
Consistent and Secure Transaction System Pattern
Ngo Huy Bien

Faculty of Information Technology,
University of Science Ho Chi Minh
City, Ho Chi Minh City, Vietnam

227 Nguyen Van Cu, District 5, Ho Chi
Minh City, Vietnam

+84988437323

nhbien@fit.hcmus.edu.vn

 Tran Dan Thu
Faculty of Information Technology,
University of Science Ho Chi Minh
City, Ho Chi Minh City, Vietnam

227 Nguyen Van Cu, District 5, Ho Chi
Minh City, Vietnam

+84902765432

tdthu@fit.hcmus.edu.vn

ABSTRACT

Transaction processing is essential for all enterprise systems. In

this paper, we propose a design pattern for modeling domain

knowledge consistently and handling complicated transactions of

applications that require enforcing security policies, especially the

service-oriented and cloud-based applications in which each

transaction is designed as a service and may invoke external

services. We evaluated this design pattern by implementing it in

our cloud-based enterprise systems, then executing business test

cases and testing system performance. We also compared effort to

understand a system designed using this pattern with another

similar system designed using unstructured object-oriented design

method and realized that this pattern reduces our developers’

effort to understand the system. We hope that our consistent and

secure transaction system pattern will be useful for software

providers as well as business organizations when building service-

oriented and cloud-based enterprise systems.

Categories and Subject Descriptors

D.2.11 [Software]: Software Architectures –Patterns.

General Terms

Design, Experimentation, Security.

Keywords

Transaction processing; Transaction pattern; Security pattern;

Enterprise system; Domain-driven design; Service-oriented

architecture; Cloud computing.

1. INTRODUCTION
A business transaction is an interaction in the real world, usually

between an enterprise and a person or another enterprise, where

something is exchanged. A business transaction is often a set of

related tasks that lead to a particular goal. For example, in order to

process an order for retail goods a system will need to perform the

following tasks:

 Check the customer’s credit, reserve the required material

from stock, and schedule the shipment;

 Give commission credit to the salesperson; submit a

request for payment from a credit card company;

 Perform the shipment, and then validate that the order was

delivered.

Transaction processing is the processing of business transactions

by computers connected by computer networks (Bernstein &

Newcomer, 2009). Transactions processing is essential part of all

enterprise systems. Implementing transactions for enterprise

systems requires significant work due to complexity of domain

and technologies. In this paper, we propose a model for

consistently designing transaction processing of enterprise system

in service-oriented and cloud-based environments. We also show

that how security patterns (authentication and authorization) can

be applied to transaction processing to enforce enterprise security

policies.

The contributions of this paper lie in (i) a real-world requirements

analysis of secure enterprise transaction processing; (ii) a design

pattern to build transaction processing model for enterprise

systems; (iii) a result from applying the design pattern in real

word systems (evaluation of the design pattern). The pattern

would enable both software providers as well as business

organizations to reduce costs and time when building their

service-oriented and cloud-based enterprise systems for

automating their business transactions.

This paper is organized as follows: Section II discusses related

work and challenges when building transaction applications.

Section III presents our design pattern for transaction applications

including its motivation, analysis, design, implementation,

consequences and so on. Section IV presents evaluation of our

design pattern. Finally, section V wraps up the paper and

identifies a series of future tasks.

2. RELATED WORK
Transaction processing has been drawn much attention of

researchers. In [3], the authors presented principles of transaction

processing but they did not describe how to design and build a

transaction processing application, especially in service-oriented

or cloud-based environments. We presented a complete consistent

design and guidelines to implement secure transactions for cloud-

based applications.

Eric Evans presented a set of patterns (especially Repository and

Factory pattern) for tacking complexity of domain [6]. However

the author did not discuss how to enable configuration and

security for enterprise transactions. The author also did not

describe how to separate business rules from data access. We

extended Repository and Factory patterns by combining with

enforcing security polices (authentication, authorization and

business security rules checking) and separating data access from

business rules of transaction.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Conference’10, Month 1–2, 2010, City, State, Country.

Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.

Mark Grand presented 4 related patterns (ACID Transaction,

Composite Transaction, Audit Trail and Two Phase Commit) for

handling transactions [10]. None of these patterns relate to

security. These patterns also do not tackle complexity of domain

knowledge. These patterns can play as tactics for implementing

some aspects of our consistent and secure transaction system

pattern (e.g. ACID properties).

