
Continuous Inspection

A Pattern for Keeping your Code Healthy
and Aligned to the Architecture

Paulo Merson1, Joseph Yoder2,

Eduardo Guerra3, Ademar Aguiar4

1Federal Court of Accounts (TCU), Brasilia, Brazil

2The Refactory, Inc.

3National Institute for Space Research (INPE) - Brazil

4FEUP.

pmerson@acm.org, joe@refactory.com,
guerraem@gmail.com, ademar.aguiar@fe.up.pt

Abstract. Agile software development methodologies are primarily an iterative
and incremental development process usually done in short sprints allowing
the requirements and software to evolve based upon core business needs. This
is done through a close collaboration between self-organizing and cross-
functional teams. Larger systems can evolve with business needs over many
months and years including enterprise architecture. When this happens, it is
important to make sure the core principles of the architecture are maintained
or else the system can evolve to something that can be hard to maintain. This
paper examines the Continuous Inspection pattern that can help insure that as
the systems evolves using an agile development process, new code can evolve
to still map well to the expected architecture.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-oriented Programming; D.2.2 [Design Tools and Techniques]: Object-
oriented design methods; D.2.11 [Software Architectures]: Patterns

General Terms
Architecture, Design

Keywords
Continuous Integration, Code Analysis, Static Analysis, Architecture Conformance

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior
specific permission. Preliminary versions of these papers were presented in a writers' workshop at the 2nd Asian Conference
on Pattern Languages of Programs (AsianPLoP). AsianPLoP'2013, March 5-7, Tokyo, Japan. Copyright 2013 is held by the
author(s). ACM 978-1-XXXX-XXXX-X.

Continuous Inspection - 2

Introduction

Agile software development is an iterative and incremental development process, where
the software evolves and adapts to changing requirements through self-organizing and
cross-functional teams. Most agile processes embrace quick responses to change
through feedback loops and short sprints with flexible planning and incremental
delivery. Quite often the software development and maintenance effort involves many
programmers and can span many months or years. When this happens, a common
phenomenon can take place: the architecture and source code can evolve to something
that can be hard to maintain and evolve. Continuous inspection helps with the evolution
of a system by spotting problems early in the process. It helps to ensure that new code
complies with the intended architecture and other design restrictions and coding
guidelines in place.

This paper describes the continuous inspection pattern, which consists of best practices
to preserve the quality of your source code and its alignment to the architecture in an
agile environment. The intent of this paper is to document the main pattern that captures
the overall practice of continuous inspection. There are two key aspects of continuous
inspection—inspection moment and inspection type—as presented in Figure 1. Each
aspect gives you alternatives that are discussed throughout the paper. Specialized
patterns inside the Continuous Inspection domain stem from combinations of the
alternatives for these two aspects. These Continuous Inspection specialized patterns
represent recurrent solutions that can be used to address more specific needs and should
be explored in future work.

Figure 1 – Continuous Inspection aspects that engender specialized patterns

Context

A core agile development principle is that the team should respond to change. Changing
the software with agility relies heavily on the level of modifiability of the code. That is
why agile development uses techniques to continuously improve the software quality.
Continuous care for the quality of implementation artefacts is important to reduce the

Continuous Inspection - 3

impact of the risk of changing code, allowing incremental evolution in short iterations.
Some important characteristics of agile software development that allow us to change
code more easily and safely are:

● The presence of automated tests to allow changes to be performed safely;
● Good modularization to avoid changes to have broad impact; and
● Clean code [Mar08] that is easy to understand and hence easier to maintain and

evolve.

During the iterations, the code grows and becomes hard to manage. It can be hard to
know if an architectural rule was violated or if the code needs refactoring in some place.
If things get out of control, the code structure can deteriorate and generate significant
technical debt.

When the software development and maintenance effort involves several programmers
and/or several teams, and spans months or years, a common phenomenon takes place:
the source code exhibits an actual architecture that gradually diverges from the
intended1 architecture created to address the functional and quality attribute
requirements of the application. The reasons for that may include:

● The intended architecture is not properly communicated to everybody who’s
writing code.

● There’s high turnover in the team, and newcomers are not familiar with the
architecture.

● Developers are assigned maintenance tasks and take shortcuts in the code,
disregarding the now-forgotten intended architecture.

● Developers of large systems focus on small tasks, and don’t see the big picture of
the system.

● The initial architecture should be evolved because of new requirements or
technology innovations.

Problem

How to detect architecture and code problems as soon as possible?

