
Introducing Software Reading Techniques into Pattern

Writer’s Workshop: Checklists and Perspectives
Hironori Washizaki, Tian Xia, Yoshiaki Fukazawa
Global Software Engineering Laboratory, Waseda University

3-4-1 Okubo, Shinjuku-ku, Tokyo, Japan

washizaki@waseda.jp lmtc668800@moegi.waseda.jp fukazawa@waseda.jp

ABSTRACT

Pattern Writer’s Workshop (WW) is a method to review, evaluate,

and improve each other’s pattern or pattern language papers under

the guidance of a moderator. Although the WW has been well

accepted at the pattern community and xPLoP conferences, there

could be several problems such as poor moderations leading to

“ad hoc” review meetings. To address the problems, we propose

an approach for introducing two existing major software reading

techniques, Checklist-Based Reading (CBR) and Perspective-

Based Reading (PBR), to the WW targeting software patterns and

pattern languages, and discuss potential benefits and drawbacks.

Moreover we confirmed benefits and drawbacks of the approach

by conducting an experiment.

Categories and Subject Descriptors

D.2.11 [Software Architectures]: Patterns

General Terms

Management, Documentation, Performance, Design,

Experimentation, Human Factors

Keywords

Software pattern, Pattern language, Writer’s workshop, Review,

Checklist-based reading, Perspective-based reading

1. INTRODUCTION
Software patterns and pattern languages are usually reviewed and

improved through shepherding process and Writer’s Workshop

(WW). The WW is a method to review, evaluate, and improve

each other’s pattern or pattern language papers under the guidance

of a moderator [1][2].

Although the WW has been well accepted at the pattern

community and xPLoP conferences to give authors review

comments, there could be several problems such as poor

moderations leading to “ad hoc” review meetings resulting in

various problems such as few comments, superficial comments,

and missing important concerns during WW.

To improve upon ad hoc review, there are various software

reading techniques developed such as Checklist-Based Reading

(CBR) and Perspective-Based Reading (PBR).

In this paper, we propose an approach for introducing software

reading techniques, CBR and PBR, to the WW that targets

software patterns and pattern languages. Moreover by conducting

an experiment, the paper addresses three research questions in

below.

RQ1. Does the WW with application of CBR and PBR

contribute to more comments than the WW without CBR/PBR

in a limited time?

RQ2. Does the WW with application of CBR and PBR

contribute to concrete and profound comments (i.e. non-

superficial ones) more than the WW without CBR/PBR?

RQ3. Does the WW with application of CBR (and PBR)

contribute to reviewing and commenting on important

concerns more than the WW without CBR/PBR?

Followings are the main contributions of this paper.

 A method for introducing CBR and PBR to WW.

 Drafts of a general checklist and specific checklists for

several perspectives.

 Result of the experiment by conducting a WW with

application of CBR and PBR revealing its effectiveness and

limitation.

The rest of the paper is organized as follows. In Section 2, we

introduce the WW with its typical problems and typical reading

techniques. In Section 3, we propose an approach for introducing

two reading techniques to the WW, and discuss potential benefits

and drawbacks. In Section 4, we report a result of an experiment

applying the approach to actual patterns and answer the research

questions. Finally in Section 5 we conclude the paper and state

some possible future works.

2. BACKGROUND AND PROBLEM

STATEMENT
WW is a workshop for pattern and pattern language authors. Here

we explain its traditional form and some limitations by showing a

motivating example.

2.1 Writer’s Workshop
Before a WW, all participants (i.e. authors) of the workshop group

have to read others’ patterns carefully and prepare comments.

During the WW, papers are reviewed and discussed in several

steps according to the following format. Notice that in the step (2)

and (3), the author of the pattern under review should be “Fly on

the wall,” which means that he or she should only listen and

record without joining in the discussion. Participants without the

author make a circle like in Figure 1.

(1) The author of the pattern under review reads one or two

important paragraphs in the pattern paper chosen by him/her.

(2) One of the participants summarizes the paper.

(3) Participants identify and praise strengths of the pattern.

(4) Participants identify the pattern’s weaknesses that could be

improved, and suggest possible improvements. If necessary,

participants conduct a discussion based on the indication.

(5) The author gives words of thanks to all the participants and

may ask questions of the participants to clarify their

statements.

