
Two threat patterns that exploit “Compromising applications 

using components with known vulnerabilities” and “Direct 

access to objects using uncontrolled references” 

vulnerabilities 

 
ROHINI SULATYCKI, Trustwave 

EDUARDO B. FERNANDEZ, Florida Atlantic University 

We present threat patterns that describe attacks against applications that take advantage of external components with known 

vulnerabilities or provide a direct object reference to an internal object and fail to control access to the object. These vulnerabilities 

might be introduced maliciously by an attacker or unknowingly by a developer and discovered later by an attacker. These patterns 

provide insight on how to build secure applications that use external components and are also helpful in evaluating the security of 

existing applications. 

Categories and Subject Descriptors: D.2.11 [Software Engineering] Software Architecture – Patterns; D.5.1 D.4.6 [Security] 

General Terms: Design 

Key Words and Phrases: Misuse patterns, security patterns, application security, vulnerabilities, exploits, direct object reference (DOR) 

1. INTRODUCTION 

The Internet has been developing very rapidly during the last decade. New technologies are being introduced at 

a rapid pace and applications are being built using new and emerging technologies. A key feature of application 

development is that that most applications are composed of one or more external components, i.e. components 

that have been developed by other teams. Some components might be open source software (OSS) and can be 

incorporated into an application without any cost.  Other components can be purchased from software vendors 

or outsourced. 

There are several advantages to using external components. Incorporating external components in an 

application can significantly help reduce the development lifecycle. However, it also brings new security 

problems. 

Additionally, applications available on the Internet are accessible to attackers and any flaws in the application 

can then be misused by an attacker to cause damage to an organization and its customers.  Dynamic applications 

often reference internal objects using identifiers or names.  For example, it is simple for a developer to use 

database identifiers as the object reference when accessing a database object. It is also convenient for a 

developer to use file names to reference a file in a parameter.  However, when these object references are 

available to an attacker and the application does not restrict access to these objects, the attacker is then able to 

access and misuse unauthorized data. These attacks are in most cases not detected by automated scanners and 

require manual testing. (Ghafari et al. 2012) 

Threat patterns combine the concept of threat libraries and taxonomies. Threat patterns provide an abstract 

pattern based threat taxonomy. Each threat is encapsulated in a threat pattern. Additionally, threat patterns 

provide a common vocabulary for software designers and implementers. These patterns reflect all the steps 

leading to misuses so several misuse patterns may be derived from one threat pattern. Threat patterns take 

advantage of specific vulnerabilities and can be described with respect to the corresponding vulnerability. We 

present two threat patterns that take advantage of: using components with known vulnerabilities and direct 

access to objects using uncontrolled references. 

Section 2 presents a template used to describe misuse/threat patterns (Fernandez2013). In Section 3, we 

present a threat pattern for application development, Compromising Applications using Components. In Section 

4 we present another threat pattern for application development, Insecure Direct Object Reference (IDOR). In 



Compromising Application using Components with Known Vulnerabilities: and IDOR Page - 2 

 

Section 5, we present some discussion on how threat patterns can be used, and in Section 6 we offer some 

conclusions and possible future work. 

2. TEMPLATE FOR MISUSE/ THREAT PATTERNS 

2.1 Name 

The name of the pattern should correspond to the generic name given to the specific type of misuse in standard 

attack repositories. 

2.2 Intent or thumbnail description 

A short description of the intended purpose of the pattern (what problem it solves for an attacker). 

2.3 Context 

It describes the generic environment including the conditions under which the attack may occur. This may 

include minimal defenses present in the system as well as typical vulnerabilities of the system. 

2.4 Problem 

From an attacker’s perspective, the problem is how to find a way to attack the system. The forces indicate what 

factors may be required in order to accomplish the attack and in what way; for example, which vulnerabilities 

can be exploited. 

2.5 Solution 

This section describes the solution of the attacker’s problem, i.e., how the attack can reach its objectives and the 

expected results of the attack. UML class diagrams show the system under attack. Sequence or collaboration 

diagrams show the exchange of messages needed to accomplish the attack. 

2.6 Affected system components (Where to look for evidence) 

The pattern should represent all components that are important to prevent the attack and are essential to the 

forensic examination. 