Authentication model was proposed in [13]. Role-based access

control models were proposed in [16]. Attribute-based access

control model was introduced in [5]. These models play as key

roles for implementing security for computer systems. These

models play as tactics for implementing authentication and

authorization aspects of our consistent and secure transaction

system pattern.

Security patterns were also studied in depth in [20], [17], [12] and

[7]. However there was little explanation about how to use them

within a transaction system. In this paper, we show where security

patterns can be applied within transaction processing to achieve

authentication, authorization and security policies for a

transaction.

Authentication aspect of a transaction system was addressed by

applying an extra authentication step to those transactions

considered sensitive because of their privacy requirements or

monetary value in [1]. Our secure transaction system pattern is

similar to this work in the sense of authentication. However we

are different in that we handle additional tasks like configuration,

authorization, business security policies and other business

domain related tasks of a secure transaction system. Transaction

authentication is only a part of our secure transaction system

pattern. We are also different in that we suggest how to use

external services or local persistence information for the system

authentication. We are also different in that we propose a

consistent design, in which all domain objects have the same

representational form (i.e. Factory, Repository, Persistence

entities).

3. CONSISTENT AND SECURE

TRANSACTION SYSTEM PATTERN
This section describes our pattern for hierarchical multi-tenancy

applications in GoF template [9].

3.1 Name
Consistent and Secure Transaction System Pattern.

3.2 Intent
Provide a consistent and flexible model for handling secure

transactions of a software system.

3.3 Motivation
Each enterprise system must implement transactions to automate

business processes. One key requirement of designing enterprise

system transaction model is that transaction processing model

should be flexible and tackle the complexity of domain

knowledge. When we talk about domain knowledge, we mean

domain objects. They are things like customer, user, role,

authorization and so on. In other words, the transaction processing

model should be able to handle complicated business transactions

with consistent components and classes. It means that we should

use similar steps and models when adding new business data or

new business rules to our system.

One example is a company providing project management system

software as a service1. This system contains many similar domain

objects like Customer, User, Role, Authorization, Project, Project

Template, To-Do List, To-Do, Event, File, Message, Time Log,

Risk, and so on. The relationships among domain objects are

complicated. There is a need of a consistent way to manage these

domain objects with their business rules and data.

There is also a need of easily and consistently adding new domain

objects that depend on specific customers to this system. For

example construction project management may also require other

domain objects like Supplier, Contractor, Order, Material,

Expense, and so on.

Another requirement of enterprise system transactions is that each

transaction should be executed in a secure manner. In other words,

the transactions between enterprise users and system require

enforcing security policies.

Transaction security can be achieved at different layers of a

system (e.g. transport layer, application layer or storage) and by

leveraging IT infrastructure, policies, etc. In this paper, we are

only interested in enforcing security policies at application layer.

We call secure transaction a transaction that requires

authentication, authorization and enforcing other business security

policies.

Let’s take a look at Gmail system2. When a user wants to view a

message, she sends a request to system. This request contains her

credentials and message identifier. Once Gmail system receives

request, it validates user’s credentials. Then it validates account

status against system policies. Then it checks if user has privileges

to view the message. If everything is fine then it gets message

content and returns it to user.

Let’s return to the company providing project management system

software as a service1 for another example. The company provides

a web page for users to buy their service. In order to buy a

subscription, user sends a request to system. This request contains

her credentials and other information for her order. Once system

receives request, it validates user’s credentials. Then it checks if

user already has another subscription and other business rules. If

everything is fine then it processes payment for user, saves user’s

subscription to system. Then it prepares product (i.e. services,

storage) for user, notifies user about successful transaction, and

displays transaction result to user.

How do we design transaction processing model for enterprise

system so that domain knowledge can be managed consistently

and all transactions are executed securely?

In order to solve this problem, we propose component-based

enterprise architecture for secure transaction processing. Then

we focus on design of specific components and explain how to

achieve secure transaction processing with these specific

components. This design pattern also provides consistency of

components and classes for system to be extended. We also

provide implementation notes for adapting pattern to various

business cases.