(6) Participants clap to thank the author for writing the paper.

(7) Participants submit the draft with comments to the author if

they have.

According to the community of pattern such as xPLoP, the

effectiveness of WW has been confirmed. Moreover there are

several notes and patterns available for organizing successful WW

in effective way, such as [1-3].

Figure 1. Circle of chairs for WW at MensorePLoP 2001

2.2 Problems in Traditional WW
Although the above-mentioned format of the WW is widely

accepted by the pattern community, there are several problems as

we experienced in previous xPLoP conferences. Figure 2 shows

relationships among these problems P1-P3, their corresponding

causes C1-C3, and proposed solutions S1-S2.

C1. Moderator’s lack

of experience of WW

C2. Participants’ lack of

knowledge of target domain

C3. Poor patterns accepted

for Writer’s Workshops

P1. Few comments P3. Missing important

concerns

P2. Superficial comments

S1. Checklist-

Based Reading

S2. Perspective-

Based Reading

Figure 2. Relationships among causes, problems and solutions

The followings are explanations of these elements in the figure.

 C1. If a moderator lacks experiences of moderating WWs,

the WW could be an “ad hoc” review meeting. Its typical

symptom is a reading jumping around over many concerns

or portions; it leads to having few comments (P1) and

superficial comments (P2) since for all participants it is hard

to follow the process and focus on import concern and/or

portion in detail, while the time for WW is limited 1 .

1 Usually 1 hour for each paper.

Moreover the moderator might not know what important

concerns are and what are not while reviewing patterns so

that the group might miss important concerns (P3) that

should be considered.

 C2. If workshop participants including the moderator and

other authors (i.e. reviewers) lack enough knowledge of the

target domain of the pattern under review, it is hard to

obtain many comments (P1) and comments about the pattern

content in detail (P2).

 C3. Sometimes patterns do not have enough quality to be

workshopped such as having improper form and missing

forces. Although such poor patterns should be rejected or

handled at the Writing Groups rather than WW, sometimes

these poor pattern get a chance to be accepted for WW since

xPLoP does not adopt rigorous review process but

shepherding and voting process; if a corresponding

shepherd with little experience and knowledge says “OK”,

then the pattern likely gets the acceptance. In such case,

participants of WW spend a lot of time to mention general

and superficial suggestions (P2) such as “improper form”

rather than improvements of the pattern content in detail. It

could lead to missing important concerns that should be

considered (P3).

 P1. Although reviewers in WWs do not compete on number

of review comments, authors of patterns to be workshopped

wish to receive various and adequate amount of comments

that are missed by the authors so that they can revise their

patterns.

 P2. Review comments in WWs should be concrete and not

superficial so that authors can easily understand and revise

their patterns if necessary according to these comments.

 P3. There could be various concerns that could be

incorporated in software patterns, such as general concerns

mostly about pattern forms and readability, and, concerns

specific to the pattern content such as specific quality

characteristics.

Later in Section 3, we propose two techniques denoted as

solutions S1-S2 to solve or mitigate these problems.

2.3 Software Reading Techniques
As we mentioned in above, the WW is a kind of review methods.

Review is defined as a process or meeting during which a work

product, or set of work products, is presented to project personnel,

managers, users, customers, or other interested parties for

comment or approval [4]. According to this definition, the WW

can be seen as a meeting during which patterns or pattern

languages are presented to other patterns’ authors for comment.

In the area of software review such as design review and code

inspection, there are various reading techniques developed to

improve upon ad shoc review. A software reading technique is

defined as a series of steps for the individual for a particular task

[6-8]. Especially for the purpose of detecting defects in software

artifacts, there are several well accepted reading techniques such

as Checklist-Based Reading (CBR) and Perspective-Based

Reading (PBR) [5-6]. Several empirical reports comparing CBR

and PBR have been published [5]. CBR and PBR can be defined

as follows.

 CBR is a reading technique, where the reviewers applying

CBR use a list of statements or questions to be checked [6].

 PBR assigns different perspectives to the reviewers to apply

when inspecting a software artifact [6]. There are several

particular perspectives for PBR, such as defect, functionality,

usage [5] and stakeholders. PBR assumes that a specific

focus performs better than a reviewer with the responsibility

to detect all types of faults [6]. PBR also assumes that

different perspectives can be designed so that their union

yields full coverage of the inspected artifact.

