
1

How To Solve It: Patterns for Learning and Teaching Object-Oriented

Programming and Engineering Practices

Yu Chin Cheng

Department of Computer Science and Information Engineering

Taipei Tech, Taipei, Taiwan

yccheng@csie.ntut.edu.tw

Kai H. Chang

Department of Computer Science and Software Engineering

Auburn University, Auburn, Alabama

changka@auburn.edu

Abstract. How To Solve It is a previously published pattern for planning and teaching

a course on object-oriented programming (OOP). It has been successfully applied in a

number of OOP course offerings to undergraduate students of computer science and

software engineering. In this paper, refined patterns to support the main pattern

How To Solve It are presented. The patterns are presented with the intention that the

learner is the reader, though it can readily be applied by an instructor in planning and

teaching a course in OOP. Our most recent experience in applying these patterns in

teaching OOP as a second course to students outside of computer science and

software engineering is reported.

Keywords: object-oriented programming, engineering practices, heuristics for

problem solving, example design, classroom teaching and learning

1. Introduction

Practical problems are complex in nature. When developing programs for solving

practical problems, the developer combats the complexity by uncovering the

structure of the practical problem on hand. He then breaks it down into smaller

sub-problems, develops solution for each, and combines the solutions incrementally.

The solution scenario so described is at the heart of many popular software

development methods including the unified process [Lar2012], agile methods

[Bec2004], and so on.

To prepare students to develop programs for practical problems, a typical

curriculum of computer science (CS) and software engineering (SE) includes multiple

mailto:yccheng@csie.ntut.edu.tw
mailto:changka@auburn.edu

2

courses covering introduction to programming, data structures and algorithms,

object-oriented programming (OOP), software engineering, and capstone project.

However, a non-CS&SE curriculum typically offers no more than two courses, usually

just introduction to computer programming and object-oriented programming. The

former often covers procedure-based programming using a language such as C,

BASIC, FORTRAN, Python, MATLAB, etc. The latter builds on the former by covering

features of an OO language (e.g., C++, Java, Python, etc.) and object orientation

concepts. OOP has been the prevailing paradigm for the second course since it is

currently the most widely-practiced programming paradigm for developing practical

applications in the real world.

Here is the question: How do we prepare non-CS&SE students for their roles as

programmers in developing practical applications in OOP as the second course?

While teaching OOP to CS&SE students is not an easy task [Ber2000][Che2014],

teaching OOP to non-CS&SE students is even more challenging due to the limitation

imposed by curriculum. Furthermore, it is not enough to just cover language features

and OO concepts. Methodologies and engineering practices for iterative and

incremental development are also needed. However, covering the latter in a typical

way is out of the question, or at least will be extremely difficult due to the curriculum

limitations. Thus, it is necessary to narrow down to essential aspects that can be

covered in a limited time, e.g., one semester.

This paper presents five patterns that can be used to plan and teach OOP as a

second course for non-CS&SE majors under the umbrella (or skeletal) pattern called

How To Solve It [Che2014]. Details of pattern How To Solve It can be found in

Appendix A. The five patterns of this paper are written in response to the numerous

feedbacks with respect to [Che2014] from the shepherd and the participants of

Writers’ Workshop – Group A. In a nutshell, the main point is that How To Solve It

should be made a pattern language rather than a single pattern. Thus, the five

patterns of this paper are intended to cover the four phases of activities in How To

Solve It: understanding the problem, devising a plan, carrying out the plan, and

looking back. Also, pattern selecting and sequencing is applied throughout the four

phases since there is not enough time to cover all possible topics of OOP and

engineering practices in a one-semester course. The patterns are presented in a form

easy for the learners’ consumption. That is, the students should be able to take the

patterns and practice iterative and incremental OOP to develop practical applications.

Applying the patterns in course instruction, the instructor should first try to develop

3

long running examples with these patterns. This will contribute to the selection and

sequencing of the materials to be covered.

2. The Patterns

The patterns are presented in the following six-section format: the name (with

proper capitalization for ease of identification), the context, the problem, the forces,

the solution, and the consequences. The patterns are presented in the order they are

applied.

