform static
analysis are invoked to evaluate the quality artterotaspects of the source code.
Following are some types of tools that can be etegtat this point:

» Metrics: One of the most common analysis tool s time that extract metrics
from the source code. This metrics can also be aoeapto statistical thresholds
that indicate if the measured value is low, avemragkigh. The average value per
package or module can help to identify areas arkaghat require more attention.
This kind of analysis is usually presented on repaccessible to all in the team.
Examples of metrics include:

Number of violations per category and ratio per KLO
Tests coverage for either or both unit and intégnatests.
Size measures: LOC, number of classes, methods, etc
Number of cyclic dependencies.

Cyclomatic complexity.

Technical debt.

O O O O O o

« Code Smells Detection: The combination of someessn a class can reveal
some design disharmonies, also known as code snied®/99]. Usually

Continuous Inspection - 5

automated code smells detection is based on rukesuted through static code
analysis and based on parameterized metric valBes. example, one can
configure the number of lines of code (or numbeinefructions) that indicates the
presence of théong methodsmell. The result of this type of analysis is ulyua
presented in a report or is displayed as warningsg the build phase.

» Application security checks: some tools specialize detecting security
vulnerabilities in application programs. Examplesliide vulnerability to SQL
injection and cross-site scripting, hard-coded wasds, overridden security
critical methods.

» Architectural conformance: here the tool inspebts source code to make sure
specific design rules are followed. These desiglesrutypically include the
allowed dependencies in the layered architecture-efample, a module in the
business logic layer cannot depend on a moduleeiptesentation layer.

The ideal scenario is to have these tools intedrisit¢he developer IDE as well as with
the build server. But when the integration is moplemented, it is still possible to use
the tools for Continuous Inspection. When that lessp they should be executed
continuously to give continuous feedback for theeli@oment team. Drawbacks of this
approach are that the tool execution can consume fiiom team members and, since
its execution is not integrated, it can be forgoiéen time is pressing.

The continuous inspection pattern comprises théiagipn of the four kinds of tools
and analyses listed above. These tools can be getpin isolation or together and each
category of verification they perform can be sega @attern on its own.

How It Works
The following outlines the basic steps to adoptdbietinuous inspection pattern:

1. Tool selection. Evaluate and select one or more tools that cafonperstatic
analysis on your code base. Evaluation criteribuahe:

a.the programming and scripting language(s) usedour woftware projects
versus the ones supported by the tool;

b.whether the tool provides an API for developingtooszed verifications;
c. integration with your IDE;
d.integration with your continuous integration servand a

e.set of built-in verifications, which should includems that are deemed
more relevant for your software project.

2. Verification selection. Most tools come with a variety of built-in veriéitons and
metrics. You need to evaluate what built-in vedfions in the selected tool(s) are
applicable to your software project. Criteria maglide:

a.Modifiability requirements. If you are experiencingroblems with
maintenance and evolution of existing projects, yshould enable
verifications that pinpoint duplicated code, cycliependencies, overly
complex and/or large classes and methods, andsothat will help you to
improve modularity and modifiability of the code.

b. Security requirements. There are verifications taat spot security-related
issues, such as SQL injection vulnerability, handed credentials, and
overridden security methods.

Continuous Inspection - 6

c. Team skKills.

d.Quality of existing code base. It is likely thatnzore strict selection of
verifications can be enabled for newer projects.dfder code, a strict set of
verifications may generate so many violations tihay might tend to be
ignored. In any case, it is desirable that the ssehection of verifications is
applied to all projects that are under the sameegmnce system and
quality scrutiny.

e.Development isf/is not outsourced. The developmemitractor and the
contracting organizations may want to negotiate twiipes of violations
will not be accepted in delivered code.

f. Development team is/is not collocated.

g.Greenfield development. An existing code base wifilen exhibit several
violations and the cost to fix them may be too hi@heenfield development
opens space to enable all verifications consideémgubrtant and enforce
them from the get-go—a zero-warning policy is measily adopted in such
scenarios.

h.Feasibility to fix violations. Verifications thategerate violations in the
existing code that realistically will not be fix@dthe foreseeable future due
to lack of resources or other reasons should nenbéled.

3. Tool setup. The selected tools with the selected verificatienabled need to be
configured on a continuous integration server. llgghe tools should run as often
as possible, say every 30 minutes. But in practidde code base is sizeable the
static analysis can easily take tens of minuteshdn case, you may want to run
the checks once every night.