2.7 Known uses 

Specific incidents where this attack occurred are preferred but for new vulnerabilities, where an attack has not 

yet occurred, specific contexts where the potential attack may occur are enough. 

2.8 Consequences 

Discusses the benefits and drawbacks of a misuse pattern from the attacker’s viewpoint. The enumeration 

includes good and bad aspects and should match the forces. 

2.9 Countermeasures and Forensics 

It describes the security measures necessary in order to stop, mitigate, or trace this type of attack. This implies 

an enumeration of which security patterns are effective against this attack. From a forensic viewpoint, it 

describes what information can be obtained at each stage tracing back the attack and what can be deduced from 

this data in order to identify this specific attack. 

2.10 Related Patterns 

Discusses other misuse patterns with different objectives but performed in a similar way or with similar 

objectives but performed in a different way. 

 

3. COMPROMISING APPLICATIONS USING COMPONENTS WITH KNOWN VULNERABILITIES  

3.1 Intent 

Most applications are constructed using a combination of custom code and external components (open-source 

or closed-source). In many cases, the development team is not even aware of the all the components in use due 

to component dependencies. An attacker may take advantage of a known vulnerability or discover a vulnerability 

in a component to compromise the application. The compromise runs the gamut of the remaining OWASP Top 

10 ranging from remote code execution to injection (OWA10). 



Compromising Application using Components with Known Vulnerabilities: and IDOR Page - 3 

 

3.2 Context 

There are a number of open and closed-source components that are used by applications. These components can 

be created by anyone and published on the Internet. Additionally, component development can be outsourced 

or components can be purchased from third parties. 

3.3 Problem 

To perform some types of misuse it is necessary to identify an application using a component with a vulnerability 

known to the attacker. 

The attack can be performed by taking advantage of the following vulnerabilities: 

• There are a number of dictionaries that publish vulnerabilities in components.  

• It is possible to scan applications for component versions and identify the vulnerable components they 

use. 

• The emergence of vulnerability markets (Böhme, R. 2005) provides an economic incentive for 

researchers to search for and to disclose information on vulnerabilities. Additionally, vulnerability 

disclosure is seen as a status symbol for many security researchers. 

• Often when vulnerability is announced, exploit code becomes publicly available on the Internet or can 

be purchased from underground channels. 

• An attacker can create or purchase a malicious component and distribute it freely on the internet. (Crier 

et al. 2012) 

 

3.4 Solution 

When a user publishes a component on the Internet, anybody is able to use the component. In some cases the 

user will have to pay to use the component. This component might contain vulnerabilities that become publicly 

known. Additionally, exploit code for this vulnerability becomes publicly available. The attacker can now use this 

exploit code to compromise an application using the vulnerable component. 

3.4.1 Structure 

Figure 1 shows a class diagram for compromising application using vulnerable components.  

 

 

 
Figure 1. Class Diagram for Compromising Applications using Components with known Vulnerabilities Threat Pattern 



Compromising Application using Components with Known Vulnerabilities: and IDOR Page - 4 

 

3.4.2 Dynamics 

UC1: Publish a Malicious Component (Fig. 2) 

Summary: The attacker publishes a malicious component. 

 

Actor: Attacker 

 

Precondition: The attacker must have an account with the Provider 

 

Description: 

• The Attacker creates or purchases a malicious component from an underground channel. 

• The Attacker may also modify an existing component previously published by someone else. 

• The Attacker requests the Provider to upload the malicious component. 

• The Provider checks if the attacker (legal user) has an account. 

• The Provider uploads the component into the repository. 

• The Provider sends an acknowledgement to the attacker. 

 

Postcondition:  

A vulnerable component is created and placed into the Provider’s repository, so any other user can use it and 

get compromised 

 

 



Compromising Application using Components with Known Vulnerabilities: and IDOR Page - 5 

 

 
Figure 2. Sequence Diagram for the use case Publish a Malicious Component 

UC2: Unknowingly Publish a Vulnerable Component (Fig. 3) 

 

Summary: A developer publishes a vulnerable component unknowingly. 