Forces

• Awareness: When developers focus on introducing new features, it is common to
ignore existing design decisions. This is especially true if a developer that is making
the change is not aware of the details of the architecture (new person).

• Detectability: In a large project, sometimes it is hard to evaluate code quality and if
the architecture is being followed throughout the source code. The code may grow
to a very large code base using different technologies, thus making it difficult to
evaluate and detect violations in the architecture.

• Early Diagnosis: problems in the architecture are easier to be addressed when they
are detected early. One reason for that is the fact that architecture issues that
transpire to the source code tend to propagate due to copy and paste programming.
However, it is hard to identify an architecture problem before the implementation is

1 We use “intended architecture” to refer to the design specifications carefully created based on previous
experience of the designers as well as knowledge codified as architecture and design patterns. The
intended architecture also evolves and changes to accommodate new requirements, design patterns,
technologies and frameworks. This evolution of the architecture is natural and welcomed.

Continuous Inspection - 4

already in place. In fact, some architecture issues that affect throughput and
reliability are often only spotted once the application is rolled out.

• Software Qualities: On the one hand, we would like to ensure that the quality
attributes (e.g., modifiability, performance, portability) resulting from design
decisions in the architecture are preserved in the implementation; on the other hand,
as new requirements come in, it is important to adapt the software to implement
them with agility. Many teams focus on addressing new functional requirements and
often overlook software qualities.

• Architecture Evolution: the original architecture may need to change because of
new requirements (e.g., ‘the application shall provide a native Android front-end’)
or adoption of technology innovations (e.g., adopting the Spring Security
Framework for web authentication/authorization). How can we safely evolve the
architecture keeping things working and staying focused on the top priority
requirements? It is important that as the system evolves, that the architecture
evolves as well.

• Technical Debt: as changes are introduced into the system, it is normal to have
some technical debt. If the debt goes unchecked and is never paid back, the
software can become muddy [FY00] and the actual architecture of the existing
implementation may not exhibit the desired modularity, interoperability, portability,
and other qualities. In particular, any maintenance becomes a costly and risky task.

• Inspection Cost: To manually inspect code and detect problems, specifically with
the architecture, can be very difficult and time consuming. This kind of inspection
requires an experienced person with good knowledge of the architecture and coding
guidelines, and can require a lot of time. It is useful if these can be automated,
however automated tools often require an experience person to describe the
important rules for the architecture.

• Time: Many times lack of code quality or problems on the application architecture
are identified, but the team does not have time or is not given time to stop adding
features to correct them. Agile teams in general focus on features based upon the
backlog items. If time is not allocated to refactor the code and to keep things clean,
the system can erode to something muddy [FY00].

Solution

Use available automated tools to continuously inspect code, generate a report on the
overall code health, and point out if any violation was detected. These tools can be
execute locally on the developer’s machine alone and by having the system
communicate with a continuous integration server that builds the code at specific time
intervals, or upon each code commit. This solution does require describing the intended
architecture as part of the process where an expert is maintaining the rules for the
desired architecture. Figure 2 represents the pattern main idea.

Continuous Inspection - 5

Figure 2 – Continuous Inspection pattern representation

There are some alternatives about how the tool should handle the violation found. The
less invasive approach is to create a report and make it available to the entire team.
Another alternative is to generate warnings that are presented each time the project is
build. Finally, when the violation is severe, it can generate a build error.

Some teams adopts a zero-warning policy, that is, all violations should be fixed for the
code to be considered complete. If warnings are accepted, they tend to grow in number
and eventually become ignored by the team. Such policy may sound too strict or
unattainable. In practice, the different verifications can be classified in categories (e.g.,
show-stopper, critical, major, minor), so the zero-warning policy can be adopted for the
most important categories only.

The continuous integration server has access to the application source code and all the
resources necessary to build it. As part of the build, some tools that perform static
analysis are invoked to evaluate the quality and other aspects of the source code.
Following are some types of tools that can be executed at this point:

• Metrics: One of the most common analysis tool is the one that extract metrics
from the source code. This metrics can also be compared to statistical thresholds
that indicate if the measured value is low, average or high. The average value per
package or module can help to identify areas or layers that require more attention.
This kind of analysis is usually presented on reports accessible to all in the team.
Examples of metrics include:

o Number of violations per category and ratio per KLOC.

o Tests coverage for either or both unit and integration tests.

o Size measures: LOC, number of classes, methods, etc.

o Number of cyclic dependencies.

o Cyclomatic complexity.

o Technical debt.

