
Deployment Patterns for Confidence

Joseph W. Yoder, The Refactory, Inc. – USA​
Ademar Aguiar, Faculdade de Engenharia, Universidade do Porto – Portugal​
Paulo Merson, Federal Court of Accounts (TCU) – Brasilia, Brazil​
Hironori Washizaki, Waseda University – Japan

Many software development processes, such as Agile and Lean, focus on the delivery of
working software that meets the needs of the end users. Many of these development processes
help teams respond to unpredictability through incremental, iterative work cadences and
through empirical feedback. There is a commitment to quickly deliver reliable working
software that has the highest value to those using or benefiting from the software. DevOps
has become a common practice to assist with quality delivery in these practices, specifically
when developing using the microservices architectural style. Delivery options have evolved
from the “big bang” approach to those that release new features, or small pieces of them,
more safely and reliably, i.e., with more confidence, through techniques such as
“Blue-Green” and “Canary” deployments. This paper will focus on these two techniques,
presenting patterns for each.

Categories and Subject Descriptors
• Software and its engineering ~ Agile software development • Social and professional topics​
• Software and its engineering ~

General Terms
Agile, Sustainable Delivery, Patterns, Deployment, Confidence,

Additional Keywords and Phrases
Agile Software Development, Continuous Integration, Continuous Delivery, Innovation, Reliability, Delivery, Deployment

ACM Reference Format:
Yoder, J.W., Aguiar, A., Merson, P., Washizaki, H., 2019. “Deployment Patterns for Confidence”. HILLSIDE Proc. of 8th
Asian Conf. on Pattern Lang. of Prog. (March), 9 pages.

Author's email address: joe@refactory.com, ademar.aguiar@fe.up.pt, pmerson@acm.org, washizaki@waseda.jp

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee, provided
that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific permission. A
preliminary version of this paper was presented in a writers' workshop at the 8th Asian Conference on Pattern Languages of
Programs (AsianPLoP). AsianPLoP'19, March 20-22, 2019, Tokyo, Japan. Copyright 2019 is held by the author(s). HILLSIDE
978-1-941652-13-8.

Introduction
Nowadays, applications are released more frequently, sometimes many times per day.
Deploying frequently helps organizations to be more agile by making changes that deliver
business value faster, which includes ways to rapidly experiment with new ideas, testing the
impact on the business, and quickly addressing any issues that arise.

DevOps as a software engineering practice unifies software development (Dev) and software
operation (Ops). To assist with quality delivery in these practices, you need to provide a
“Quality Delivery Pipeline” [Yoder18] to help assure the delivery meets the requirements and
proper validation and checks are done before releasing into full production. At the end of the
pipeline, the validated system will be deployed into production. There are various
deployment techniques to help successfully and reliably deploy more quickly. The goal is to
give confidence by providing "reliable, working software" to the user (making the user
confident in the system). Also, the teams will have more confidence that the system is
working.

Monolith architectures generally use a “big bang” deployment approach that updates most of
the application at one time, sometimes including database updates as well. This has been the
de facto release approach for decades. Big bang deployment approaches require development
and operations teams to do extensive development and testing before release, following a
ceremonial deployment process that often takes several days.

For example, day 1 of the deployment process could have a deadline for code commit, then
code would be built and deployed on a staging environment, acceptance tests would take
place until day 3, then a new build and deployment with all fixes would happen on the
staging environment, followed by final tests, and finally on day 4 we would have a go/no-go
decision and deployment in production. This big bang approach can be slow, error-prone
because of cumbersome branching and tagging, thus being less agile.

Feature toggles have become popular with “big bang” deployment to help address some of 1

these problems, especially with reliability. With feature toggles, you can enable or disable
features at runtime. This is especially useful for releases where new features might cause
issues, thus you can turn off a specific feature and address the eventual issues more quickly.
However, this approach is limited to features that can be disabled temporarily, and there are
still maintenance issues with using feature toggles, and quite often the toggles become a
legacy to the system. This is often because the toggles are not prioritized to be removed from
the system after they are no longer needed.

The challenges in any type of deployment are that if you break something, the deployment
could negatively affect reliability or customer experience. Another scenario would be that
you are testing new features with end users, and unstable new features would negatively
affect regular users while power users would want to have them (e.g., stable versus beta
versions), so you have parallel development streams. Therefore, having alternative
deployment techniques for releasing can provide many benefits. Deployment techniques in
modern software development that have recently become more popular are blue-green
deployment and canary deployment.

Blue-green deployment is where you have two “almost” identical environments. One is
always live. You release to the non-live environment and validate the release with testing.
After verification, you switch all traffic to the newly released environment, and the previous
environment is idle and available for rollback or a new release. Canary deployment deploys a
new application code in a limited part of the production area, visible to a small subset of the

1 https://en.wikipedia.org/wiki/Feature_toggle
“Deployment Patterns for Confidence” - 2

users. You then have these users test and validate the application; if there are no problems,
the system is gradually rolled out to the rest of the users.

