Of Steers and Peers

by Danny Dig

University of Illinois at Urbana-Champaign

dig@uiuc.edu

Background

Pair-programming is a style of programming where two programmers collaborate to solve a software problem. They share a single keyboard, mouse and display and take turns on writing code. Empirical studies [StrenghteningTheCase] and interviews [Wiliams99] have shown that pair-programming improves productivity and quality of code and the pair has more confidence in their solution. Most programmers who tried it enjoyed it. When asked whether or not they would choose to do pair-programming instead of solo-programming again they favored pairing.

Although some form of pair-programming is as old as the history of programming (it has been used when debugging difficult parts of code) with the advent of agile processes like eXtreme Programming (XP) it became the norm for developing all code. By continuously shifting the partners, a shared knowledge about the system under development is spread among the developers. However, XP gives little or no recommendation on how to rotate pairs.

The following sections bring into light some of the social aspects involved in Pair Programming. They come into pairs (again) of anti-patterns and the resolved pattern. Even though the anti-patterns might sound reasonably good to follow, the experience proves that following them is self-destructive.

The Bull and the Calf

[image: image1.jpg]

AKA

Asymmetric Pair Programming, The Big-Gun and the Pistol or Laurel & Hardy comedy.

The name of this antipattern comes from the everyday life of the peasant. Anyone who did plowing with oxen knows that unless both animals pull with the same strength, the plowing line is not straight. The author himself had the “privilege” to experience plowing with animals and can testify that the worse one was the tentative to have a cow and a horse pulling the plow.

Anecdotal Evidence

- I don’t know what’s wrong with Zeke. Although he’s in the company for some time it looks like he is always behind of the team. When it happens that he’s on time usually somebody else must clean the code after him.
- Yeah, I noticed that too. But have you noticed that Julie is always on top of the things – she is by far the best programmer in the company. Let’s put Julie and Zeke do pair-programming for a week and see if Zeke gets any better.
Or
-Chris, why don’t you pair with the guy who got hired recently? Yes, he is a newbie but you are the most expert here. If you guys do lot of pair-programming he’ll be able to catch up with the team soon.

 The Problem

Your team is practicing pair-programming (hopefully some other practices from the XP repository). How do you maximize the efficiency of the pair while ensuring the maxim transfer of knowledge among the developers?
Therefore, (supposed solution)
Put together a novice and an expert in the same pair. The novice will learn hands-on from the expert. Also it will “force the senior to think aloud; this often exposes gaps in thinking” [XP Explored]. The novice will ask lots of questions and he might ask the right question which may save an hour’s work or a day’s work.

Symptoms and Consequences

When practiced day-by-day this approach could reduce the efficiency of the pair to a level comparable with that of the less experienced partner. According to the “Law of chain”, the weakest link in the chain will determine the strength of the chain. Very soon the partners will begin to step on each other’s toes every other second. When the expert “drives” the code, he is slowed down by replying to the tons of questions (some of them even simplistic) from the novice. After a while he would display signs of irritation and not respond at all or reply only evasively. At this moment the novice will stop asking questions and thus will shut down the transfer of knowledge. When the novice drives the code, the expert will interrupt so often that he will almost dictate the code to be written. This will make the novice driver feel inferior while the expert partner would feel it is only a waste of time to dictate the other one what to type in. As a result both members of the pair feel frustrated.

With the unhappy partners the quality of the code will not be better than when the expert does solo-programming. On the contrary, the quality of the code could be lower due to the frequent interruptions which the novice arises.

Also the productivity of the pair (measured in elapsed time to accomplish a certain programming task) could be lower than of the expert doing solo-programming.

When any of the symptoms listed above occurs, the pair will blame the pair-programming practice for their unhappiness. Without the ability to see the benefits of pair-programming the pair will revert to old habits of solo-programming (lonely wolf).

If the last two symptoms occur simultaneously it is a waste of financial resources to pay two guys for doing the same work which could be done by one of them in the same amount of time and with the same quality. The management would render pair-programming as not profitable at all and in consequence will forbid this practice.

Typical Causes

In every symbiotic system both entities must contribute to the wellness of the system. The incapacity of the novice (the calf) to fulfill his duties in the pair will render this asymmetric pair-programming as being counter-productive. While one programmer

drives the code the other one is supposed to be actively engaged in design and code review, come up with alternatives and new ideas and generally do more of a strategic thinking. If the expert (the big-gun) is the driver, the novice might contribute almost nothing to this strategic thinking. When the novice is the driver, because of his lack of confidence he will continuously wait for the expert to dictate what to type in.