 

Actor: Developer 

 

Precondition: The Developer must have an account with the Provider 

 

Description:  

• The Developer creates a component. 

• The Developer requests the Provider to upload the component. 

• The Provider checks if the developer (legal user) has an account. 

• The Provider uploads the component into the repository. 

• The Provider sends an acknowledgement to the developer. 

• A Security Researcher obtains the component from the repository. 

• The Security Researcher researches the component for vulnerabilities. 

• The Security Researcher publishes any found vulnerabilities to the vulnerability catalog. 



Compromising Application using Components with Known Vulnerabilities: and IDOR Page - 6 

 

 

Postcondition:  

A vulnerable component is created and placed into the Provider’s repository. A security researcher publishes 

component vulnerabilities to the vulnerability catalog.  

 

 
Figure 3. Sequence Diagram for the use case Unknowingly Publish a Vulnerable Component 

 

UC3: Compromise an application using vulnerable components (Fig. 4) 

 

Summary: An application using a vulnerable component gets compromised. 

 

Actor: User, Attacker 

 

Precondition: The user utilizes a vulnerable component in the application. This could be a malicious component 

uploaded by the attacker or a component that has known vulnerabilities. The application must be available to 

the attacker. 

 

Description:  

• The User requests the Provider for a component. 

• The Provider checks if the user has an account. 

• If the user is valid, the Provider sends the list of components 

• The user selects the vulnerable component. 

• The user then utilizes the component in an application and launches the application. 

• The attacker scans the application and detects the vulnerable component 

• The attacker either creates exploit code or finds exploit code for the vulnerability. 

• The attacker then compromises the application using the exploit code. 

 

Postcondition:  

The users application is compromised. 

 

 



Compromising Application using Components with Known Vulnerabilities: and IDOR Page - 7 

 

 
Figure 3. Sequence Diagram for the use case Compromise an Application using Vulnerable Components 

3.5 Consequences 

Some of the benefits of the misuse pattern are the following: 

 

• An attacker can open an account and register malicious components into the provider’s repository.  

• Open source repositories that contain components can be a way to distribute malware.  

• An attacker can get control of the infected system to obtain some confidential information. 

• The attacker might be able to expand the attack to other systems and obtain more confidential 

information.   

 

Possible sources of failure include:  

• The application may have defenses against the intended attacks.  

• The application may not be available for the attacker to exploit. 

• The exploit code may not work. 

• The infected system might be sufficiently firewalled to prevent the attacker from accessing other 

systems. 

 

3.6 Countermeasures 

Compromising application using components can be stopped by the following  countermeasures:  



Compromising Application using Components with Known Vulnerabilities: and IDOR Page - 8 

 

• If we have a component management system that controls access to components, track the origin of 

components, and provide scanners that detect and repair security violations. However, if there are many 

components it might not be possible to perform security testing of all components.  

• Verify the background of the user uploading a component; however, this is very hard to do. It might be 

possible to use a reputation monitoring system that aggregates feedback for a user across the internet. 

• Users can only retrieve components from verified providers.  

• Provide a system for applications to identify all components in use 

• Provide a system to monitor the security of all components in public databases, mailing lists, and 

security mailing lists, and keep them up to date. 

• Provide a system to monitor underground channels that sell exploit code and take down these channels 

as they are identified. This can be difficult to achieve since the code of starting a new underground 

channel is relatively low. 

• Require security testing of all components in use 

• Design applications using appropriate security methodologies (Uzunov et al. 2012). 

3.7 Forensics 

Where can we find evidence of this attack?  

• Providers can keep logs of the users that publish/retrieve components.  

• We can audit a compromised application.  

 

3.8 Related Patterns 

Misuse patterns for cloud computing: Malicious virtual machine creation [K Hashizume et al. 2011] 

4. DIRECT ACCESS TO OBJECTS USING UNCONTROLLED REFERENCES  

4.1 Intent 

Most applications utilize internal objects such as database and files as part of their functionality. In some cases, 

these internal objects are referenced directly through URL parameters and are referenced insecurely without 

proper authorization checks. A malicious user may take advantage of these insecure direct object references to 

access and manipulate unauthorized data (OWA10). This might lead to serious problems in business processes. 