Building on the component view of the enterprise architectures in

[19], [11], [18] and our real world projects, our component-based

1 https://basecamp.com

2 https://mail.google.com

https://basecamp.com/
https://mail.google.com/

enterprise architecture for secure transaction processing is

proposed in Fig. 1.

Invokes

Operational Data

Clients

Scale-Out

Workstation Laptop
Smartphone

Tablet

Relation Databases File System

Remote App.

Server

NoSQL Databases

Load Balancing

and Clusering

Server

Server

Server

P
e

rs
is

ts

Enterprise System

Security Component

(Authentication, Authorization)

Domain

Component

Data Component

Request

Component

Configuration

Component

Service

Component
Utility Component

UI

Component
API

Component

Workflow

Component

External Services

Web Services

3
rd

 Party,

Legacy Applications

Frameworks and Libraries

Web

Application

Frameworks

Persistence

Frameworks

Software Platforms and Languages

3
rd

 Party

Libraries

Dependency

Injection

Container

Web Service

Frameworks

Workflow

Frameworks

U
s
e

s

P
e

rs
is

ts

R
e

q
u

e
s
ts

Figure 1. Enterprise System Architecture

A request from a Client is sent to Request Component. This is

often a Uniform Resource Identifier (URI) to a Web User

Interface (Web UI) or an Application Programming Interface

(API). Request Component calls Configuration Component to get

predefined settings for handling request. After that Request

Component calls Security Component to authenticate and

authorize the request.

After that Request Component calls Domain Component to

process business request. After that Request Component calls

User Interface (UI) Component or API Component to format

result and returns result to Client. UI Component is also

responsible for handling theme or branding for each request.

During execution, Request Component, Configuration

Component, Security Component and Domain Component can call

Data Component to get or save system state.

Utility Component can be called by any other components to

perform specific processing that does not relate to domain

knowledge. Service Component can be invoked when system

needs to call 3rd party services (e.g. payment gateway, location

service, notification service, and so on), 3rd party applications (e.g.

email service, big data processing service, and so on) or legacy

applications.

If the request needs reactive action, Request Component can pass

the request to Workflow Component which is responsible for

handling request and wait for stimulus from an external person or

program. Workflow Component relies on other components to

process the request.

All the components can use frameworks or libraries for their

implementation or separation. The frameworks can be web

application frameworks (e.g. ASP.NET MVC, Spring MVC, Ruby

on Rails, and so on), web service frameworks, Workflow

frameworks (e.g. Windows Workflow Foundation, Activiti, and

so on), persistence framework (e.g. Hibernate, Entity Framework,

and so on), dependency injection container (e.g. Spring, Castle

Windsor, Unity Application Block, and so on), 3rd party libraries

(e.g. UI libraries, AJAX libraries, logging libraries, caching

libraries and so on). The frameworks and libraries in turn can be

implemented using specific software platforms or languages (e.g.

.NET, Java, PHP, Ruby, Python, Google App Engine, Force.com,

Heroku, Eccentex’s AppBase, and so on).

System states can be stored in various data stores. They may be

relational databases (e.g Oracle, MS SQL, MySQL, Azure SQL

Database), file system (e.g. text file, binary file) and NoSL

database (e.g. Amazon S3, Google File System, Azure SQL, and

so on).

The components can be implemented using Layers pattern [4],

deployed using multi-tier architecture and scaled out for better

performance.

Request Component, UI Component, API Component, and

Workflow Component are often parts of software frameworks and

libraries. When building an enterprise system we often extend

software frameworks and libraries for these 4 components to

match them with corporation business data and business

processes.

Designing enterprise transactions involves configuration, security,

domain knowledge, and data persistence and so on. In this paper,

we are interested in designing objects inside Configuration

Component, Security Component, Domain Component, Data

Component, Utility Component and Service Component in a

consistent way. The enterprise architecture and components are

the context in which our pattern lies in. Our pattern captures a

solution for recurring problem of consistently designing enterprise

transaction systems.

We are also interested in providing authentication, authorization

and business security policies for secure transaction using these

proposed objects inside the components. We proposed a pattern

called “Consistent and Secure Transaction System Pattern” for

these two objectives. Our pattern is a composite pattern which

composes of some known patterns [14]. This composite pattern

solves a recurring problem about consistency, authentication and

authorization in designing every enterprise transaction system.