2.1 Understanding the Problem

Context: You are given a problem whose inputs, outputs, and constraints are given in

the problem statement. You do not yet know what will be involved in the

development tasks ahead. You have decided to proceed with iterative and

incremental development described in How To Solve It [Che2014].

Problem: Although the problem’s inputs, outputs and constraints are given, you

don’t know how they are related to each other. You know it would be difficult to

solve the problem in its entirety by considering all inputs, outputs and constraints

simultaneously, thus you have decided to proceed with How To Solve It. What should

you do to benefit from this decision?

Forces:

 A problem can be too large or too complex to solve in one round.

 The problem might have hidden aspects you don’t yet know.

 You don’t want to spend too much time analyzing the problem.

 You want to have a good grasp of the problem as a whole throughout the

development.

 You want to prioritize on the most important problems.

Solution: Break the original problem down into a number of smaller (sub-)problems if

necessary. This is similar to the heuristic of Decomposing and Recombining for

solving mathematical problems [Pol1957]. When there are many required outputs,

consider them separately. Decide what inputs and constraints are applicable for each

separated output. Each separated subset of outputs, inputs and constraints points to

a sub-problem within the original problem. Write down the problem statement for

each sub-problem. There are many ways to do this: use cases [Lar2012]; user stories

4

[Coh2004] [Pat2008]; framing the problem against known problem types [Jac2001];

and so on.

Identify the interactions between individual problems. If a problem closely

interacts with another problem, combine them. If the resulting problem is too big,

refine them into equivalent problems such that the strength of interaction is reduced

[Ale1964].

Put all problems in the problem backlog. Only problems in the backlog will be

solved, if they are solved at all. Prioritize the problems with pattern Selecting and

Sequencing. For the current round, select the problem with the top priority. Keep the

problem backlog up to date (Looking Back).

Problem decomposition in this pattern is related to but different from

divide-and-conquer, a technique that divides a large problem into two or more

sub-problems that are of the same type as the original problem, but smaller

[Cor2001]. In this pattern, the sub-problems are usually of different types; see

[Jac2001] for more details.

Consequences:

 The problem to be solved is better understood.

 A collection of problems, each of which smaller than the original problem,

is obtained.

 The original problem is solved piecemeal.

 Any problem to be solved goes through the problem backlog.

 A problem of high priority gets solved before a problem of low priority.

2.2 Selecting and Sequencing

Context: You are applying How To Solve It by going through the four phases of

Understanding the Problem, Devising a Plan, Carrying Out the Plan, and Looking Back

iteratively.

Problem: While so doing, there are often multiple items that attract your attention.

You could have more than one problem in the problem backlog and more than one

task in the plan. How do you decide which items to focus on next?

Forces:

 You want to pick an item to work on as you please.

 Since some of the items may be dependent upon each other, there is a

logical ordering that exists among these items.

5

 Some items may not need to be done at all.

Solution: Prioritize among the items. The dependencies among the items have been

identified in Understanding the Problem (if the item is a problem) and Devising a

Plan (if the item is a task). Logically, you should solve the problems by progressing

from the least dependent to the most dependent. But such a sequence may not be

what you want. In agile development, the customer gets to say which problems (i.e.,

user stories) have the top priorities and what the customer picks may not be the

most independent.

In our current context of learning and teaching OOP and engineering practices,

you may also need to go out of the logical ordering. Pedagogically, if solving an

independent problem seems less important than solving other more dependent

problems, you could choose to solve the more dependent problems first. But this

comes with a cost: the dependent problems can be solved only if we pretend that

the problems it depends on are solved. Usually, this involves writing code to separate

the dependencies.

 Some criteria are used while prioritizing the items. In the example of Section 3,

the instructor selects the top priority problem by considering what to cover next

among three categories of topics: methodology and engineering practices, language

and libraries, and object orientation. This is equivalent to selecting and sequencing

materials in learning technology [Che2009].

Consequences:

 Some overhead may be required if you go out of the logical ordering of the

items.

 You are able to spend your time on the most important items.

 An item of high priority, when implemented, can impose additional

constraints to the items yet to be implemented.