Moreover sometimes these reading techniques are used together

by preparing checklists for each perspective.

Software patterns and pattern languages are software artifacts, too.

Moreover, by regarding defects as a kind of specific

characteristics or concerns, there is a possibility to apply existing

software reading techniques to software patterns or pattern

languages in order to comment strengths and suggestions.

However to the best of our knowledge, it is unclear as to what

kinds of software reading techniques are applicable and how are

these techniques effective and efficient for WW.

3. READING TECHNIQUES FOR

WRITER’S WORKSHOPS
Here we propose an approach for introducing two representative

reading techniques, CBR and PBR, into the traditional WW.

3.1 Checklist-Based Reading
Method:

There could be two types of checklists to be used for the WW: a

general checklist and some specific checklists corresponding to

certain perspectives.

To create the general checklist, we first surveyed existing

literatures on software pattern writing, shepherding, and criteria of

software patterns. As a result, we identified six key literatures as

sources to be used for creating the general checklist: original

concept of patterns and pattern languages [9], essential

characteristics of software patterns [10], essential elements of

software patterns [11], rule of three [12], a pattern language for

pattern writing [13] and a pattern language for shepherding [14].

Based on the sources, we propose a draft of the general checklist

shown in Figure 3. In the figure 3, we classified 27 items into the

following 11 categories.

 Being generative: According to the original concept of

patterns and pattern languages, patterns are generative [9]

(G1 in the figure 3). It should be applicable to any software

patterns and software pattern languages; however it is

somewhat hard to answer such conceptual question in

software engineering. Therefore Winn and Calder identified

nine items (G2-5, G14-16 and G21) premising that patterns

are generative2. Among them, we considered four items

(G1-I4) are particularly related to the nature of how patterns

are generative.

 Domain and scope: A pattern, as a part of a larger pattern

language, should focus on a certain scope with a certain

domain.

2 We merged “a pattern should be grounded a certain domain”

[10] and “a pattern should be a part of a language” [10] into a

single item G5 in the figure 3.

 Structure: A pattern should use an appropriate form to

clarify mandatory elements including a name, context,

problem, forces, and a solution. Moreover a pattern often

has optional elements including a resulting context,

examples, and an acknowledgement.

 Problem and solution: A problem and a corresponding

solution are the heart of a problem. The solution of a

software pattern should capture software system hot spots.

 Forces: Forces should support problem in visible way. The

forces of a software pattern should contain both functional

issues and non-functional ones.

 Name and reference: A pattern should have appropriate

name. A pattern should refer to other patterns explicitly.

 Known uses and validation: A pattern should be validated

by use.

 Acknowledgement: In xPLoP, patterns are reviewed and

improved by the shepherding process. Authors of pattern

should appreciate for shepherds’ efforts.

 Terminology and notation: A pattern should be

comprehensive by using common terminology and figure

notations.

 Pattern language: A pattern language, as a system of related

patterns, should have a summary and a common running

example.

Checklists could be used for both phases: preparation of the WW,

and the WW in operation (especially steps (3) and (4) in

Subsection 2.1). Regarding the former case, each participant can

use a checklist while reading the pattern or pattern language to

check typical strength and/or weakness, and prepare comments.

Regarding the latter case, a moderator can use a checklist to ask

participants what are typical strength and/or weakness of the

pattern under workshop.

Benefit:

Benefit of CBR for WW is that participants or a moderator can

easily and exhaustively review the pattern in terms of general

concerns resulting in more comments (i.e. mitigation to the

problem P1) even if the moderator has less experience knowledge

or the participants have less knowledge.

Moreover at the same time some of items of the general checklist,

can be a good starting point to discuss in detail so that it leads to

some concrete comments rather than superficial ones (i.e.

mitigation to the problem P2). Especially the items in the

categories of “Being generative”, “Problem and solution” and

“Forces” are not simple Yes/No questions but profound ones

requiring deep insights and discussions resulting in concrete and

detail comments.