Known Exceptions

In a teaching environment it is normal that an expert pairs with a newbie. In order to get the most out of the mentoring session the weaker partner should do most of the driving. This resembles the experience which one encounters when taking instrument lessons. The pupil plays the instrument while the teacher suggests what musical parts should be insisted upon and what techniques to be improved. But in a software production environment having the experts consistently paired up with novices is counter-productive and will lead inevitably to the “Bull and the Calf” symptoms.

Refactored Solution

The solution is called Peer-Programming. In order for the pair to “jell” the members of the pair should feel and think of each other as being equal.
Peer Programming

[image: image2.jpg]

The Problem
Your team is following the pair-programming practice. Besides being proved to improve the code quality, other major benefit of the practice is the spread of knowledge among all team members. What’s the most optimal way to pair up programmers such that both productivity and transfer of knowledge are maximized?
Solution
Both guys in the pair should be at similar levels of expertise, or at least they should think of each other as being somehow equal.

When both guns are the same caliber, or both guys pulling the yoke are the same size amazing things happen. The synergy creates a body with two minds and four eyeballs. The momentum pushes the pair to reach far beyond of what any of them could accomplish individually. The result is greater than the sum of its parts. [Maxwell] tells a story about the horse-pull at a country fair. That’s an event where horses compete to see which one can pull a sled with the greatest weight. One year the champion horse pulled 4,500 pounds followed by the runner-up who pulled 4,400. Somebody had the idea to yoke them together and see what they can pull. They pulled more than 12,000 pounds – an increase of more than 33% of their individual efforts. There is tremendous power in unity, but in order for the power to be unleashed in a pair-programming session both halves have to be the same caliber. One could argue that if the peers are at the same level they could not learn from each other.

One of the purposes of pair-programming is to spread the knowledge about the system. In respect to this purpose the fact that pair members are at the same level does not impede this spreading of information. As for the purpose of acquiring new technical skills from other members of the team, even if the pair is at the same level they are not identical. On the [Ward’s wiki], somebody wrote: “The point is not that they are identical (or even very similar) in skill, but that they view each other as equals. This is to promote collaboration and reduce frustration.” Each partner has its own technical profile and by pairing together they can still learn from each other. Next section tells more about this topic.

Variations

Alternately, pairs could be made up of partners who are not necessarily at the same level, but are one level apart. This will ensure that the technical skills of experts will circulate around the whole team while avoiding the effects of “The Bull and the Calf”. The 80-20 principle (known as Pareto’s law) expressed in a management context states that 20% of a person's effort generates 80% of the person's results. For the effective use of resources one has to distinguish the right 20% from the trivial many. This principle has been observed to hold true in many human activities. When it comes to passing the technical skills across the different competence levels in the organization, the most effective way is to pair up the experts with the first 20 percent programmers situated under their level. Those programmers will pass the knowledge to the next level underneath them and so on.

Example

In [StrengtheningTheCase] Ron Jeffries tells one of his pair-programming experiences. He was working with one of the juniors in the team and thought that he will teach this youngster how things should be done. Soon he discovered that the junior was questioning why he was doing things a certain way and then began correcting syntax errors and suggesting what to do next. Jeffries concluded that pairing with the junior was a good experience. However, Jeffries said that they were working on a straightforward task. For that type of problem it made no difference whether or not the partner was experienced – after all, the junior should have not been hired at all if he didn’t know how to solve even simple problems. But things would have been different had they worked on something not trivial. Everyone who practice pair-programming knows that most of the times pairing makes him a better programmer while other times the pair just does not work well together. While there can be other reasons why the pair does not jell well, a common case is that the members are too many levels apart.

Related (anti)patterns

There are cases when even though both partners are at the same level, the pair does not jell well. The Extrovert and the Introvert could be just another reason why the pair does not get well together. The key ingredient for a proper functioning of the pair is that both partners contribute equally. The introvert tends to feel intimidated by the extrovert thus he will refrain from making active contributions when the extrovert is driving.

Note: in a following version there would come another pair of antipattern, namely “The Extrovert and the Introvert” and a resolved pattern (I am still looking for a good name for the resolved pattern).

References

[StrenghteningTheCase] Laurie Williams, Robert Kessler, Ward Cunningham, Ron Jeffries,

Strengthening the Case for Pair-Programming

[Williams99] Laurie Williams, Pair Programming Questionnaire

[Kindergarten] Laurie Williams, Robert Kessler, All I Really Need to Know about Pair- Programming I learned in Kindergarten

[XPExplored] William C. Wake, Extreme Programming Explored

[Maxwell] John C. Maxwell, The Seventeen Indisputable Laws of Team Work

[Ward’s wiki]: http://c2.com/cgi/wiki?PairProgrammingIsDoneByPeers