4. Accountability for violations. It is important that developers are accountabte fo
violations and that fixing them become part of thevelopment process. As
mentioned before, a zero-warning policy shouldrbelace, at least for the most
critical categories of violations. Checkpoints ffixing violations should be
defined. For example, at the end of each sprinfitoeach code release, all
violations should be fixed.

5. Customized verifications. The continuous inspection can go one step furimelr
create customized verifications using the APl adéd in the selected tools
[Merl3]. This is a non-trivial step since it typilgarequires expressing an
architecture decision or programming rule in sytitadcerms of the target
programming language. Albeit challenging to createstomized verifications
represent an enormous enhancement to the diffeaspécts of code health
inspection. Built-in verifications are by-design ngeic. On the other hand,
customized verifications can be specific to a safewproject or organization and
hence more powerful. They can deal with moduleedagnd method names that
are specific to a project; they can accommodatevknexceptions to a given rule;
they are aware of home-made libraries and wrappers.

6. Enforcement at commit time. As an ultimate barrier to avoid code violations to
enter the codebase, you can configure the autornvatdfications to be executed
upon each source code commit operation [Merl3]. cOfirse, you need a
versioning system that provides a mechanism touser-defined scripts that can
have access to the files in a code commit operafitis kind of solution will
deny the code commit operation and give the usdear error message pointing
out the specific reason. Thus, even if a develapeores the violations displayed
on the IDE and on the continuous integration daahbcand reports, these

Continuous Inspection - 7

violations won’'t make it into the codebase becanfsine enforcement at commit
time. Clearly, only violations that are criticalddar applicable to all source files
in the code repository should be enabled to ruthmsolution.

Consequences

The following outlines trade-offs of the continudanspection pattern:

v

v

v

Some problems in the code can be detected sooblirndheir correction or a
planning to address them on the next iterations.

The team is always aware of how is the code qualitg that gives them confidence
in the software solution that they are developing.

Team members can learn with some problems detdwstetie tools. Indeed, the
tools typically display user messages that havea gational explanation for all
verifications.

Developers are encouraged to create good qualig,csince they know that it is
valued by the team. Teams tend to strive to achexe better quality indicators,
especially if those indicators are made visiblelifterent teams on a dashboard for
various projects.

Project managers, contracting organizations, anegrgance agents in general can
use the metrics generated by the tools as key npeaftce indicators to evaluate the
quality of the code being delivered by the develeptrieam.

Reports generated by (widely used and trusted} toelp to make the claim before
project managers and product owners to allocatertetb perform the code
refactorings required to fix violations.

An overconfidence in the tools can make the tedaxeg in other aspects of the
software that are not addressed by them.

The setup of these tools and their integration Wiifid tools and IDEs are usually
time consuming and should be included in the beg@qaof the project.

If the static analysis tools are not properly cgafed and unnecessary verifications
are enabled, there can be too many violations begpgrted. When continuous

inspection reports or the IDE shows thousands ohiwgs and many of them are

considered non-issues, the developer tends toegherentirety of the warnings.

If the motivation and benefits of continuous indp®t is not made clear to all
developers, some of them may feel and complainvbfications are an annoyance
that disturb and constrain his/her work and cregpirocess.

Often times development teams install and begianst tools that calculate metrics
on the software code, but they don’t take the timstudy, explore, and configure
the various metrics. For example, some tools cateubn overarching “quality
index” that combines a ratio of code violationshatiést coverage and a measure of
complexity. Some metrics are derived from otheridasetrics using weighted
equations. The default values used in the calamats well as the weight of each
factor may not be appropriate for a given softwar@ect, and the metrics can be
skewed or misleading. For example, some tools tkuechnical debt and one of
the outputs is the dollar amount required to p&ydébt. If the average salary of the
developer was not configured in the tool, the @ebbunt may not be realistic.

Continuous Inspection - 8

Related Patterns

Jez Humble and Dave Farley have a blog post almmiintcious delivery patterns
[Hum13]. Although their text talks about patternontinuous integration, it doesn’t
explicitly mention code inspection or code analysis

Paul Duvall author of “Continuous Integration” [DQif] wrote a piece titled
“Continuous Integration - Patterns and Antipattéfsiv10]. Duvall suggests 23
patterns that go beyond building and running testdinuously and dicuss a broad set
of activities related to continuous integrationgtsas deployment and IDE integration.
One of the patterns is “Continuous Inspection”,eithis described as “Run automated
code analysis to find common problems. Have thesls tun as part of continuous
integration or periodic builds”. He mentions the wé checkstyle as part of an ant build
script.

Much of SonarQube documentation and also “Sonar@QubBetion” [Cam13] talk
about “continuous inspection”, which is describedgrocess that consists of code
analysis and reporting and should be part of tveldpment lifecycle. However,
continuous inspection is not described as a paittettmese publications.

