
Delivering Value with Confidence
“The Slack Time Pattern”

Joseph W. Yoder, The Refactory, Inc. – USA
Hironori Washizaki, Waseda University – Japan
Ademar Aguiar, FEUP, Universidade do Porto – Portugal

Many software development processes, such as agile and lean, focus on the delivery of
working software that meets the needs of the end users. Many of these development processes
help teams respond to unpredictability through incremental, iterative work cadences and
empirical feedback. There is a commitment to quickly deliver reliable working software that
has the highest value to those using or benefiting from the software. A key principle to the
long-term success of a project is to have confidence that changes will not break important
parts of the system. This is only done if there is time taken to build confidence into the
process and architecture. To assist with this, it is important to allow for “Slack Time” to
reflect on things learned and to experiment with ways to make things better. This paper will
focus on the “Slack Time” pattern as a key practice to help sustain Quality Delivery with
Confidence.

Categories and Subject Descriptors
• Software and its engineering ~ Agile software development • Social and professional topics
• Software and its engineering ~

General Terms
Agile, Sustainable Delivery, Patterns,

Additional Keywords and Phrases
Agile Software Development, Innovation, Reliability,

ACM Reference Format:
Yoder, J.W., Washizaki, H., Aguiar A., 2018. Delivering Value with Confidence: “Slack Time”. HILLSIDE Proc. of Asian
Conf. on Pattern Lang. of Prog. 7 (March), 7 pages.

Author's email address: joe@refactory.com, washizaki@waseda.jp, ademar.aguiar@fe.up.pt

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee, provided
that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific permission. A
preliminary version of this paper was presented in a writers' workshop at the 7th Asian Conference on Pattern Languages of
Programs (PLoP). AsianPLoP'18, March 1-2, Tokyo, Japan. Copyright 2018 is held by the author(s). HILLSIDE 978-1-941652-12-1.

Introduction
Many software development processes, such as agile and lean, focus on the delivery of
working software that meets the needs of the end users. Many development processes help
teams respond to unpredictability through incremental, iterative work cadences and empirical
feedback. There is a commitment to quickly deliver reliable working software that has high
value to those using or benefiting from the software.

Agile teams often focus on velocity and burndown as a way to measure success. It can
become difficult to sustain delivery with a good velocity as the software grows and becomes
more complex. Software projects can evolve quickly at first, but as the system grows, what
once seemed like an easy task can become much more difficult to implement and deploy with
confidence, specifically when there are many dependencies within the system.

There are practices that can be used during development to help sustain delivery at a good
pace while maintaining confidence in the system. Some of these are related to agile or lean
practices such as short delivery cycles, good testing, clean code, and continuous integration.
Small delivery size with regular feedback through incremental releases has proven itself over
the years and has become the de facto standard for most agile practices. Delivery of smaller
pieces involves getting regular feedback so that adjustments can be made to problems noted
earlier and fixed. Also, keeping your code clean by including refactoring and evolving your
architecture has become accepted as a key principle of most agile practices.

However, blindly following agile practices isn’t sufficient to help sustain delivering quality
software at a good pace with confidence. Quite often, system qualities, such as reliability,
scalability, or performance, are overlooked or simplified until late in the development
process, thus causing time delays due to extensive refactoring and rework of the software
design required to correct quality flaws. Other practices can help with this, such as reflection
time, finding ways to improve, and building quality into the process and product from the
start [YWA, YW, YWW].

If we deploy software more frequently, it is important to ensure stability and reliability in our
systems. The goal is to be able to safely and quickly release our software in a sustainable
way. Continuous Delivery and DevOps have focused on both automation and team practices
that can help with this. Automation and a good pipeline that gives confidence have proven
invaluable in helping sustain delivery with confidence.

However, to achieve long-term stability and confidence, it is necessary to develop ways to
minimize the risk that changes will not break important parts of the system, and if it does
happen, you know about it before they are released. This is only done if there is time taken to
build confidence into the process and architecture. To assist with this, it is important to allow
for “Slack Time” to reflect on things learned and to experiment with ways to make things
better. This paper will focus on the “Slack Time” pattern as a key practice to help sustain Fast
Delivery with Confidence.

.

Delivering Value with Confidence: “Slack Time” - 2

Slack Time

“The purpose of training is to tighten up the slack, toughen the body, and polish the spirit.”
 — Morihei Ueshiba

Image by Moondance from Pixabay

Successful software projects grow and become successful to the point where they receive so
many requests that many improvements are put on the back burner. Ultimately, the system
can evolve to the point where it can become very muddy and hard to maintain. A lot of time
can be spent trying to keep it working. Even small new features can cause things to break,
which can require a lot of work on putting out fires. The teams would like to innovate or find
better ways to build the system, possibly even innovating.