3.4 Applicability
Use consistent and secure transaction system pattern when

 You want to reduce complexity of managing domain

knowledge;

 You need to reuse domain knowledge for other system

layers;

 You want to be able to extend a system in a consistent

way;

 You want to separate domain knowledge from data access;

 You want to enforce security policies (authentication,

authorization and other business security policies) when

handling transactions.

3.5 Structure
A typical secure transaction design pattern UML object structure

is described in Fig. 2. For simplicity, we remove some similar

interfaces and objects from diagram (e.g. IEntity2Factory,

Entity2Factory, IEntity3Factory, Entity3Factory, IEntity4Factory,

Entity4Factory, IEntity4Repository, Entity4Respository,

IEntity4Persistence and Entity4Persistence).

+Create(in entity) : Entity1

+Update(in entity) : Entity1

+Delete(in Id : String) : int

+Retrieve(in Id : string) : Entity1

+List(in page : long, in pageSize : long) : List<Entity1>

+DoTransaction(in entity : Entity1) : Entity1

«interface»

IEntity1Repository

«implementation class»

Entity1Repository

«implementation class»

Entity1Factory

+CreateNew(in name : string, in description : string, in name2 : string, in name31 : string, in name32 : string) : Entity1

+CreateForUpdating(in entity, in newName : string, in newDescription : string, in entity2NewName : string) : Entity1

+PrepareForTransaction(in name : string, in description : string, in entity2Id : string, in name31 : string, in entity32Id : string) : Entity1

«interface»

IEntity1Factory

+Id : string

+Name2 : string

+Entity1 : Entity1

Entity2+Id : string

+Name3 : string

+Entity1

Entity3

+Create(in entity : Entity1) : Entity1

+Update(in entity : Entity1) : Entity1

+Delete(in unitId) : int

+Retrieve(in Id : string) : Entity1

+List(in page : long, in pageSize : long) : List<Entity1>

«interface»

IEntity1Persistence

Entity1Persistence

+Create(in entity2 : Entity2) : Entity2

+Update(in entity2 : Entity2) : Entity2

+Delete(in Id : string) : int

+Retrieve(in Id : string) : Entity2

+List(in page : long, in pageSize : long) : List<Entity2>

+DoTransaction(in entity2 : Entity2) : Entity2

«interface»

IEntity2Repository

«implementation class»

Entity2Repository

+Create(in entity2 : Entity2) : Entity2

+Update(in entity2 : Entity2) : Entity2

+Delete(in Id : string) : int

+Retrieve(in Id : string) : Entity2

+List(in page : long, in pageSize : long) : List<Entity2>

«interface»

IEntity2Persistence

«implementation class»

Entity2Persistence

+Create(in entity3 : Entity3) : Entity3

+Update(in entity3 : Entity3) : Entity3

+Delete(in Id : string) : int

+Retrieve(in Id : string) : Entity3

+List(in page : long, in pageSize : long) : List<Entity3>

+DoTransaction(in entity3 : Entity3) : Entity3

«interface»

IEntity3Repository

«implementation class»

Entity3Repository

+Create(in entity3 : Entity3) : Entity3

+Update(in entity3 : Entity3) : Entity3

+Delete(in Id : string) : int

+Retrieve(in Id : string) : Entity3

+List(in page : long, in pageSize : long) : List<Entity3>

«interface»

IEntity3Persistence

«implementation class»

Entity3Persistence

«implementation class»

ServiceAdapter SystemUtility

+Id : string

+Name : string

+Description : string

+Entity2 : Entity2

+Entity3List : List<Entity3>

+Entity4List : List<Entity4>

Entity1

RequestHandler

Client

+Invoke(in input : string) : string

«interface»

IServiceAdapter

+Id : string

+Name4 : string

+Entity1List : List<Entity1>

Entity4

*

*

1

1

*

1

Figure 2. Consistent and Secure Transaction System

Pattern Static Structure

3.6 Participants
Client represents client requests processing for a transaction. This

is often an object from Request Component or UI Component or

API Component or Workflow Component.

RequestHandler represents an object that is responsible for

receiving inputs for transaction from Client and returns outputs to

Client.

Entity1 represents any entity in system. This could be any domain

objects, including User, Role, Company, Authorization,

Configuration, and any Business Entities (e.g. Product, Order,

OrderItem, Payment, Address, Invoice and so on).