Known Uses

As an example of setup for continuous inspecti@mser an IT organization that
develops enterprise applications using Java teogres. They have a few million lines
of Java code spread across over 50 applicatiodsgs@mting. The various development
teams count up to just over a hundred people, whlmde full-time staff, interns, and

contractors.

The continuous inspection pattern was applied uiagollowing tools:
» Static analysis tools:
0 SonarQube
o PMD
o0 Checkstyle
o FindBugs
» Coverage:
o JaCoCo
» Continuous integration and build:
o Jenkins
0 Maven

Versioning system:
0 Subversion
* IDE:
o Eclipse with plug-ins to run the code analysis ool

The built-in verifications provided by the statinadysis tools were carefully selected
and configured. A formula for a customized ovecpiblity index was devised based on

Continuous Inspection - 9

the different metrics and emphasizing the aspetist tmost directly affect
maintainability, which is considered a key quadityribute for that organization.

Developers can execute the various tools on tidir ¢r even using the command line
version of maven. Jobs were configured on the dsnkontinuous integration server to
execute the code analyses and generate the m&esslts of analyses are uploaded to
the SonarQube server, which is at the same timentaat repository for analyses and a
web server that offers a web user interface to beothie metrics and violations.

Customized verifications were developed using theckstyle Java API. They were
packaged as a plug-in to the SonarQube serveanee built-in verifications provided
by that platform. In addition, some of these “cuastchecks” were deemed “must have”
rules and were configured to run on the Subvers@wmer upon any Java file commit, so
that the entire commit operation is denied if angtom check detects a violation.

Jenkins has a dashboard view to show the situaifothe various jobs. Likewise,
SonarQube provides a global dashboard showing esefdr various projects (see
snapshot in). The user can click on a given ptdesee a project specific dashboard.
For this IT organization, the most prominent metrend indicators on a project’s
dashboard are: the customized quality index meaticabove (see snapshot in Figure
4), technical debt (Figure 5), unit and integrati@sts coverage (Figure 6), code
duplication (Figure 7), and size measures (FigyreTBe SonarQube dashboard also
shows a graph with the evolution of some metricsr avne (Figure 9).

These dashboards are physically on display on afbbof big screen TVs spread
across the software development department. Treeplao visible by any developer or
manager on the web browser. Many of the metricstadonrhyperlinks to detailed
information about the calculation and annotateda®uode. For example, one can click
on the measure under “Duplications” (Figure 7) awigate and display the source files,
and see where duplicate code is.

A Name TCU Total Quality Index ., RCl Issues OQOverall coverage Coverage [Tcoverage Dup. lines(%) LOCs Last Analysis
& [@ eQualidade 100,0% 100,0% 0 100,0% 0,0% 854 . 12/12/2013
[encclaWebSemicelS-impl 97.5% 4 97 1% 0,0% 0.0% 217 » 301272013
) K
@& [pessoaRFBNegocio Fabrica 95.9% o 99.2% 3 90.3% o, 0.0% 0.0% 1186 06/02/2014
., [pessoaRFBIS-impl Fabrica 95.2% « 10 88.1% o 0.0% 0.0% 417, 06/02/2014
& [consultaRemuneracao 95.1% 98,2% 9 76.2% 0,0% 1.1% 1.024 ., 16/1272013
ecomBatch 95,0% 96,6% 47 84.8% 0,0% 0.0% 4.067 06/02/2014
@@
[atosPessoalAdm Fabrica 94.1% 98.7% 28 90.5% 0.0% 0.0% 5980 o 30/01/2014
§ transCon LOCAL 93.6% 99,7% 5 §3.0% 0.0% 0.7% 3856, 31/0172014
@@ 'y
', [consultaRemuneracao Fabrica 93,6% 98,0% 10 72.8% o 0,0% 0.0% 1.098 06/02/2014
., [3 transCon Fabrica 93.5% o 99.3% g 6 a 82.5% o, 0.0% 1.0% 2847 10:23
@ [etosPessoalAdm 934% 98,7% 27 90,9% 0,0% 17% » 5965 A 18/12/2013
& [Concordion Plus TCU 92,5% 95,0% 8 1.4% 0,0% 0.0% 481 06/02/2014
\, [3 transCon LOCAL A1 91,5% 99,3% 10 71,3% 0,0% 0.7% 3.856 31/01/2014
& [3 consultaRemuneracaoWeb 90.3% 98,0% 3 74.0% 0,0% 0.0% 198 & 07/01/2014
& [encclaWebSenice Fabrica §9,6% 97,1% 16 84.2% 0.0% 0.0% 1642 06/02/2014
., [§ atospessoal 88,1% 98,2% 136 T4.6% o 0,0% 0,9% 14.653 w 06/02/2014