Drawback and countermeasure:

Drawbacks of CBR for WW and corresponding countermeasures

are as follows:

 In CBR, participants and a moderator might be satisfied by

just checking items in the given checklist superficially,

especially if the given checklist has many items to be

checked as shown in the figure 3; the participants and the

moderator might overlook some important concerns specific

to the give pattern or pattern language. Possible

countermeasure could be that the moderator reads the

pattern by using the checklist and summarizes answers for

questions of the items before the WW, and show

participants the summary at the beginning of the WW. Then

the participants can select few items or other open concerns

to be reviewed and discussed in detail during the WW.

 CBR might prevent participants from free and generative

discussions leading to significant improvements or new

patterns. Possible countermeasure is that the moderator

could set a free discussion time in which checklists are not

used.

 If the checklist to used is quite long, participants cannot

check all items in the checklist since the time for WW is

limited. Possible countermeasure is that a moderator selects

or prioritizes some items in the checklist before WW.

3.2 Perspective-Based Reading
Method:

Existing perspectives for reading software materials are applicable

to WW for software patterns and pattern languages, too. Such

possible perspectives include quality characteristics, use cases and

usage scenarios, and stakeholders.

 Quality characteristics: Any software pattern contributes to a

software product, process, or resource (such as

organizations). There are various quality models for

software such as ISO/IEC 25010 quality model [15] for

software products and IEEE Std 830-1998 Requirements

Specification characteristics model [16] for software

requirements. By using specific quality models, participants

can exhaustively discuss how the pattern contributes to

quality characteristics of the resulting software. For example

in [15], there are five characteristics (effectiveness,

efficiency, freedom from risk, satisfaction, and context

coverage) as quality in use and eight as internal and external

quality (functional suitability, compatibility, security,

reliability, usability, performance efficiency, maintainability,

and portability).

 Usecases and usage scenario: Participant could list up

possible usecases and their scenarios of the resulting

software, and discuss how the pattern contributes to that the

resulting software works well for these usecases by using

scenarios. Any pattern should contain at least one usecase

(and corresponding scenarios).

 Stakeholders of resulting software: There could be various

stakeholders involved in the resulting software, such as end-

users, customers, requirement engineers, designers,

programmers, testers, maintainers, quality engineers,

process engineers, and managers. Different stakeholder view

could reveal different concerns in the resulting software and

how the target pattern contributes to these concerns. Figure

4 shows possible checklists for specific stakeholders of the

resulting software based on existing checklists [17].

 Stakeholders of pattern: There are some stakeholders

involved in the pattern itself: the original author of the

pattern, authors of other existing or possible new patterns,

pattern communities, and potential users of the pattern (such

as software designers, programmers and maintainers for

design patterns). For pattern users, most of items of the

above-mentioned general checklist could be used to ensure

ID Category General item to be checked Source

G1 Being generative Does the pattern provide both a thing which is alive, and a process which will generate that thing? [9]

G2 Being generative Does the pattern imply an artifact? [10]

G3 Being generative Does the pattern bring many levels of abstraction? [10]

G4 Being generative Does the pattern leave inevitable mark on its application result? [10]

G5 Domain and scope Is the pattern grounded a certain domain and a part of a language? [10][12]

G6 Domain and scope Does the pattern have the right scope? [13]

G7 Domain and scope Is a target audience of the pattern clear? [12]

G8 Structure Does the pattern contain a pattern name, a context, a problem, a system of forces, and a solution? [11][12]

G9 Structure Does the pattern contain a resulting context, running examples and an acknowledgement if necessary? [12][13]

G10 Structure Does the form used fit the pattern content? [13]

G11 Structure Is the heart of the pattern (especially problem and solution) easy to access? [12]

G12 Problem and solution Does the problem and solution provide a big picture of the pattern? [13]

G13 Problem and solution Does the problem and solution match and fit together? [13]

G14 Problem and solution Is the solution strong in terms of capturing a big idea? [10][13]

G15 Problem and solution Does the pattern capture system hot spots? [10]

G16 Forces Does the pattern address both functional and nonfunctional issues? [10]

G17 Forces Does the forces explain what makes the problem difficult? [13]

G18 Forces Are forces highly visible regardless of the pattern form used? [12]

G19 Name and reference Does the name reveal the essence of its solution by noun phrase and meaningful meataphor? [12]

G20 Name and reference Does the pattern refer to other external patterns in understandable way? [12]

G21 Known uses and validation Is the pattern validated by use, preferably at least three times? [10][12]

G22 Acknowledgement Does the authors state their appreciation for their shepherd? [13]

G23 Terminology and notation Does the pattern use comprehensible terminology and figure notations? [12]

G24 Terminology and notation Is a glossary of terms provided? [12]

G25 Pattern language Is the pattern language summarized in its introduction? [12]

G26 Pattern language Is the summary of each pattern in terms of its problem and solution provided? [12]

G27 Pattern language Is the same running example used through the entire language? [12]

Figure 3. Draft of the general checklist for software patterns and pattern languages

that the pattern is useful for identifying problems, solving

the problem, facilitating communications among users, and

understanding software.