• Code Smells Detection: The combination of some issues in a class can reveal
some design disharmonies, also known as code smells [Fow99]. Usually

Continuous Inspection - 6

automated code smells detection is based on rules executed through static code
analysis and based on parameterized metric values. For example, one can
configure the number of lines of code (or number of instructions) that indicates the
presence of the long method smell. The result of this type of analysis is usually
presented in a report or is displayed as warnings during the build phase.

• Application security checks: some tools specialize in detecting security
vulnerabilities in application programs. Examples include vulnerability to SQL
injection and cross-site scripting, hard-coded passwords, overridden security
critical methods.

• Architectural conformance: here the tool inspects the source code to make sure
specific design rules are followed. These design rules typically include the
allowed dependencies in the layered architecture—for example, a module in the
business logic layer cannot depend on a module in the presentation layer.

The ideal scenario is to have these tools integrated in the developer IDE as well as with
the build server. But when the integration is not implemented, it is still possible to use
the tools for Continuous Inspection. When that happens, they should be executed
continuously to give continuous feedback for the development team. Drawbacks of this
approach are that the tool execution can consume time from team members and, since
its execution is not integrated, it can be forgotten when time is pressing.

The continuous inspection pattern comprises the application of the four kinds of tools
and analyses listed above. These tools can be employed in isolation or together and each
category of verification they perform can be seen as a pattern on its own.

How It Works

The following outlines the basic steps to adopt the continuous inspection pattern:

1. Tool selection. Evaluate and select one or more tools that can perform static
analysis on your code base. Evaluation criteria include:

a. the programming and scripting language(s) used in your software projects
versus the ones supported by the tool;

b. whether the tool provides an API for developing customized verifications;

c. integration with your IDE;

d. integration with your continuous integration server; and a

e. set of built-in verifications, which should include items that are deemed
more relevant for your software project.

2. Verification selection. Most tools come with a variety of built-in verifications and
metrics. You need to evaluate what built-in verifications in the selected tool(s) are
applicable to your software project. Criteria may include:

a. Modifiability requirements. If you are experiencing problems with
maintenance and evolution of existing projects, you should enable
verifications that pinpoint duplicated code, cyclic dependencies, overly
complex and/or large classes and methods, and others that will help you to
improve modularity and modifiability of the code.

b. Security requirements. There are verifications that can spot security-related
issues, such as SQL injection vulnerability, hard-coded credentials, and
overridden security methods.

Continuous Inspection - 7

c. Team skills.
d. Quality of existing code base. It is likely that a more strict selection of

verifications can be enabled for newer projects. For older code, a strict set of
verifications may generate so many violations that they might tend to be
ignored. In any case, it is desirable that the same selection of verifications is
applied to all projects that are under the same governance system and
quality scrutiny.

e. Development is/is not outsourced. The development contractor and the
contracting organizations may want to negotiate what types of violations
will not be accepted in delivered code.

f. Development team is/is not collocated.
g. Greenfield development. An existing code base will often exhibit several

violations and the cost to fix them may be too high. Greenfield development
opens space to enable all verifications considered important and enforce
them from the get-go—a zero-warning policy is more easily adopted in such
scenarios.

h. Feasibility to fix violations. Verifications that generate violations in the
existing code that realistically will not be fixed in the foreseeable future due
to lack of resources or other reasons should not be enabled.

3. Tool setup. The selected tools with the selected verifications enabled need to be
configured on a continuous integration server. Ideally the tools should run as often
as possible, say every 30 minutes. But in practice, if the code base is sizeable the
static analysis can easily take tens of minutes. In that case, you may want to run
the checks once every night.

4. Accountability for violations. It is important that developers are accountable for
violations and that fixing them become part of the development process. As
mentioned before, a zero-warning policy should be in place, at least for the most
critical categories of violations. Checkpoints for fixing violations should be
defined. For example, at the end of each sprint or at each code release, all
violations should be fixed.

5. Customized verifications. The continuous inspection can go one step further and
create customized verifications using the API available in the selected tools
[Mer13]. This is a non-trivial step since it typically requires expressing an
architecture decision or programming rule in syntactic terms of the target
programming language. Albeit challenging to create, customized verifications
represent an enormous enhancement to the different aspects of code health
inspection. Built-in verifications are by-design generic. On the other hand,
customized verifications can be specific to a software project or organization and
hence more powerful. They can deal with module, layer, and method names that
are specific to a project; they can accommodate known exceptions to a given rule;
they are aware of home-made libraries and wrappers.