 

4.2 Context 

Due to the expansion of the Internet, web applications are being developed using a variety of diverse 

technologies such as Java, .NET, PHP etc. Time, financial constraints, and lack of web developers' security 

knowledge vs. the rapid growth of technology along with increasing complexity in web attacks and hackers' 

tactics, have exposed web applications in many risks [Fonseca et al. 2009].  

 

4.3 Problem 

To perform some types of misuse it is necessary to identify an application that provides an insecure direct object 

reference for an attacker to misuse. 

The attack can be performed by taking advantage of the following vulnerabilities: 

• Often applications need to reference internal data e.g. database or file objects. It is convenient for 

developers to reference these objects directly using an internal identifier or name.  

• In some cases, the applications do not check for proper authorization before providing access to internal 

data  

4.4 Solution 

Web applications are being deployed to the Internet and are accessible to users. This application might provide 

an insecure reference to internal data. An attacker can misuse this exposure to compromise the application 

and/or other applications.  
 



Compromising Application using Components with Known Vulnerabilities: and IDOR Page - 9 

 

4.4.1 Structure 

 

Figure 5 shows a class diagram for the Insecure Direct Object Reference threat pattern.  

 

 

 
Figure 5. Class Diagram of the Insecure Direct Object Reference Threat Pattern 

4.4.2 Dynamics 

 
UC1: Compromise an Application with IDOR  (Fig. 6) 

Summary: The Attacker compromises an application with IDOR. 

 

Actor: Attacker 

 

Precondition: An application available to the attacker must provide insecure direct references to internal objects. 

 

Description: 

• The attacker requests unauthorized internal data. Since the application does not properly control access 

to internal data the attacker’s request is successful. 

• The attacker tries to modify the unauthorized data. Since the application does not properly control 

access to internal data the attacker’s request is successful. 

 

Postcondition:  

The attacker accesses and/or modifies unauthorized internal data.  



Compromising Application using Components with Known Vulnerabilities: and IDOR Page - 10 

 

 

 
                              Figure 6. Sequence Diagram for the use case Compromise an Application with IDOR 

4.5 Consequences 

Some of the benefits of the misuse pattern are the following: 

• An attacker can access and/or modify unauthorized data. 

• Some data might contain credentials to other applications. This can be used to compromise other 

applications 

   

Possible sources of failure include:  

• The application may not have permissions to access files on the file system.  

• Another module outside the application might enforce proper authorization controls. 

 

4.6 Countermeasures 

Compromising application with IDOR can be stopped by the following  countermeasures:  

• Use secure programming practices for development. 

• Require security testing of all applications before being made available on the Internet. 

• Design applications using appropriate security methodologies [Uzu12]. 

 



Compromising Application using Components with Known Vulnerabilities: and IDOR Page - 11 

 

4.7 Forensics 

Where can we find evidence of this attack?  

• The application web logs.  

• We can audit a compromised application.  

5. DISCUSSION AND CONCLUSIONS 

Designers need to understand first possible threats before designing secure systems. However, identifying 

threats is not enough; we need to understand how a whole misuse is performed by taking advantage of them. 

Threat and Misuse patterns appear to be a good tool to understand how misuses are performed. It is possible to 

build a relatively complete catalog of threats and misuse patterns for application security. Having such a catalog 

we can analyze a specific application and evaluate its degree of resistance to these misuses. The architecture 

(existing or under construction) must have a way to prevent or at least mitigate all the threats that apply to it. 

When potential customers use an application they must have assurance on what threat/misuses the application 

is able to prevent. Many providers do not want to show their security architectures; showing their list of misuse 

patterns would give them a way to prove a degree of resistance to misuses without having to show their security 

details. 

 

We can describe application security threats as patterns, which describe in a systematic way that application 

misuses are performed. We illustrated our ideas with a specific pattern. We are continuing developing misuse 

patterns for application security in order to create a relatively complete catalog for it that can be used by 

application developers. Finally, we intend to incorporate these patterns into a secure systems design 

methodology. 

ACKNOWLEDGMENTS 

We thank our shepherd Takashi Kobayashi for his useful comments. The National Institute of Informatics of 

Japan paid the expenses for the second author to attend AsianPLoP. 