Entity2 represents any entity in system that has one-to-one

relationship with Entity1.

Entity3 represents any entity in system that has many-to-one

relationship with Entity1.

Entity4 represents any entity in system that has many-to-many

relationship with Entity1.

IEntity1Repository defines interfaces for working with Entity1

object. This interface represents all objects of Entity1 type as a

conceptual set. This interface is responsible for handling all

domain knowledge of Entity1 object.

Entity1Repository represents an implementation of

IEntity1Repository interface.

IEntity1Persistence defines interfaces for working with

persistence of Entity1. This interface is responsible for handling

all data operations against Entity1.

Entity1Persistence represents an implementation of

IEntity1Persistence interface.

IEntity1Factory defines interfaces for encapsulation for Entity1

object creation, especially when creation of Entity1 object

becomes complicated or reveals too much of the internal structure.

Entity1Factory represents an implementation of IEntity1Fatory

interface.

IServiceAdapter defines interfaces for encapsulation for working

with an external service. If system needs to interact with many

external services then there will be IServiceAdapter2,

IServiceAdapter3 and so on.

ServiceAdapter represents an implementation of IServiceAdapter

interface. If there are IServiceAdapter2, IServiceAdapter3 and so

on then there will be ServiceAdapter2, ServiceAdapter3 and so on.

SystemUtility represents object providing helper functions for

system. These functions do not belong to any specific domain

knowledge. These functions may be string processing functions,

date and time processing functions, cryptography functions and so

on. If system has many different utilities then there will be

SystemUtility2, SystemUtility3 and so on.

IEntity2Repository defines interfaces for working with Entity2.

This interface represents all objects of Entity2 type as a

conceptual set. This interface is responsible for handling all

domain knowledge of Entity2 object. This interface can be used

by EntityRepository when EntityRepository needs to access

domain knowledge of Entity2 object.

Entity2Repository represents an implementation of

IEntity2Repository interface.

IEntity2Persistence defines interfaces for working with

persistence of Entity2. This interface is responsible for handling

all data operations against Entity2.

Entity2Persistence represents an implementation of

IEntity2Persistence interface.

IEntity2Factory defines interfaces for encapsulation for Entity2

object creation, especially when creation of Entity2 object

becomes complicated or reveals too much of the internal structure.

This interface can be used by EntityFactory when EntityFactory

needs to create an instance of Entity2 object for Entity.

Entity2Factory represents an implementation of IEntity2Fatory

interface.

IEntity3Repository and IEntity4Repository, Entity3Repository and

Entity4Repository, IEntity3Persistence and IEntity4Persistene,

Entity3Persistence and Entity4Persistence, IEntity3Factory and

IEntity4Factory, Entity3Factory and Entity4Factory play similar

roles as IEntity2Repository, Entity2Repository,

IEntity2Persistence, Entity2Persistence, IEntity2Factory and

Entity2Factory, respectively.

3.7 Collaborations
In figure 2, we propose a template for designing all domain

objects. We will describe collaborations of the system objects in a

more concrete view. Figure 3 describes process of executing a

secure transaction for placing an Order, i.e. a concrete domain

object. A note is that figure 2 and figure 3 do not have the same

level of abstraction.

Client RequestHandler ConfigurationRepository

PlaceOrder(userKey, name, ...)

UserRepository

List()

ServiceResult

AuthorizationRepository

AuthenticateUser(userKey)

CreateNew(name, ...)

TransactionResult

OrderFactory

DoTransaction(order)

OrderRepository

Configuration List

AuthenticationResult

GetConfiguration()

AuthenticateUser(userKey)

AuthorizeRequest(userKey, name, ...)

AuthorizationResult

ServiceAdapter

AuthorizeRequest(userKey, name, ...)

AuthenticationResult

Order

Invoke(creditCard)

Order

Configuration List

AuthorizationResult

Figure 3. Consistent and Secure Transaction System Pattern

Sequence Diagram

When Client sends a request to system, the request is captured by

RequestHandler. This is entry point of transaction. The

transaction begins to be executed. RequestHandler calls

ConfigurationRepository to retrieve system configurations. We

recall that Configuration is one of system domain objects

(Enitity1 or Entity2 or Entity3 or Entity4 or other entity).