 You must have a set of well-defined criteria for prioritizing the items. Lacking

such leads to an unjustified preference to one item over the other items.

2.3 Devising a Plan

Context: A problem with top priority has been selected for solution from the

problem backlog. The problem statement has been written, and its inputs, outputs,

and constraints are specified.

6

Problem: Having understood how inputs, outputs, and constraints are related in the

selected problem, you are in a good position to start the implementation work for

solving the problem. However, you still need to consider other aspects in addition to

the implementation work, for example, what engineering practices to use and when

to perform?

Forces:

 You want to proceed with the development work in small steps.

 You don’t want to spend too much time analyzing the problem.

 You want to ensure that working solution is obtained after solving the

problem.

 You want to avoid reworking the problem as much as possible when you

solve another problem in a latter round.

Solution: Break the problem down into a number of tasks. Each task should be a unit

of work you are comfortable of handling and can be completed in a time frame

ranging from a few minutes to a couple of hours. The tasks should be as independent

as can be. Distinguish tasks of four different categories:

 Implementation: there will always be implementation tasks because you

have to write code to solve the problem. Distinguish normal cases from

exceptional cases.

 Integration: you want to make sure you have a working program at the end

of a round. Thus, include an integration task for the problem you are

solving. The integration task can be a number of acceptance tests prepared

according to the problem’s inputs, outputs and constraints.

 Learning: before you use something you have not yet mastered, you must

first learn it. Solving a problem gives you a clear context for learning. You

will know how much learning is enough (Carrying Out the Plan), but first

you need to know what to learn (Selecting and Sequencing). Search for

online resources (e.g., tutorials, code examples, etc.) to help you plan

learning.

 Rework: rework is an unavoidable part of iterative and incremental

development. You might have begun with a strategy to make the program

work. Later, however, when you learn an alternative way that seems to

better support the subsequent development, you may change to the

alternative way without changing the working program’s external behaviors.

Or, you might have discovered a bug in your program and decided to fix it.

Rework tasks are mostly associated with improvement items identified in

7

Looking Back.

Organize the list of tasks as follows. First, work out a list consisting of implementation

and integration tasks that constitute the essence in solving the problem (Selecting

and Sequencing). Refine the list with additional tasks. For each task, consider what

makes it difficult, if at all. If it involves something you don’t know, add a learning task,

e.g., learning a unit testing framework, learning to use a STL function, and so on. Or,

it can be that the existing code makes performing the task cumbersome. In this case,

add a rework task to fix the existing code, e.g., changing design, reorganizing project

structures, and so on.

Consequences:

 The problem selected for solution is understood from the implementation

point of view.

 Units of work are created and a plan of solution is obtained.

 Learning and rework are planned to take place alongside implementation

and integration.

 Selected engineering practices are factored in as part of the

implementation work.

2.4 Carrying Out the Plan

Context: You have obtained a list of tasks that must be performed for solving a

problem. You are ready to spend your time learning, coding, testing, refactoring, and

integrating. This is where you spend most of your time in a development round.

Problem: Except for sequencing of tasks identified in Devising a Plan, the tasks are as

independent as can be. Therefore, you have a lot of freedom. How should you go

about performing the tasks?

Forces:

 You want to finish the tasks in a timely manner.

 You are in the middle of performing a task but some other tasks seem more

appealing to you.

 You have yet to familiarize yourself with the language features, APIs, or

certain engineering practices that are needed for solving the problem.

 You want to make sure that implementation does not leave a lot of

technical debts.

8

Solution: Perform one task at a time. Since the tasks are as independent as can be,

you are free to perform them in an order that works best for you. Even so, there may

be some good ordering rules you should follow (Selecting and Sequencing).

For a task of implementation, follow the steps: write a unit test that fails and

then write code to make it pass [Bec2003]. By writing a unit test that invokes a

function, you are deciding the name of the function, the arguments it takes, and its

return type. This allows you to concentrate on implementing the body of the

function later.