6. Enforcement at commit time. As an ultimate barrier to avoid code violations to
enter the codebase, you can configure the automated verifications to be executed
upon each source code commit operation [Mer13]. Of course, you need a
versioning system that provides a mechanism to run user-defined scripts that can
have access to the files in a code commit operation. This kind of solution will
deny the code commit operation and give the user a clear error message pointing
out the specific reason. Thus, even if a developer ignores the violations displayed
on the IDE and on the continuous integration dashboard and reports, these

Continuous Inspection - 8

violations won’t make it into the codebase because of the enforcement at commit
time. Clearly, only violations that are critical and/or applicable to all source files
in the code repository should be enabled to run on this solution.

Consequences

The following outlines trade-offs of the continuous inspection pattern:

� Some problems in the code can be detected soon, enabling their correction or a
planning to address them on the next iterations.

� The team is always aware of how is the code quality, and that gives them confidence
in the software solution that they are developing.

� Team members can learn with some problems detected by the tools. Indeed, the
tools typically display user messages that have a good rational explanation for all
verifications.

� Developers are encouraged to create good quality code, since they know that it is
valued by the team. Teams tend to strive to achieve ever better quality indicators,
especially if those indicators are made visible to different teams on a dashboard for
various projects.

� Project managers, contracting organizations, and governance agents in general can
use the metrics generated by the tools as key performance indicators to evaluate the
quality of the code being delivered by the development team.

� Reports generated by (widely used and trusted) tools help to make the claim before
project managers and product owners to allocate effort to perform the code
refactorings required to fix violations.

� An overconfidence in the tools can make the team relaxed in other aspects of the
software that are not addressed by them.

� The setup of these tools and their integration with build tools and IDEs are usually
time consuming and should be included in the beginning of the project.

� If the static analysis tools are not properly configured and unnecessary verifications
are enabled, there can be too many violations being reported. When continuous
inspection reports or the IDE shows thousands of warnings and many of them are
considered non-issues, the developer tends to ignore the entirety of the warnings.

� If the motivation and benefits of continuous inspection is not made clear to all
developers, some of them may feel and complain that verifications are an annoyance
that disturb and constrain his/her work and creative process.

� Often times development teams install and begin to use tools that calculate metrics
on the software code, but they don’t take the time to study, explore, and configure
the various metrics. For example, some tools calculate an overarching “quality
index” that combines a ratio of code violations with test coverage and a measure of
complexity. Some metrics are derived from other basic metrics using weighted
equations. The default values used in the calculation as well as the weight of each
factor may not be appropriate for a given software project, and the metrics can be
skewed or misleading. For example, some tools calculate technical debt and one of
the outputs is the dollar amount required to pay the debt. If the average salary of the
developer was not configured in the tool, the debt amount may not be realistic.

Continuous Inspection - 9

Related Patterns

Jez Humble and Dave Farley have a blog post about continuous delivery patterns
[Hum13]. Although their text talks about patterns in continuous integration, it doesn’t
explicitly mention code inspection or code analysis.
Paul Duvall author of “Continuous Integration” [Duv07] wrote a piece titled
“Continuous Integration - Patterns and Antipatterns” [Duv10]. Duvall suggests 23
patterns that go beyond building and running tests continuously and dicuss a broad set
of activities related to continuous integration, such as deployment and IDE integration.
One of the patterns is “Continuous Inspection”, which is described as “Run automated
code analysis to find common problems. Have these tools run as part of continuous
integration or periodic builds”. He mentions the use of checkstyle as part of an ant build
script.
Much of SonarQube documentation and also “SonarQube in Action” [Cam13] talk
about “continuous inspection”, which is described as a process that consists of code
analysis and reporting and should be part of the development lifecycle. However,
continuous inspection is not described as a pattern in these publications.

Known Uses

As an example of setup for continuous inspection, consider an IT organization that
develops enterprise applications using Java technologies. They have a few million lines
of Java code spread across over 50 applications, and counting. The various development
teams count up to just over a hundred people, who include full-time staff, interns, and
contractors.

The continuous inspection pattern was applied using the following tools:

• Static analysis tools:

o SonarQube

o PMD

o Checkstyle

o FindBugs

• Coverage:

o JaCoCo

• Continuous integration and build:

o Jenkins

o Maven

• Versioning system:

o Subversion

• IDE:

o Eclipse with plug-ins to run the code analysis tools

The built-in verifications provided by the static analysis tools were carefully selected
and configured. A formula for a customized overall quality index was devised based on

Continuous Inspection - 10

the different metrics and emphasizing the aspects that most directly affect
maintainability, which is considered a key quality attribute for that organization.