This paper will start out by looking at the “blue-green deployment” and the “canary
deployment” patterns and how they assist development teams in more reliably releasing more
quickly with confidence. The context and the forces for these patterns have similarities as
they are both addressing deployment issues. However, there is a variance in the problems
they are addressing. Therefore, the patterns duplicate these similar contexts and forces,
though some forces have been added as they relate to the different patterns.

Note that there are other patterns related to deployment, such as Rolling Deployment, Chaos
Monkey, and Feature Toggles. These could also be written up as patterns, but are not
discussed in detail in this paper.

“Deployment Patterns for Confidence” - 3

Blue-Green Deployment ​
​ aka Red-Black or A/B Deployment

You are doing continuous delivery [Humble10] as part of DevOps by making deployment as
automated and quick as possible. You are releasing to a live environment that has potentially
many users.

How can we deploy reliably and with confidence without negatively impacting many
users?

❖ ❖ ❖

Building and releasing into production environments may require several steps, such as
transferring and replacing deployment artifacts (e.g., executable files, JAR files, Docker
images), updating property files, altering database structures, and reconfiguring infrastructure
elements (e.g., message routing in an API gateway). This process can be tedious and
error-prone.

Automating the testing and deployment process is challenging due to its complexity and
uncertainty, thus requiring a lot of expertise and effort.

Lack of validation or testing of your release can be dangerous and costly.

It can be expensive to duplicate the entire production environment. Any other alternatives
will be only a simpler replica, possibly not emulating all the issues of production.

New releases have various risks that can negatively impact the business (e.g., loss of funds),
if problems arise. New releases that cause problems need to be rolled back quickly and
reliably.

❖ ❖ ❖

Therefore, when releasing, have two environments that are nearly identical. One is the
live environment. Release into the non-live environment, after validating the release,
switch all network traffic to the new environment, disabling the previous live
environment.

This type of deployment process is referred to as “blue-green deployment”. Blue-green
deployments require two nearly identical production environments (called "blue" and
"green") where deployments are made The two environments can be, for example, two
physical or virtual machines, two nodes on a Kubernetes cluster, to mention a few.

At any time only one of the blue-green environments is live. For example (see Figure 1), let's
say the green environment is currently being used for live production. When you have a new
release, you deploy your system and do your final testing in the other (blue) environment.

“Deployment Patterns for Confidence” - 4

Once the software is working in the new environment (blue), you switch all live access so
that all incoming requests now go to the newly tested (blue) environment. The previous
production environment (green) is now idle and ready either for a rollback, for emergency
use, or for the next release. As you have new releases, you continue to switch back and forth
between the blue and the green environment.

Figure 1: Blue-Green Deployment

Switching the live version from v1 to v2, or rolling back from v2 to v1, can still be
complicated, as we should allow requests currently being processed to finish successfully
before the transition. Your design might handle this through some replication and ramped
release strategy, or possibly putting the systems into a read-only stage during the transition.

Advantages of Blue-Green Deployments

Foremost, blue-green deployment significantly decreases the downtime for rolling out a new
version.

Blue-green deployment enables quick version rollback: after deploying to one environment, if
a problem is discovered, you can easily switch back and start using the previous environment.
You may have to clean up some transactions that happened during the rollout of the failed
environment.

With blue-green deployments, you always have a backup environment ready in case the
production environment becomes unavailable. Having the two environments may also allow
independent maintenance of the infrastructure. For example, let’s say blue and green
environments are two separate VMs. When blue is active, you may perform upgrades to the
green environment VM. Then, when green becomes active, you can perform the upgrades on
the blue environment VM. The application is not affected.

Disadvantages of Blue-Green Deployments

Blue-green deployments require organizations to have two identical sets of production
environments, which can lead to significant added costs and overhead without actually
adding capacity or improving utilization. As an alternative, there are other strategies that can
help, such as canary or rolling deployments. Canary deployment releases the new system to a
small, limited number of users, while rolling deployment staggers the rollout of new code
across servers, usually to a server with a limited number of users first.

When the new version requires database schema changes and/or data migration, employing
blue-green poses an additional design challenge. There are two main alternatives:

“Deployment Patterns for Confidence” - 5

●​ When there is a single centralized database, make the database structure changes
backward compatible. That is, the old code will be able to access the new database
structure. Complementarily, the new version code should be backward compatible,
that is, the new code will be able to access the old database structure.

●​ Make each version access a separate database (separate DB server or separate logical
space/owner within the same DB server). In this case, the data is replicated across the
old version DB and the new version DB. Therefore, a data synchronization
mechanism must be established. This is an eventual consistency setting that has the
additional drawback that an application may consume stale data.