If learning is required for an implementation task, learn just before

implementation. Learn with unit tests. For example, learn to use the standard

template library (STL) sorting function by calling it and checking the result within unit

tests. Budget learning by writing just enough unit tests for the features you need. For

example, assume that you use a class for the first time and you need a constructor.

Do you need to learn all the rules for declaring, defining and using a constructor? No!

Just focus on the ones you need by writing a unit test for exercising the specific

constructor. If you need other constructors, you can always identify them during

Looking Back.

For an implementation, integration, and rework task, make sure that all unit

tests pass before you complete it. Check in the code to the repository immediately

afterward.

Consequences:

 An individual task is completed in a small amount of time. Signs of progress

[Pol1097] are clear as you make your way through the tasks.

 The lead time from learning to coding is kept short by placing the

implementation task immediately next to the learning task. Thus, the

learning takes place just in time and with a clear objective.

 Learning is captured with unit tests. Later, when you need to recall what

you have learned, you can just look at the unit tests.

 Budgeting learning with unit testing is an instance of applying spiral

learning [Ber2000].

 Wastes associated with over-learning are avoided.

 Unit testing precedes implementation to drive design.

2.5 Looking Back

Context: You have written code and tests as required by the tasks that solve the

problem for the current round. Code compiles clean; all tests pass; and the program

9

seems to run as intended. In short, the problem appears to have been solved.

Problem: Having solved the problem of the current round, you have made progress

in solving the original problem. What are the new possibilities that open up given

this progress? Further, has the problem of the current round been solved without

hidden issues?

Forces:

 You want to move on to the next problem.

 You have a feeling that something in the solution is not good enough.

 You have just spent some length of time learning and writing code. You want

to reaffirm what you have achieved.

 You want to be aware of the new possibilities open up as a result of solving

problem of the current round.

Solution: Inspect the working program as a programmer/reviewer. Ask the following

questions: Is the code easy to read? Is there code duplication? Are the tests easy to

find and read? Is the code easy to modify? And so on.

Run the program as a user and explore. Does the program abort easily? Does it

crash easily? Is it easy to use? List any finding as an improvement problem.

Do a retrospective/review on the current adoption of engineering practices and

identify places where growth is possible. Are you writing unit tests? Are you writing

unit tests before implementation code? Is your code version controlled? Again, list

any finding as an improvement problem.

Re-examine the problem as a whole, taking into consideration the problems that

have been solved so far. In iterative and incremental development, it is important to

stay vigilant on the original problem to be solved as our understanding improves with

some sub-problems solved. Add any new sub-problem that is omitted previously.

Look for ways to reformulate the sub-problems in the backlog not yet solved.

Consequences:

 The current round ends with inspection. One of the things that upsets

development tempo is a development round that drags on and on.

 Improvement items are identified and posed as problems and are put in the

problem backlog to be weighed against other problems (Understanding the

Problem; Selecting and Sequencing).

 Validate just-in-time learning. If the problem includes a learning task, the

code written subsequently serves as evidence that the learning is completed

10

satisfactorily.

 Anticipate learning. An improvement problem may involve using new

language features (e.g., encapsulation with objects), APIs (e.g., using a

function or a container from the standard template library), changing design,

changing project structure, and so on. The identification of improvement

problem helps motivate learning new language features or engineering

practices.

 Understand the program better. Through inspection, you become more

familiar with the code you have written so far.

3. How to Solve It in action

This section presents the experience of running a course called, COMP3000 OOP

for Scientists and Engineers at Auburn University in fall, 2014. Most of the enrollees

majored in Wireless Engineering – Hardware, an undergraduate program offered by

the Department of Electrical and Computer Engineering.

The instructor planned the course following How To Solve It principles. The

problem was teaching OOP as a second programming course to non-CS&SE students

who knew C but probably did not program in the previous year. The objectives were

set as follows:

The instructor designed the first long-running example problem and wrote the

code. He decided to wait it out on designing the next examples, wanting to adapt the

latter based on how the course progresses. In designing the first example, he

followed the patterns in How To Solve It. Going through the process allowed him to

sequence presentations (Selecting and Sequencing), in particular, in Looking Back to

anticipate learning. It is worth mentioning that a lot of thoughts had to go into the

Understanding the Problem. The instructor had to have a problem that would be

unfolded well to anticipate the planned learning. As a result, the presentation

sequence largely happened as the actual course progressed as will be described

below.