People on teams become very busy on projects dealing with everyday tasks of keeping
the system going and attempting to add new features. There seems to be no time to deal
with problems, reduce waste, or find ways to improve. How can teams improve or
innovate given these issues?

❖ ❖ ❖

Businesses can get very busy trying to meet the requirements, where there is barely time,
resources, or people to do what is needed to keep a project afloat.

Quite often, there is a culture in organizations that anytime we are not “focusing on the
project,” we are not generating value for the business, thus wasting time. This can lead to
people feeling guilty if they take time to think about other things or experiment with
something that is not immediately apparent to fulfill the goals of the project. In agile, aren't
we only supposed to work on tasks or features that are prioritized by the product owner?

Many organizations don’t provide the atmosphere or environment to be creative. This can be
a barrier to thinking and experimenting with new ideas.

Average companies get average people—it is the definition of average. Some people only
want to be told what to do and when to do it. They are not interested in improvements but
only in the minimum they need to do to get the job done.

Delivering Value with Confidence: “Slack Time” - 3

https://pixabay.com/users/elf-moondance-19728901/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=6684178
https://pixabay.com//?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=6684178

Some software qualities require significant expertise to ensure they are specified, designed,
implemented, and verified appropriately. If the focus is primarily on functionality, qualities
can be deemphasized and ignored until late in the development phase. Many qualities require
various expertise and this expertise is not always part of the agile team. If not enough focus is
emphasized on quality and part of the complete process, trying to add these later can often
lead to an unstable architecture that is hard to evolve and maintain.

❖ ❖ ❖

Therefore, allocate “Slack Time” to experiment, build quality into the system, and try
new things. Create an environment to support slack time for your teams.

Slack Time is crucial to innovate or to make any critical long-term improvements. Of course,
this is easier said than done. Often, teams want and say they will allow more time in the next
sprints or after the next release to do that needed refactoring or improvement, However, there
are many forces that often go up against teams finding slack time without making tricky
trade-off decisions, and often teams get stuck.

Successful innovators often take time to work on tasks that are less exciting than their great
ideas. It’s the mundane, less exciting jobs that really help make a project successful. Slack
time may give you the opportunity to do those mundane tasks that are still key to the success
of a project. These can often be little experiments where you try new ways to optimize the
process or ways to build confidence about what is being worked on.

If you primarily focused on just efficiency to get as many tasks done as possible, or there is a
lot of complaining about the delay of the last release, you do not have room to experiment.
Efficiency can be very seductive, as you believe you are finding the least expensive way to
do something. Tom DeMarco, in his book "Slack: Getting Past Burnout, Busywork, and the
Myth of Total Efficiency", points out that there is a danger in focusing too much on
efficiency, which can end up stifling the creative talent and reduce overall effectiveness
[DeMarco]. You might end up micro-optimizing the ways you do tasks, but you could be
missing a creative way that could be much better. This is similar to what Daniel Kahneman
talks about in his book “Thinking, Fast and Slow” [Kahneman]. There is value in both kinds
of thinking, and slack time allows for some “Slow Thinking” that can be quickly applied.

Those who work towards steady improvement know and understand the importance of having
time to think and experiment. It helps when you have time to reflect on experiences and think
about experiments to make things better. Unfortunately, many are not always capable of
learning from our experiences. This can be because we do not have time for allowing a new
process to mature and for new ideas to germinate. Slack time provides an environment and
free time that allows us to perform activities that had not been scheduled, thus allowing ideas
to germinate and to experiment with new ideas. It can also be used to address important
qualities that should be addressed to help with confidence in the system.

It can be useful to have slack spaces. This can help provide the environment and motivation
to spend time in activities we enjoy and that we can share with our colleagues. This space can
also help create the space or attitude for creativity.

Finding slack time or where to have our slack spaces can be a challenge in itself. Some like to
schedule it at the beginning of the day. Others like to schedule it at the end of the day, with a
secondary goal of helping to make progress in tasks that have been put aside and finish the

Delivering Value with Confidence: “Slack Time” - 4

day in a more relaxed way. You might need some slack in the middle of the day or when
working on a project and getting stuck. It can be useful to take a break, go for a walk, or do
something with others. Then you can come back invigorated with possibly new ideas. This
can lead to an aha moment where you stop thinking about the problem in detail.