Perspectives could be used for both phases: preparation of the

WW, and the WW in operation. For both cases, the moderator

should define a list of perspectives, and assign different

perspectives to participants as much as possible. To proceed PBR

efficiently, it is better to prepare checklists corresponding to

perspectives selected.

Benefit:

Benefit of PBR for WW is that by assigning different perspective

to each participant, each participant can focus on the specific view

and find strength and weakness in detail resulting in concrete

comments rather than superficial ones (i.e. mitigation to the

problem P3).

Moreover different perspectives can yield hopefully full coverage

of concerns of the pattern (i.e. mitigation to the problem P2).

Drawback and countermeasure:

Drawbacks of PBR for WW and corresponding countermeasures

are as follows:

 The effectiveness of PBR significantly depends on selection

of appropriate perspectives to be used. A moderator has a

responsibility to select appropriate perspectives

corresponding to the target pattern and its domain.

Otherwise, the participants and the moderator might

overlook some important perspective specific to the given

pattern, or use some less important perspectives. For

example, the end-user’s perspective might not work well for

software architecture patterns since there could be a

significant gap between the end-user’s perspective (such as

functionality) and architectural design. Possible

countermeasure could be that the moderator could review

checklists corresponding to perspectives and decide whether

these perspectives fit the target before WW.

 PBR might prevent participants from free and generative

discussions. Possible countermeasure could be that the

moderator could set a free discussion time in which

participants can review and discuss regardless of their

assigned perspectives.

 If a checklist for a perspective is quite long, a participant

assigned to the perspective cannot check all items in the

checklist since the time for WW is limited. Possible

countermeasure is that a moderator (or the participant)

selects or prioritizes some items in the checklist before WW.

4. Experiment
To answer the above-mentioned three research questions RQ1-

RQ3, we conducted an experiment for clarifying benefits and

drawbacks of CBR/PBR for WW by introducing CBR and PBR

into a WW at the focused group of Software patterns and Agile at

IPSJ/SIGSE Winter Workshop 2015 on January 22-233.

4.1 Experiment Setting
As a target pattern for review, we choose “Enterprise Service Bus

(ESB)” pattern from our paper [18] since most of participants

know the concept of ESB somewhat. Moreover the paper was

originally workshopped in PLoP 2011 by using the traditional

WW form (hereafter “WW”) having one hour and seven

participants so that we can clarify the effectiveness of CBR and

PBR compared with the traditional form although the paper has

been slightly updated according to the result of PLoP 2011 WW.

There were six participants including two from us (i.e. the authors

of this paper). We divided them into the following two groups:

 CBR group: Three participants used the general checklist

shown in the figure 3.

 PBR group: Other three participants used three perspective-

based checklists shown in the figure 4. Each participant took

a different perspective: end-user, designer or tester.

Before the experiment, we only asked participants take a look at

the target pattern. Both groups spent one hour for WW with

application of CBR or PBR.

4.2 Experiment Result and Discussion
Figure 5 shows numbers of comments received at the original

WW in PLoP 2011, the CBR group and the PBR group. The

number of comments of CBR exceeded that of WW, while that of

PBR is almost same as that of WW.

8
15

9

3

6

1

0

5

10

15

20

25

WW CBR PBR

Superficial
comments about
description

Comments about
pattern content

Figure 5. Numbers of comments received in WW, CBR and PBR

3 http://wws.sigse.jp/2015/

Stakeholder ID Considerations

End user E1
Does the pattern contribute to satisfaction of needs

and requirements in the resulting software?

E2
Does the pattern contribute to revealing possible

users and user behaviors of the resulting software?

E3
Does the pattern contribute to ease of use of the

resulting software?