The lectures were clearly tagged as one of three categories: methodology and

engineering practices, language and libraries, and object orientation (Selecting and

11

Sequencing). The lectures were threaded with a three long running examples that

involved computation with vectors, matrices, and convex polygons. Live coding was

demonstrated by the instructor in class with student participations. Code written in

class was made available to students. Homework assignments were built on the long

running examples and made use of the code released. The instructor maintained a

blog containing various articles related to the lectures [Che2014-2].

The lectures began with a one-hour introduction for How To Solve It. Then the

first problem for live coding was given:

Round 1. Proceeding with How To Solve It, the problem was divided into three

sub-problems as shown in Understanding the Problem.

The division into three sub-problems is straightforward and sought to make

contact with the students experience in procedure-based programming. Arguing that

problem P2 is the core of the problem (Selecting and Sequencing), the instructor

went on to list the tasks to be done (Devising a Plan).

With help from the students, the instructor produced code for T1 and T3 (the

happy path), followed by code for T2 (the exceptional path). T3 makes use of the

main function (Carrying Out the Plan). A working program is produced. The instructor

12

then reviewed the code with the students and ran the program. A single file

“main.cpp” contains all code. The function main has been used to run two tests and

displays something that required some deciphering as shown below.

The observation motivated adding Problem P4 to the problem backlog:

Round 2. The instructor convinced the class to select P4, which gave him an

opportunity to cover unit testing and exception handling (Selecting and Sequencing).

Note that the two topics are usually covered much later in an OOP course, which

means that the students don’t usually get enough unit testing and designing and

coding exception handling practice. The following tasks are listed:

The instructor proceeded to perform the tasks in the order listed. In task T3,

code of the function computeInnerProduct is relocated into a header (.h) file and an

implementation(.cpp) file. Task T6 took place after covering exception handling in T5

(Selecting and Sequencing).

The program structure grew from one file under one project to a three files

under the production project “InnerProduct” and two files under the test project

“ut”; see the left-hand side of figure below. The Code::Blocks IDE is used [Cod2013].

13

The two unit tests, which replaced the original tests in the main function, are

shown on the right-hand side. C-style string has been used as the exception object

thrown so that knowledge of C++ exception object was not required. The students

were told that same program structure would be able to support all further

development throughout the long running example. When executed, the console

display looks like:

In Looking Back, the instructor pointed out to the students the clutter-free

screen showing success. He further played with the program by making the unit tests

fail and showed the console output to convince the students the benefits of using a

unit testing framework.

The conclusion of round 3 marked the end of the second week.

Round 3. Problems P1 and P3 were combined into one problem and then solved

(Understanding the Problem; Selecting and Sequencing). In Looking Back, in order to

motivate the first introduction of object, the instructor invited the students to

14

inspect the code and identify code related to vector shown below.

The instructor showed the students how information of the vectors in the

program scattered around and some effort was required to understand the code:

dimension of vectors (line 7)

 pointer to array of doubles (line 8)

 creation of vectors (lines 14 and 15; code not shown)

 deletion of vectors (lines 22 and 23)

In particular, the programmer had to associate the dimension represented by

variable dim1 with the vector represented by variable vec1, dim2 with vec2, and so

on. As can be seen, the associations were made through naming conventions. Also, it

was easy for lines 22 and 23 to be forgotten, resulting in memory leak. The inspection

served to motivate learning a better abstraction through use of object. The instructor

proposed to add the following problem to the backlog:

Round 4. Problem P5 was tackled since it is the only one remaining. The program of

round 3 was refactored to change the representation of vector from using C array to

using C++ object. Here, the instructor carefully reviewed the structure of the

program with the students and listed the following tasks (Devising a Plan):

15

As can be seen, the change was pervasive. The tasks included learning object

representation (T0), implementation, testing, and rework. The instructor also took

this opportunity to demonstrate unit-test driven development in class, by doing T2

before T1, T4 before T3, and so on (Carrying Out the Plan; Selecting and Sequencing).