Some think it is a good option to plan what they are going to do in their Slack Time and
space. For example, I know of one team that started their day with "Refactoring Exercises,"
doing a little cleanup before they got into the hectic part of the day. This is similar to stretch
exercises before you run or morning meditation, which can help with the rest of the day.

There are many ways that a team can create slack time. You can create slack time through
some of the following:

● Coding Dojos
● Training or Learning
● Morning exercises
● Open space
● Hackathons
● Google 20% time
● Going for a walk and/or playing games with colleagues
● Retrospective with time to reflect...but take action.

This list outlines some ideas you can try for creating Slack. There are, of course, many ways
you might consider given your organization and teams. When done right, slack time can lead
to positive consequences such as innovation, and building safety and confidence in the
process and system. Also, it gives room to try things that normally would never be attempted.
Additionally, slack time can be used to validate what you are doing or building and to find
good ways to build quality into the system and process.

However, there can be negative consequences associated with slack time. For example, in the
short term, it may appear you are not as productive. As time is spent experimenting or trying
different things, some may believe that time was wasted on not releasing important features.
Also, some might take advantage of slack time. They might use the time to goof off or to
procrastinate. Possibly, it becomes a catch-up time for email or browsing the internet. They
might use it to put off needed tasks they just do not want to do. When this is done, you will
not receive the benefits of slack time. It is important not to have too much slack.

Slack time can sometimes be misinterpreted as being lazy or not getting important tasks done.
However, this can often be seen as something similar to what some of us call the “lazy
programmer.” Some have said that lazy programmers are some of the best programmers. Not
lazy in terms of doing the right thing, rather a lazy programmer will avoid writing
monotonous, repetitive code, thus avoiding redundancy, which is the enemy of software
maintenance and flexible refactoring. They often find a way to do the same thing that an
average programmer can do in a fraction of the time, thus allowing more time to validate
what they are doing and experiment with better ways to solve the problem with confidence in
the solution.

Delivering Value with Confidence: “Slack Time” - 5

Summary

This paper presented the “Slack Time” pattern and the importance of allowing slack in teams'
schedules so they can reflect on things and experiment with ways to make things better. This
also allows teams to deal with uncertainty and with problems that arise during the normal
development process. Teams should never try to estimate at 100% capacity and need to buffer
some slack time into their schedules to deal with problems and to allow for teams to innovate.
This is not a new idea, but it often gets forgotten about in today’s environment, especially
with a focus on speed, which can lead to problems like poor quality and challenges in
managing change.

Acknowledgments

I’d (Joe) like to personally acknowledge Harada Kiro for all of the slack time and great
discussions we’ve had on this topic, I had while visiting Japan, and Shéhérazade Benzerga for
helping me outline my ideas into pattern form while on the train during a recent visit to
Germany. We’d also like to thank our shepherd, Yung-Pin Cheng, for his valuable comments
and feedback during the Asian PLoP 2018 shepherding process. Finally, we thank our 2018
Asian PLoP Writers Workshop Group for their useful comments and suggestions.

References

[DeMarco]

DeMarco T., Slack: Getting Past Burnout, Busywork, and the Myth of Total
Efficiency. New York: Broadway Books a division of Random House, 2002.

[Kahneman] Kahneman, D., Thinking, Fast and Slow. New York: Farrar, Straus and
Giroux, 2013.

[YWA]

Yoder J., Wirfs-Brock R., and Aguilar A., “QA to AQ: Patterns about
transitioning from Quality Assurance to Agile Quality,” 3rd Asian
Conference on Patterns of Programming Languages (AsianPLoP), Tokyo,
Japan, 2014.

[YW] Yoder J. and Wirfs-Brock R., “QA to AQ Part Two: Shifting from Quality
Assurance to Agile Quality,” 21st Conference on Patterns of Programming
Language (PLoP 2014), Monticello, Illinois, USA, 2014.

[YWW] Yoder J., Wirfs-Brock R. and Washizaki H., “QA to AQ Part Three: Shifting
from Quality Assurance to Agile Quality: Tearing Down the Walls,” 10th
Latin American Conference on Patterns of Programming Language
(SugarLoafPLoP 2014), Ilha Bela, São Paulo, Brazil, 2014.

Delivering Value with Confidence: “Slack Time” - 6

	Author's email address: joe@refactory.com, washizaki@waseda.jp, ademar.aguiar@fe.up.pt
	Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee, provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific permission. A preliminary version of this paper was presented in a writers' workshop at the 7th Asian Conference on Pattern Languages of Programs (PLoP). AsianPLoP'18, March 1-2, Tokyo, Japan. Copyright 2018 is held by the author(s). HILLSIDE 978-1-941652-12-1.