ConfigurationRepository is responsible for handling system

configurations, e.g. global application settings, security policies.

These configurations can be applied to all transactions, including

current transaction. ConfigurationRepository can also returns

specific configurations based upon request’s specific parameters

or optionally call ServiceAdapter to get configurations from

external services.

After that RequestHandler calls UserRepository to authenticate

request. UserRepository is responsible for handling system

authentication, e.g. credentials validation, security policies

validation, account status checking. We recall that User is one of

system domain objects. UserRepository is responsible for

managing domain knowledge of User. UserRepository can call

UserPersistence to authenticate User using the system data store.

UserRepository can optionally call ServiceAdapter to invoke

external services for authentication, e.g. single sign on service.

After that RequestHandler calls AuthorizationRepository to

authorize request. AuthorizationRepository is responsible for

handling system authorization, e.g. resource security policies

validation, account privileges checking. We recall that

Authorization is one of system domain objects and

AuthorizationRepository is responsible for managing domain

knowledge of Authorization. Authorization object is often an

aggregate of User or Role and Resource and Action.

AuthorizationRepository can call AuthorizationPersistence to

authorize request using the system data store.

AuthorizationRepository can optionally call ServiceAdapter to

invoke external services for authorization.

After that RequestHandler calls OrderFactory to create an Order

for business processing. RequestHandler calls OrderRepository to

place an order. During this execution, OrderRepository may call

ConfigurationRepository, UserRepository,

AuthorizationRepository, SystemUtility, other domain

Repositories (e.g. OrderItemRepository, AddressRepository, and

so on) or Factories (e.g. OrderItemFactory, AddresssFactory, and

so on) to get information for executing transaction.

OrderRepository may call ServiceAdapter to invoke external

services for processing transaction (e.g. processing payment,

sending notification saving system state). OrderRepository may

call OrderPersistence to get or save system state.

3.8 Consequences
The advantage of this pattern is that it reduces complexity when

managing domain knowledge of an enterprise system. It provides

a consistent approach for modeling domain knowledge and

handling transactions. The consistency is achieved by representing

all domain objects in the same form. Figure 2 shows that each

domain object is represented by Repository, Factory, and

Persistence object. Figure 2 acts like a template for designing the

domain objects.

Because all objects and interfaces are represented in a consistent

form (please refer to figure 2) and all secure transactions are

handled in the same way (please refer to figure 3) the system

complexity will be reduced. In other words it makes developers

easier to understand and extend the system or create a new system

following this solution. One important note is that the pattern may

contain more objects. However adding more objects and

interfaces in this consistent way will not make system more

complex.

Another advantage of this pattern is that it separates business data

access from business rules. This is done by encapsulating business

data access into Persistence object and encapsulating business

rules into Repository and Factory object. This will make system

easier for maintenance.

This pattern also shows where security aspects can be applied in

transaction processing. The security aspects on which the pattern

focuses are authentication, authorization and security policies.

Authentication tasks are encapsulated in UserRepository and

ServiceAdapter object. Authorization tasks are encapsulated in

AuthorizationRepository and ServiceAdapter object. Security

policies can be encapsulated in any system object, for example

OrderRepository.

3.9 Implementation
There are some important points that need to be considered when

implementing consistent and secure transaction system pattern:

 Any entity (Entity1, Entity2, Entity3, Entity4 and so on)

can be implemented using Composite pattern [9] when

hierarchy is required. The number of entities depends on

business data and business processes. These entities are

often grouped into a layer and form a business model of

system.

 System entry point (RequestHandler’s responsibility) can

be implemented using Single Access Point pattern [20].

 Request handling (RequestHandler’s responsibility) can be

implemented using Command pattern [9] when requests

need to be logged for later processing.

 Request handling can also be implemented using

Intercepting Filter pattern [2] when a request and a

response are needed to be manipulated before and after the

request is processed.

 Entry points of domain services (RequestHandler’s

responsibility) can be implemented using Façade pattern

[9] when coarse-grain services are needed.

 Wrappers for external services (ServiceAdapter’s

responsibility) can be implemented using Adapter pattern

[9] when interfaces of enterprise system and external

services are incompatible.

 Wrappers for external services (ServiceAdapter’s

responsibility) can also be implemented using Strategy

pattern [9] when system needs the ability to switch among

external services. All service adapter interfaces and classes

are usually put into separate layers for easier later changes.