In Looking Back, the instructor reviewed the program (shown below) with the

students and compared with the previous code:

With the object representation, vector now appeared in only three different

locations:

 creating vectors (lines 12 and 13)

 passing vectors to computeInnerProduct (line 14)

Comparing with its predecessor shows that object representation was more concise

and easier to understand than the array representation.

Subsequent examples. The second problem was to compute linear transformation

(which is represented in a matrix) to vectors. The third problem was to compute the

16

area and perimeter of a convex polygon. Each of them was completed in three

rounds applying How To Solve It. Both problems were subject to the constraint to

reuse (and extend if necessary) the vectors of the first problem. In the case of

polygon, the vertices of the polygon were represented in vectors. The computation

of area and perimeter depended on sorting the vertices in the counterclockwise

order with respect to a reference point inside the convex polygon. The sorting was

done by making use of the STL function sort. The sizes of the programs of the three

examples increased with rounds as shown in Table 1. Note that the last program

released contains 1678 lines of code.

Figure 1. Sizes of programs (lines of code) in the eleven releases

Results. The students were polled for their responses to the questions regarding the

specific way the course was conducted using How To Solve It at the completion of the

course. The result can be found in Appendix B. Eight out of twenty-two students

responded in the survey. Overall, the result seemed positive. It is interesting to note

the respondents agreed or strongly agreed that they were comfortable in handling a

program of 1000 lines or more after taking the course, which was in sharp contrast

with their indication of being comfortable in handling a program of size 300 lines or

less prior to taking the course.

The actual allocations of time to methodologies and engineering practices,

language and libraries, and object orientation were 19.5%, 37.8% and 42.7%,

respectively. The instructor felt the allocations were appropriate. In particular, the

32 57

190
240

352

568

910

1250
1339

1521

1678

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9 10 11

releases
Lin

es o
f co

d
e

 (LO
C

)

program size by release

17

experience shows that it is possible to cover How To Solve It and engineering

practices within less than 20% of the lecture time. Thus, the instructor achieved what

he had intended in covering the essential methodologies and engineering practices.

Note that a significant number of respondents felt that more coverage of language

and libraries was necessary. In contrast, they felt that OO coverage could be reduced.

Given that most of the students had not programmed in the previous year before

taking this OOP course, the response was not surprising. Learning language features

remains a challenging task. Lastly, the students felt that they worked hard in this

course.

4. Conclusion

This paper presents the four steps of How To Solve It in the form of patterns.

They have been applied in teaching numerous offerings of OOP as a second

programming course in the past few years. Our experience has shown that How To

Solve It can be an effective way of teaching such a course. The exit survey conducted

at the end of the most recent offering appears to reaffirm our claim.

In continuing to expand the use of How To Solve It to other programming

courses, we plan to research in greater depth on Polya’s classic treatise. To us, the

Polya’s How To Solve It is a pattern language that educators can find inspirations in.

Also, it should be interesting to see how the How To Solve It patterns can be applied

together with the existing pedagogical patterns [Ber2000] and problem-based

learning [Kay2000].

Acknowledgements

We thank our shepherd Joe Yoder for his constructive comments which help

improve this paper into its current form, in particular, the inclusion of the pattern

Selecting and Sequencing. This work is supported in part by Auburn University.

Reference

[Ale1964] Alexander, Christopher. Notes on the Synthesis of Form. Harvard University Press, 1964.

[Bec2003] Beck, Kent. Test-driven development: by example. Addison-Wesley Professional, 2003.

[Bec2004] Kent Beck and Cynthia Andres. Extreme Programming Explained: Embrace Change

(2nd Edition). Addison-Wesley Professional. 2004.

[Ber2000] Bergin, Joseph. "Fourteen Pedagogical Patterns." EuroPLoP 2000.

[Che2009] Chen, Chien-Tsun, et al. "Delivering Specification-Based Learning Processes with

Service-Oriented Architecture: A Process Translation Approach." J. Inf. Sci. Eng. 25.5 (2009):

18

1373-1389.