 

REFERENCES 

 

R. Böhme, Vulnerability markets. What is the economic value of a zero-day exploit?  Proceedings of 22nd Chaos Communication Congress, 

(Berlin, Germany, dec. 27-30, 2005). 

 

F. Braz, E.B.Fernandez, and M. VanHilst, "Eliciting security requirements through misuse activities" Procs. of the 2nd Int. Workshop on Secure 

Systems Methodologies using Patterns (SPattern'07). 2008. 

 

E.B. Fernandez, J.C. Pelaez, and M.M. Larrondo-Petrie, "Attack patterns: A new forensic and design tool", Procs. of the Third Annual IFIP WG 

11.9 Int. Conf. on Digital Forensics, Orlando, FL, Jan. 29-31, 2007.  

Chapter 24 in Advances in Digital Forensics III, P. Craiger and S. Shenoi (Eds.), Springer/IFIP, 2007, 345-357.  

 

E.B. Fernandez, N. Yoshioka, and H. Washizaki, "Modeling misuse patterns", 4th Int. Workshop on Dependability Aspects of Data 

Warehousing and Mining Applications (DAWAM 2009), in conjunction with the 4th Int.Conf. on Availability, Reliability, and Security (ARES 

2009). March 16-19, 2009, Fukuoka, Japan 

 
E.B.Fernandez, “Security patterns in practice: Building secure architectures using software patterns”. Wiley Series on Software Design Patterns. 

2013 

 

J. Fonseca, M. Vieira, and H. Madeira, “Vulnerability & attack injection for web applications,” in Dependable Systems Networks, 2009. DSN ’09. 

IEEE/IFIP International Conference on, 2009, pp. 93 –102.  

 
K Hashizume, E. B. Fernandez, and N. Yoshioka, "Misuse patterns for cloud computing: Malicious virtual machine creation"", Procs. of the 

Twenty-Third International Conference on Software Engineering and  Knowledge Engineering (SEKE 2011), Miami Beach, USA, July 7-9, 2011 

 

Ghafari, M.; Shoja, H.; Amirani, M.Y. "Detection and Prevention of Data Manipulation from Client Side in Web Applications",  Trust, Security 

and Privacy in Computing and Communications (TrustCom), 2012 IEEE 11th International Conference on, On page(s): 1132 – 1136 

 

Chris Grier , Lucas Ballard , Juan Caballero , Neha Chachra , Christian J. Dietrich , Kirill Levchenko , Panayiotis Mavrommatis , Damon McCoy , 

Antonio Nappa , Andreas Pitsillidis , Niels Provos , M. Zubair Rafique , Moheeb Abu Rajab , Christian Rossow , Kurt Thomas , Vern  

Paxson , Stefan Savage , Geoffrey M. Voelker, Manufacturing compromise: the emergence of exploit-as-a-service, Proceedings of the 2012 

ACM Conference on Computer and Communications Security, October 16-18, 2012, Raleigh, North Carolina, USA 

 



Compromising Application using Components with Known Vulnerabilities: and IDOR Page - 12 

 

OWASP, “The Ten Most Critical Web Application Security Risks.” 2010.  

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project 

 
A. V.Uzunov and E.B.Fernandez, “An Extensible Pattern-based Library and Taxonomy of Security Threats for Distributed Systems”- Special Issue 

on Security in Information Systems of the Journal of Computer Standards & Interfaces.  2013.  http://dx.doi.org/10.1016/j.csi.2013.12.008      

 

A. V. Uzunov, E.B.Fernandez, and K. Falkner, “Engineering Security into Distributed Systems: A Survey of Methodologies”,  Journal of 

Universal Computer Science,  Vol. 18, No. 20, 2012, pp. 2920-3006. http://www.jucs.org/jucs_18_20/engineering_security_into_distributed 

 

M.I.Yague, ; A. Mana, J. Lopez, J.M. Troya,  "Applying the semantic Web layers to access control," Database and Expert Systems Applications, 

2003. Proceedings. 14th International Workshop on , vol., no., pp.622,626, 1-5 Sept. 2003 

 

 

 