 Entity persistence (Entity1Persistence’s,

Entity2Persistence’s, Entity3Persistence’s,

Entity4Persistence’s responsibility) can be implemented

using Strategy pattern [9] when enterprise system needs

the ability to switch among different data stores. All

persistence interfaces and classes are usually put into

separate layers for easier later changes.

 Entity authorization (AuthorizationRepository’s

responsibility) can be implemented using Check Point

pattern [20] and/or RBAC pattern [7] and/or ABAC

pattern [5].

 ACID properties can be achieved using language or

platform specific features (e.g. System.Transactions

namesapce of .NET Framework) and Unit of Work pattern

[8] or ACID Transaction pattern [10].

3.10 Sample Code
The following fragment C# code implements a part of transaction

pattern using C# generic feature.

3.11 Known Uses
 This pattern was used to construct transaction processing

for our secure messaging system, project management

system, corporate information system and school

management system.

 Most current enterprise system transaction implementation

shares the idea of this pattern.

3.12 Related Patterns
Repository pattern [6], Factory pattern [6], ACID Transaction

[10], Data Access Object [2].

4. EVALUATION
We evaluated instances of our (candidate) pattern using case

studies in order to realize if our pattern can produce transaction

systems satisfying our customers’ business needs of secure

transactions and if our pattern can reduce developers’ effort to

understand the systems [15]. We also evaluated response time of

transaction processing when all system transactions are designed

using this pattern.

The pattern was used to construct a core framework that managing

tenants, users, roles, authorization, web pages, modules,

messages, folders, files, and so on. All these entities are managed

in a consistent manner. Then our complicated business processes,

e.g. handling customers’ subscriptions, handling customers’

orders, managing corporation events, meetings, sending messages

securely, sharing files and so on were handled by extending the

framework and following the pattern collaboration instructions.

All business transactions were tested by our customers

successfully.

 public Order Create(Order order){

 Checker.Require(null != order,

 "Order cannot be null.");

Checker.Require(

 null != order.Customer,

"Customer cannot be null.");

 Checker.Require(

 null != order.PaymentMethod,

 "Payment method cannot be null.");

 return

 this.orderPersistence.Create(order);

 }

 public Guid CheckOutOrder(Order order,

 String notificationTemplate,

 AppSettings appSettings){

 String resultCode = String.Empty;

 String resultMessage = String.Empty;

 PaymentGatewayHelper.Checkout(

 order, out resultCode,

 out resultMessage);

 return Order.OrderId;

 }

}

// A generic interface is defined

// for all entity repositories

public interface

IEntityRepository<T>{

 T Create(T entity);

 T Retrieve(Guid entityId);

 int Update(T entity);

 int Delete(Guid entityId);

}

// This interface defines specific

// methods for OrderRepository

public interface IOrderRepository{

 Guid CheckOutOrder(Order order,

 String notificationTemplate,

 AppSettings appSettings);

}

public class OrderRepository :
IOrderRepository,
IEntityRepository<Order>{

private IEntityPersistence<Order>

orderPersistence;

 public OrderRepository(){

 this.orderPersistence =

 new OrderPersistence ();

 }

We compared effort to learn a system designed using this pattern

with an old similar system designed using an inconsistent way. It

took our new developers less effort to understand the system

designed using this pattern.

We used ASP.NET 4.0 for our system front-end and MSSQL

2008 server for our system back-end when implementing this

pattern. Our system was deployed on 5 Intel Xeon servers (2 web

servers with load balancing, 1 application server, 1 database

server and 1 mail server). Each server has 3GHz CPU (2

processors) and 6GB RAM. In our current SaaS secure messaging

system, the number of tenants of is about 5000, the number of

users is about 125000, the number of messages is about 2626400

and the number of files is about 1577000. System response time

of a transaction of getting an authorized message with metadata of

3 attached files is less than 3 seconds when there are simultaneous

100 requests from Load Impact3.

5. CONCLUSION AND OUTLOOK
Designing transaction processing model for enterprise systems

takes a lot of time and efforts. In this paper, we have discussed the

requirements of transaction processing in real world applications

and proposed a solution for building transaction processing model

for enterprise systems, especially in service-oriented or cloud-

based environments. We have presented the results in a pattern

form so that it can be adapted to different systems. We hope that

our consistent and secure transaction system pattern will be useful

for building enterprise systems for software providers as well as

business organizations.