Designer D1
Does the pattern provide enough and consistent

information for design?

D2
Does the pattern contribute to adequate design

complexity of the resulting software?

D3
Does the pattern contribute to future extension and

maintenance of the resulting software?

Tester T1 Is the mechanism of the patttern solution reliable?

T2 Is the realization of the pattern solution easy to test?

T3
Does the pattern contribute to ease of testing of the

resulting software?

T4
Does the pattern provide enough information for

testing the resulting software?

T5
Does the pattern contribute to robustness of the

resulting software for any input?

Figure 4. Draft of checklists for stakeholders of resulting software

http://wws.sigse.jp/2015/

In below we summarize how the comments were received and

answer the research questions.

RQ1. Does the WW with application of CBR and PBR

contribute to more comments than the WW without CBR/PBR

in a limited time?

According to the figure 5, we confirmed that CBR contributed to

more comments than WW. By checking the checklist given, the

participants could indicate many comments in the limited time.

On the hand, PBR contributed to less comments than WW since

some of perspectives (especially the end-user’s one) were hard to

apply for the target pattern.

In summary, the answer is yes for CBR, and no for PBR. If

authors wish to receive comments as much as possible, CBR

could be a good solution.

RQ2. Does the WW with application of CBR and PBR

contribute to concrete and profound comments (i.e. non-

superficial ones) more than the WW without CBR/PBR?

In the original WW, there were three superficial comments such

as “This article has a good structure” and “There is no exact

example” although other comments were about the pattern content.

In the CBR group, most of the comments were about categories of

“Being generative”, “Domain and scope”, “Structure”, “Forces”

and “Name and reference”. Among them, there were some

superficial comments simply saying “Yes” especially about

categories of “Structure” and “Name and reference”. In contrast,

categories of “Being generative” and “Domain and scope” let the

group discuss the pattern content in detail; these comments were

not received at the WW without CBR/PBR.

In the PBR group, for all three perspectives, there were both

positive and negative (improvement) comments. It seems that all

of these comments except for one comment stating “This paper

give several figures making designer easy to understand” were not

superficial since each participant mentioned comments against the

pattern content from the viewpoint of given perspective. The

participants realized that for the pattern ESB, it was hard to use

the end-user’s perspective since there is a gap between systems

high-level architecture posed by architecture patterns like ESB

and end-users’ concerns such as functionality and usability.

The answer is yes for CBR, and yes/no for PBR. CBR is superior

to WW and WW with PBR since our general checklist contains

profound items requiring deep insights and discussions resulting

in concrete and detail comments. By choosing appropriate

perspectives according to target patterns, the effectiveness of PBR

regarding the quality of comments (i.e. profound comments or

superficial ones) is thought to be improved.

RQ3. Does the WW with application of CBR (and PBR)

contribute to reviewing and commenting on important

concerns more than the WW without CBR/PBR?

CBR and PBR revealed comments, such as “There could be

succeeding related patterns for implementing ESB in various

different contexts” by CBR and “Testing for the whole system

will be difficult” by PBR, which were not identified by the

original WW without application of CBR/PBR.

On the other hand, there were some comments only appeared in

WW without application of CBR/PBR, such as “Multiple ESB

servers can be considered”.

In summary it is hard to answer this research question by only the

limited experiment. Perhaps authors (and facilitators) could

specify important concerns according to their intentions such as

validating the target pattern, revising the pattern, or discovering

related patterns. According to such specification, WW participants

could focus on important concerns by preparing and focusing on

appropriate checklists and/or perspectives.

5. CONCLUSION
In this paper, we identified some possible problems that we

observed in traditional writer’s workshops (WWs). To address the

problems, we proposed an approach for introducing two major

existing software reading techniques, Checklist-Based Reading

(CBR) and Perspective-Based Reading (PBR), to the WW

targeting software patterns and pattern languages, and discussed

potential benefits and drawbacks. Moreover we confirmed

benefits and drawbacks of the approach by conducting an

experiment.

In the experiment, we used three selected perspectives and

checklists in CBR/PBR. In the future we will consider to refine

and/or extend the checklists by referring to other literatures and

conducting additional experiments. Moreover we will consider

using other perspectives and comparing them in terms of

usefulness and specificity to patterns and/or domains.