Developers can execute the various tools on their IDE or even using the command line
version of maven. Jobs were configured on the Jenkins continuous integration server to
execute the code analyses and generate the metrics. Results of analyses are uploaded to
the SonarQube server, which is at the same time a central repository for analyses and a
web server that offers a web user interface to browse the metrics and violations.

Customized verifications were developed using the checkstyle Java API. They were
packaged as a plug-in to the SonarQube server to enhance built-in verifications provided
by that platform. In addition, some of these “custom checks” were deemed “must have”
rules and were configured to run on the Subversion server upon any Java file commit, so
that the entire commit operation is denied if any custom check detects a violation.

Jenkins has a dashboard view to show the situation of the various jobs. Likewise,
SonarQube provides a global dashboard showing metrics for various projects (see
snapshot in). The user can click on a given project to see a project specific dashboard.
For this IT organization, the most prominent metrics and indicators on a project’s
dashboard are: the customized quality index mentioned above (see snapshot in Figure
4), technical debt (Figure 5), unit and integration tests coverage (Figure 6), code
duplication (Figure 7), and size measures (Figure 8). The SonarQube dashboard also
shows a graph with the evolution of some metrics over time (Figure 9).

These dashboards are physically on display on a handful of big screen TVs spread
across the software development department. They are also visible by any developer or
manager on the web browser. Many of the metrics contain hyperlinks to detailed
information about the calculation and annotated source code. For example, one can click
on the measure under “Duplications” (Figure 7) to navigate and display the source files,
and see where duplicate code is.

Figure 3 – Snapshot of SonarQube global dashboard showing various projects and a summary of metrics

Continuous Inspection - 11

Figure 4 – Snapshot of SonarQube dashboard showing a customized quality index for a project

Figure 5 – Snapshot of SonarQube dashboard showing the technical debt for a project

Figure 6 – Snapshot of SonarQube dashboard showing the unite test coverage (above) and integration test

coverage (below) for a project

Figure 7 – Snapshot of SonarQube dashboard showing size metrics for a project

Continuous Inspection - 12

Figure 8 – Snapshot of SonarQube dashboard showing the technical debt for a project

Figure 9 – Interactive graph in the SonarQube dashboard showing historical information for three different

metrics.

Acknowledgements

We thank our shepherd Kazunori Sakamoto for his valuable comments and feedback
during the AsianPLoP 2013 Shepherding process. We also thank our 2013 AsianPLoP
Writers Workshop Group, YYY, for their valuable comments.

Continuous Inspection - 13

References

[Cam13] Campbell, G., Papapetrou, P. SonarQube in Action. Manning, November 2013.

[Duv07] Duval, P., Matyas, S., Glover, A. Continuous Integration: Improving Software
Quality and Reducing Risk. Addison-Wesley, July 2007.

[Duv10] Duval, Paul. Continuous Integration: Patterns and Anti-Patterns. DZone, 2010.
Available at http://refcardz.dzone.com/refcardz/continuous-integration.

[Fow99] Fowler, M., Refactoring: Improving the Design of Existing Code. Addison-
Wesley. 1999.

[FPR01] Fontura, M., Pree, W., Rump, B. The UML Profile for Framework Architectures.
Addison-Wesley. 2001.

[FY00] Foote, B., Yoder J. W. 2000. Big Ball of Mud, Fourth Conference on Patterns
Languages of Programs (PLoP '97/EuroPLoP '97) Monticello, Illinois, September
1997. Pattern Languages of Programs Design 4 edited by Neil Harrison, Brian
Foote, and Hans Rohnert. Addison Wesley, 2000.

[GHJ+95] Gamma, E., R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of
Reusable Object Oriented Software. Addison-Wesley. 1995.

[Hum13] Humble, J., Farley, D. Continuous Delivery – Patterns. Available at
http://continuousdelivery.com/patterns/.

[KJ04] Kircher, M.; P. Jain. Pattern Oriented Software Architecture, Volume 3: Patterns
for Resource Management. Wiley & Sons. 2004.

[Mar02] Martin, R. Agile Software Development: Principles, Patterns, and Practices.
Prentice Hall, 2002.

[Mar08] Martin, R. Clean Code: A Handbook of Agile Software Craftsmanship. Prentice
Hall, 2008.

[Mer13] Merson, P. Ultimate architecture enforcement: custom checks enforced at code-
commit time. Proceedings of the 2013 Conference on Systems, programming, &
applications: software for humanity (SPLASH’13). Indianapolis, October 2013.