[Che2014] Cheng, Y C, "Applying How To Solve It in Teaching Object-Oriented Programming and

Engineering Practices." AisanPLoP 2014.

[Che2014-2] Cheng, Y C, "How To Solve It: CPP.” http://htsicpp.blogspot.com/. Accessed 2015/1/6.

[Cod2014] Code::Blocks, An open source IDE for C, C++ and FORTRAN. Available from

http://www.codeblocks.org/.

[Coh2004] Cohn, Mike. User stories applied: For agile software development. Addison-Wesley

Professional, 2004.

[Cor2001] Cormen, Thomas H., et al. Introduction to algorithms. Vol. 2. Cambridge: MIT press,

2001.

[Jac2001] Jackson, Michael. "Problem frames: analysing and structuring software development

problems." (2001).

[Kay2000] Kay, Judy, et al. "Problem-based learning for foundation computer science

courses." Computer Science Education 10.2 (2000): 109-128.

[Lar2012] Larman, Craig. "Applying UML and Patterns: An Introduction to Object-Oriented Analysis

and Design and Iterative Development, 3/e." (2012).

[Pat2008] Patton, Jeff. "The new user story backlog is a map." http://www. agileproductdesign.

com/blog/the_new_backlog. Html. (2008). Accessed 2015/1/3.

[Pol1957] Polya, George. How to solve it: A new aspect of mathematical method. Princeton

University Press, 1957.

Appendix A: The umbrella pattern How to Solve It

One way to teach undergraduate students object-oriented programming (OOP) is to

develop programs for solving problems that are reasonably complex and which

require the use of engineering practices such as testing, refactoring, error handling,

version control, iterative and incremental development, and so on. In so doing,

side-by-side coverages of OOP and engineering practices are necessary. Since the

time available for classroom teaching is limited, several conflicting forces are at play

in such a context. Derives from George Polya’s classic on mathematical problem

solving heuristics [Pol1957], How to Solve It is a pattern that has been used to resolve

the conflicting forces in developing and using complex and long-running

programming examples for use in classroom teaching and learning of OOP and

engineering practices [Che2014].

Context: Undergraduate students with first experience of programming (e.g., those

who have programmed in a procedure language like C) move on to learn

object-oriented programming (e.g., with C++) in a course offering. The students have

http://htsicpp.blogspot.com/
http://www.codeblocks.org/

19

the capability of writing programs with sizes up to a couple of hundred lines of code.

They also have limited knowledge of engineering practices that are generally useful

in developing software.

Problem: How do we teach object-oriented programming and engineering practices

using reasonably complex examples?

Forces:

 Object-orientation is best learned with programs of a reasonable

complexity.

 Engineering practices are required to develop programs with complexity.

 A typical course offering in object-oriented programming has a limited

amount of time for lectures in class and practice outside class.

 Detailed coverage of language features can be time-consuming.

Solution: Prepare long running examples for use in class and guide students to

solving the programming problem incrementally and iteratively in four steps: (1)

understanding the problem, (2) devising a plan, (3) carrying out the plan, and (4)

looking back.

Consequences:

1. Iterative and incremental development is taught and learned through long

running examples and homework assignments that build on each other.

2. Learning of language features, object-orientation, and engineering

practices takes place in the specific context of solving the problem on hand.

3. Classroom coding with student participation.

4. In-depth learning now becomes the student’s responsibility.

Appendix B: Exit survey of a course at Auburn University taught with How To Solve

It

The pattern How To Solve It and the supporting patterns described in this paper were

used in the course “COMP3000 OOP for Scientists and Engineers” at Auburn

University in fall, 2014. The students were polled after the announcement of their

semester grades. Sixteen items targeting measurement of the consequences of the

pattern How To Solve It are included. In the order that the items appear, the survey

includes two items on program size (consequence 1), four items on allocation of

lecture time to topics (consequence 2), three items on classroom coding during

20

lectures (consequence 3), three items on the effectiveness of applying How To Solve

It in a long running example (consequence 1), two items on the engineering practices

of unit testing and refactoring (consequence 2), and two items on student efforts

(consequence 4).

21