Figure 3 — Snapshot of SonarQube global dashboardhewing various projects and a summary of metrics

Continuous Inspection - 10

TCU TCU Total Quality Index @

99.6% Arguitetura
81,3% Projeto * DRY

74,2% Efferent Couplings (20%)

84.2% LCOM4 (15%)
78,8% RFC (25%)
85,2% Complexity (35%)
100,0% DIT (5%)

61,3% Teste

98,6% Codigo

99,2% DRY

82,6%

Figure 4 — Snapshot of SonarQube dashboard showiregcustomized quality index for a project

Technical Debt &
3.9%

§ 14587 &
22 man days

a —Design

Duplication
Complexity

Figure 5 — Snapshot of SonarQube dashboard showirnlge technical debt for a project

Unit Tests Coverage

91,6%

54 0% line coverage
42 5% branch coverage

Integration Tests Coverage

80,0% ~

83,8% line coverage A
68.7% branch coverage A

Unit test success

100,0%
0 failures

0 errors
271 tests
19.9 sec s

Overall Coverage

80,0% ~

83,8% line coverage A
68.7% branch coverage A

Figure 6 — Snapshot of SonarQube dashboard showirlge unite test coverage (above) and integration tes

Duplications
0,8%

185 lines

9 blocks

7 files

coverage (below) for a project

Figure 7 — Snapshot of SonarQube dashboard showirgize metrics for a project

Lines of code

16.939
22109 lines
£.439 statements
350 files

Classes

351

39 packages
1.279 functions
883 accessors

Continuous Inspection - 11

Figure 8 — Snapshot of SonarQube dashboard showinlge technical debt for a project

Dec 09, 2013 @ Lines of code: 16.939 © Rules compliance: 98,2%
® Coverage: 51,6%

1]

= l
. \\J o
I T O | Ll 5 0 MY 0 Y T W | L : |'||!
August September October Movember December 2014 Februany

Figure 9 — Interactive graph in the SonarQube dashbard showing historical information for three different
metrics.

Acknowledgements

We thank our shepherd Kazunori Sakamoto for hisialsle comments and feedback
during the AsianPLoP 2013 Shepherding process. Méethank our 2013 AsianPLoP
Writers Workshop Group, YYY, for their valuable comants.

Continuous Inspection - 12

References

[Cam13]
[Duv07]

[Duv10]
[Fow99]
[FPRO1]

[FY00]

[GHJ+95]
[Hum13]
[KJ04]
[Mar02]
[Mar08]

[Mer13]

Campbell, G., Papapetrou3®narQube in ActiarManning, November 2013.

Duval, P., Matyas, S., Glover, £ontinuous Integration: Improving Software
Quality and Reducing Riskddison-Wesley, July 2007.

Duval, PaulContinuous Integration: Patterns and Anti-PatteriiZone, 2010.
Available at http://refcardz.dzone.com/refcardztonrous-integration.

Fowler, M., Refactoring: Improving the Dgsi of Existing Code. Addison-
Wesley. 1999.

Fontura, M., Pree, W., Rump, Bie UML Profile for Framework Architectures.
Addison-Wesley. 2001.

Foote, B., Yoder J. W. 200®ig Ball of Mud Fourth Conference on Patterns
Languages of Programs (PLoP '97/EuroPLoP '97) Meitd, lllinois, September
1997. Pattern Languages of Programs Design 4 ebieNeil Harrison, Brian
Foote, and Hans Rohnert. Addison Wesley, 2000.

Gamma, E., R. Helm, R. Johnson, J. Vissi®esign Patterns: Elements of
Reusable Object Oriented Softwafeldison-Wesley. 1995.

Humble, J., Farley, D.Continuous Delivery — PatternsAvailable at
http://continuousdelivery.com/patterns/.

Kircher, M.; P. JainPattern Oriented Software Architecture, Volume attérns
for Resource Managemewiley & Sons. 2004.

Martin, R. Agile Software Development: Principles, Patternad &Practices
Prentice Hall, 2002.

Martin, R.Clean Code: A Handbook of Agile Software CraftsrhgmsPrentice
Hall, 2008.

Merson, PUltimate architecture enforcement: custom checKsrerd at code-
commit time Proceedings of the 2013 Conference on Systerogramming, &
applications: software for humanity (SPLASH’'13)dianapolis, October 2013.

Continuous Inspection - 13