Future work includes extending this pattern to handle secure

business transaction that spans multiple requests (composite

transaction), describing how to handle business transaction with

web service standards, detailed explanation about concurrency

control and recovery.

6. ACKNOWLEDGMENTS
We thank our shepherd, Eduardo B. Fernandez, for his valuable

comments and suggestions that improved our paper.

7. REFERENCES

[1] A. BRAZ, FABRICIO; B. FERNANDEZ, EDUARDO; C.

RISPOLI, DIOGO. Transaction Authentication Pattern. In

MiniPLoP Brazil 2013 (Brasília 2013).

[2] Alur, Deepak, Crupi, John, and Malks, Dan. Core J2EE™

Patterns: Best Practices and Design Strategies. Prentice

Hall PTR, 2001.

[3] Bernstein, Philip A. and Newcomer, Eric. Principles of

Transaction Processing. Morgan Kaufmann, 2009.

[4] Buschmann, Frank, Meunier, Regine, Rohnert, Hans,

Sommerlad, Peter, and Stal, Michael. Pattern-Oriented

Software Architecture: A System of Patterns. Wiley, 1996.

[5] C. Hu, Vincent, Ferraiolo, David, Kuhn, Rick, Schnitzer,

Adam, Sandlin, Kenneth, Miller, Robert, and Scarfone,

Karen. Guide to Attribute Based Access Control (ABAC)

Definition and Considerations (DRAFT). 800-162, NIST,

2013.

[6] Evans, Eric. Domain-Driven Design: Tackling Complexity

in the Heart of Software. Addison Wesley, Boston, 2003.

[7] Fernandez, Eduardo B. Security Patterns in Practice:

3 http://loadimpact.com/

Designing Secure Architectures using Software Patterns.

Wiley, Chichester, 2013.

[8] Fowler, Martin, Rice, David, Foemmel, Matthew, Hieatt,

Edward, Mee, Robert, and Stafford, Randy. Patterns of

Enterprise Application Architecture. Addison Wesley,

2002.

[9] Gamma, Eric, Helm, Richard, Johnson, Ralph, and

Vlissides, John. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, 1994.

[10] Grand, Mark. Mark Grand. Transaction Patterns: A

Collection of Four Transaction Related Patterns. In PLoP

'99 (1999).

[11] Kanalakis, John. Developing.NET Enterprise Applications.

Apress, 2003.

[12] Kanneganti, Ramarao and Chodavarapu, Prasad. SOA

Security. Manning Publications Co., Greenwich, 2008.

[13] NEUMAN, B. CLIFFORD; TS‘O, THEODORE.

Kerberos: An Authentication Service For Computer

Networks. IEEE Communications Magazine (1994), 33-38.

[14] Riehle, Dirk. Composite Design Patterns. In OOPSLA '97

(Atlanta 1997), ACM Press, 218–228.

[15] RUNESON, PER; HÖST, MARTIN. Guidelines For

Conducting And Reporting Case Study Research In

Software Engineering. Empirical Software Engineering,

14, 2 (Dec. 2009), 131-164.

[16] SANDHU, RAVI S.; J. COYNEK, EDWARD;

FEINSTEINK, HAL L.; E. YOUMANK, CHARLES.

Role-Based Access Control Models. IEEE Computer

(1996), 38-47.

[17] SCHUMACHER, MARKUS; FERNANDEZ-BUGLIONI,

EDUARDO; HYBERTSON, DUANE; BUSCHMANN,

FRANK; SOMMERLAD, PETER. Security Patterns:

Integrating Security and Systems Engineering. John Wiley

& Sons Ltd, Chichester, 2006.

[18] Shroff, Gautam. Enterprise Cloud Computing: Technology

Architecture Applications. Cambridge University Press,

2010.

[19] Sowa, J.F. and Zachman, J.A. Extending and Formalizing

the Framework for Information Systems Architecture. IBM

Systems Journal, 31, 3 (1992), 590-616.

[20] Yoder, Joseph and Barcalow, Jeffrey. Architectural

Patterns for Enabling Application Security. In PLoP '97

(Monticello 1997).

http://loadimpact.com/