As another future work, we will consider the applicability of our

approach to any non-software patterns; that could lead to reveal

different perspectives. Moreover we will consider the applicability

of our approach to other pattern activities such as pattern writing

and shepherding.

6. ACKNOWLEDGMENTS
Our thanks go to shepherd Y C Cheng for very careful review that

improve this paper. We thank to participants (including Jonatan

Fernandez, Hideyuki Kanuka, Kosaku Kimura and Eiichi

Hanyuda) of the focused group of Software patterns and Agile at

IPSJ/SIGSE Winter Workshop 2015 for conducting the

experiment. Also we thank AsianPLoP’15 Writers’ Workshop

participants for their valuable comments.

7. REFERENCES
[1] Hillside Group, “How to Hold a Writer’s Workshop,” and

"Suggestions for a Successful Writer's Workshop,"

http://hillside.net/component/content/article/65howtorunplop

/235howtoholdawritersworkshop

[2] Richard P. Gabriel, "Writers' Workshops & The Work of

Making Things," Addison Wesley, 2002.

[3] James O. Coplien, "A Pattern Language for Writers'

Workshops," in Pattern Languages of Program Design 4,

Addison-Wesley, 2000

[4] IEEE Std 610.12-1990 (R2002), “IEEE Standard Glossary of

Software Engineering Terminology,” 2002.

[5] Keun Lee, "Development and Evaluation of Value-Based

Review (VBR) Methods," VDM Verlag, 2008.

[6] Thomas Thelin, Per Runeson and Claes Wohlin, “An

Experimental Comparison of Usage-Based and Checklist-

Based Reading,” IEEE Transactions on Software

Engineering, Vol.29, No.8, pp.687-704, 2003.

http://hillside.net/component/content/article/65howtorunplop/235howtoholdawritersworkshop
http://hillside.net/component/content/article/65howtorunplop/235howtoholdawritersworkshop

[7] Forrest Shull, "Software Reading Techniques," Encyclopedia

of Software Engineering, John Wiley & Sons, 2002.

[8] Forrest Shull, Jeffrey Carver, Guilherme H. Travassos, Jose

Carlos Maldonado, Reidar Conradi, Victor R. Basili,

"Replicated studies: building a body of knowledge about

software reading techniques," Lecture notes on empirical

software engineering, pp.39-84, 2003.

[9] Christopher Alexander, “The Timeless Way of Building,”

Oxford University Press, New York, 1979.

[10] Tiffany Winn and Paul Calder, “Is This a Pattern?,” IEEE

Software, Vol.19, No.1, pp.59-66, 2002.

[11] Deepak Alur, John Crupi, Dan Malks, “Core J2EE Patterns:

Best Practices and Design Strategies,” Pearson Education,

2001.

[12] Will Tracz, “RMISE Workshop on Software Reuse Meeting

Summary,” Software Reuse: Emerging Technology, IEEE

CS, 1988.

[13] Gerard Meszaros and Jim Doble, "A pattern language for

pattern writing," Pattern languages of program design 3,

pp.529-574, Addison-Wesley, 1997.

[14] Neil B. Harrison, "The Language of Shepherding: A Pattern

Language for Shepherds and Sheep," Pattern Languages of

Program Design 5, Addison-Wesley, 2006.

[15] ISO/IEC 25010: 2010 Systems and software engineering-

Systems and software Quality Requirements and Evaluation

(SQuaRE) - System and software quality models, 2010.

[16] IEEE Std 830-1998 IEEE Recommended Practice for

Software Requirements Specifications, 1998.

[17] Hiroyuki Okamoto, et al., "An Experimental Evaluation of

Individual Review Methods Focusing on Software

Requirements Specifications Characteristics," SQiP Study

Group Report, 2004. http://www.juse-

sqip.jp/workshop/seika/2004/6/6_report.pdf

[18] Eduardo B. Fernandez, Nobukazu Yoshioka, and Hironori

Washizaki, “Two patterns for distributed systems: Enterprise

Service Bus (ESB) and Distributed Publish/Subscribe,” 18th

Conference on Pattern Languages of Programs (PLoP), 2011.

http://www.juse-sqip.jp/workshop/seika/2004/6/6_report.pdf
http://www.juse-sqip.jp/workshop/seika/2004/6/6_report.pdf