Blue-green deployment can be problematic when the new version contains API changes that
make old client applications incompatible. In this case, we might need an interceptor placed
between the clients and the old and new applications to perform message transformations to
deal with the API changes.

* * *

Blue-green deployment can use feature toggles to emulate a form of canary deployment, by
toggling on/off certain features for certain user roles.

Blue-green deployment can be used in conjunction with canary deployment. In other words
,you can push the new release completely to the second environment. And then route selected
users from the first environment to the second environment in a canary fashion.

“Deployment Patterns for Confidence” - 6

Canary Deployment ​
​ aka Staged Deployment

​

You are doing continuous delivery as part of DevOps by making deployments to different
environments as automated and as quick as possible. You are releasing to a live environment
that has potentially many users.

How can we get feedback on the new release, verify if it is working properly, and get
early reactions from users?

❖ ❖ ❖

Building and releasing into production environments can be tedious and error-prone.

Automating the testing and deployment process is challenging and requires a lot of expertise.

Lack of validation or testing of your release can be dangerous and costly.

New releases have various risks that are important to validate before release to all users.

New releases made available to all users can severely hurt the confidence on the application
and negatively impact the business if they are flawed,

❖ ❖ ❖

Therefore, first deploy the change to a limited number of users or servers to test and
validate the release. This could include verifying the release works properly and/or
getting acceptance feedback from your users. After you have validated the release, roll
the change out to all servers or users.

This limited release is called Canary Deployment. Canaries were used in coal mining as a
warning system, making sure there were no toxic gases before miners entered the mine. In a
sense, we are doing the same thing with Canary Deployment. Before releasing to a wide
audience, the system is first deployed to one or more canary servers (see figure 2). These
might be for trusted internal users. After the release is validated, make it available to other
users and servers. Validation includes getting feedback from canary users and also monitoring
runtime properties of the new version. If significant flaws are found, the release of the new
version to all users is cancelled.

“Deployment Patterns for Confidence” - 7

Figure 2: Canary Deployment

Advantages of Canary Deployments

Canary deployment allows finding problems before they are pushed out to all users. These
problems can be bugs in the new release, unsatisfactory latency or throughput, poor user
experience, security breaches, among others. The final result is improved quality of new
releases.

Disadvantages of Canary Deployments

Canary deployments require you to control what users see of the canary release and hence
require a supporting infrastructure for moving users from the main system to the canary
system, and vice versa. This supporting infrastructure has to be configured and governed, and
may include routers, network proxies, authentication mechanisms, and configuration files.

The canary deployment represents a delay in the rollout of the new release to general users.

Similar to blue-green deployment, canary deployment incurs the cost of having two
production environments.

Alternatives to Canary Deployments

An alternative to canary deployment is to deploy the new version to everyone with feature
toggles turned off for the new features. Then you selectively enable features for different
users. As you validate the release, you increase the number of users' access to the new
features. This approach requires a special implementation using “feature toggles” combined
with canary user identification.

* * *

You can also use blue-green deployment to push the release out to the green server for
example, and then only move a few users from the blue server to the green server for the
canary deployment. Then, as you validate the releas,e you can move more and more users to
the green server.

“Deployment Patterns for Confidence” - 8

Summary

The deployment of software applications and microservices to network servers and cloud
infrastructure can use different approaches. As usual, no single approach is best for all
instances. There are tradeoffs to consider, and you can use variations or a mix of deployment
strategies. For example, you could use feature toggles with canary and/or blue-green
deployment strategies. Big-bang can use feature toggles to get a canary effect. You can use
blue-green for patching a canary version before general release. You can also use feature
toggles with blue-green for a canary effect.

Acknowledgements

We’d like to thank our shepherd, Michael Weiss, for his valuable comments and feedback
during the AsianLoaf PLoP 2019 shepherding process. Finall,y we’d like to thank our 2019
AsianPLoP Writers Workshop Group, Yuki Kawake, Kai Chang, Ed Fernandez, and Yu Chin
Cheng for their valuable comments and suggestions.

References

[Yoder18] Yoder J., Aguilar A., and Washizaki H., “Quality Delivery Pipeline,” 12th
Latin American Conference on Patterns of Programming Language
(SugarLoafPLoP 2018), Valparaíso, Chile, 2018.

[Humble10] Humble, J. & Farley, D. Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation. Addison-Wesley, 2010.

“Deployment Patterns for Confidence” - 9

	Author's email address: joe@refactory.com, ademar.aguiar@fe.up.pt, pmerson@acm.org, washizaki@waseda.jp
	Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee, provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific permission. A preliminary version of this paper was presented in a writers' workshop at the 8th Asian Conference on Pattern Languages of Programs (AsianPLoP). AsianPLoP'19, March 20-22, 2019, Tokyo, Japan. Copyright 2019 is held by the author(s). HILLSIDE 978-1-941652-13-8.

