
18/08/2004 Copyright 2004 Gerard Meszaros, all rights reserved 1 of 20

A Pattern Language for Setting Up XUnit Test Fixtures

Gerard Meszaros
ClearStream Consulting

plop2004@gerardmeszaros.com
http://testautomationpatterns.com/TestingIndirectIO.html

Abstract
Automated unit tests (A.K.A. "developer tests") and functional tests (A.K.A. "customer tests")
are a cornerstone of many agile development methods (such as eXtreme Programming). The
availability of automated, self-checking tests allows developers to be much bolder in how they
modify existing software. Almost every test requires some kind of test fixture. The test fixture is
everything you need to have in place to run the test. Typically, it consists of objects (in memory
or on disk), records in a database, and/or the state of any other depended-on components (or
even entire systems or applications). At first glance, the construction of the test fixture would
appear to be a rather simple task. But as the size and complexity of the SUT grows, the
complexity of managing the fixture grows in proportion. This is particularly true as we move
from unit tests for simple entity objects (which have simple state models) or utility objects
(which are typically stateless) to component tests for stateful service objects or functional tests
for entire applications. This set of patterns describes the key techniques for addressing the issues
around test fixture management.

Introduction
Pattern Templates
Note that I am using two different pattern templates in this submission. Many of the patterns are written in
a classic highly-structured pattern form. As I am targeting this content for a book, a few of the patterns
have been rewritten in a more "prosey" (and therefore “user-friendly) form based on the format used by
Martin Fowler in his book “Patterns of Enterprise Application Architecture”. This pattern format is
something I would like specific feedback on.

My Pattern Template
The template starts off with the summary statement and a sketch. The summary statement captures the
essence of the pattern in one or two sentences and the sketch provides a visual representation of the pattern.

The next (untitled) section summarizes why you might want to use the pattern in just a few sentences. It
includes the Problem section from the traditional pattern template. You should be able to get a sense of
whether you want to read any further by reading this section.

The next two sections provide the meat of the pattern. The "How it Works" section describes the nuts and
bolts of how the pattern is structured and what it is about. It also includes information about the "resulting
context" when there are several ways to implement some important aspect of the pattern. This section
corresponds to the "Solution" or "Therefore" sections of more traditional pattern forms.

The "When to Use It" section describes the circumstances in which you should consider using the pattern
This section corresponds to the Problem, Forces, Context, and Related Patterns sections of traditional
pattern templates. It also includes information about the Resulting Context where this might affect whether
you would want to use this pattern. I also include any "test smells" that would act as an indication that you
should use this pattern.

18/08/2004 Copyright 2004 Gerard Meszaros, all rights reserved 2 of 20

Most of the concrete patterns include three additional sections. The Motivating Example section provides
examples of what the test code might have looked like before this pattern was applied. The Solved Example
shows what the test would look like after the pattern was applied. And the Refactoring Notes section
provides step-by-step instructions on how to get from the "Motivating Example" to the "Solved Example".

I don't include "Known Uses" unless there is something particularly interesting about them. Most of these
patterns have been seen in many, many systems and picking three uses to substantiate them would be
arbitrary and meaningless.

Notation:
Underlined phrases in normal font beginning with capital letters are patterns; lowercase underlined phrases
are definitions while hyperlinks in italics refer to "test smells". Hyperlinks beginning and ending with ?
marks are links to items that have not yet been written.

Scope:
This text is part of a book on patterns of XUnit test automation. Because there are a large number of
patterns, I have excerpted a small subset of them for review at PLoP. The Introductory Narrative has also
been highly abridged for reasons of space. For those who are interested in reading further, the most current
version of this material is also available on our website at http://testautomationpatterns.com.html.

Fixture Setup
Table of Contents
Introductory Narrative
Test Fixture Strategy
--Clean Slate Fixture(*)
----Standard Test Fixture (*)
----Minimal Test Fixture(*)
--Private Test Fixture (*)
--Shared Test Fixture (*)
------Immutable Shared Test Fixture
Shared Fixture Construction:
----Prebuilt Fixture(*)
----Lazy Fixture Initialization (*)
----Fixture Setup Decorator (*)
----SuiteFixture Setup
Fixture Setup Strategy
--Front Door Fixture Setup
--Back Door Fixture Setup
--Data Loader
Fixture Setup Code Organization:
--Inline Setup
--Delegated Setup

--Implicit Setup
--Reuse Test for Fixture Setup
--Chained Tests
Clean Slate Fixture Creation Techniques:
--Object Mother
--Creation Method
--Attachment Method
Test Value Specification:
--Hard-Coded Value
--Calculated Value
--Distinct Value Generation
--One Bad Attribute
--Named State Reaching Method
Shared Fixture Access
--Fixture Holding Class Variable
--Fixture Holding Instance Variable
--Test Fixture Singleton
--Finder Method
--Entity Chain Snipping

Patterns are underlined; pattern categories are not. Patterns labelled (*) are included here for review.

Introductory Narrative
Almost every test requires some kind of test fixture. The test fixture is everything you need to have in place
to run the test. It is the "before" state of the system; the state in which the system must be before the actual
behaviour we are attempting to verify can be induced. Typically, it consists of objects (in memory or on
disk), records in a database, and/or the state of any other depended-on components (or even entire systems
or applications).

18/08/2004 Copyright 2004 Gerard Meszaros, all rights reserved 3 of 20

At first glance, the construction of the test fixture would appear to be a rather simple task. Just instantiate
the objects, components or records in the right state and be done with it. Right?

This may be true for very simple ?unit tests? that require just one or two objects for their test fixture. In this
case, creating the fixture may truly be as simple as instantiating a single object in memory and setting its
state explicitly. And if this is all you need, feel free to skip ahead to Building Clean Slate Fixtures later in
this chapter.

But as the size and complexity of the SUT grows, the complexity of managing the fixture grows in
proportion. This is particularly true as we move from unit tests for simple entity objects (which have simple
state models) or utility objects (which are typically stateless) to ?component tests? for stateful service
objects that have complex state. In these cases, the effort to create the fixture goes up considerably and the
potential for ?Test Code Duplication? starts to rise dramatically.

As soon as the SUT has persistent state (such as a database), the time it takes to set up the test fixture and
execute the tests increases dramatically. This introduces a further constraint into our automated test design:
test execution speed. This is particularly true of ?functional tests? for entire applications.

A common reaction to having slow tests is to reuse the same test fixture to reduce the execution time spent
building and tearing down the fixture. This is typically done in one of two ways. The most common is to
use a Prebuilt Fixture that is set up before any test suites are run. The second is the use of Chained Tests
that depend on the order in which tests execute within the test suite to build the fixture up incrementally.
Both of these approaches are fraught with perils that make it harder to achieve robust and maintainable
tests.

As the complexity of and consequences of fixture management becomes the predominant complexity factor
in our tests, how you manage your test fixtures becomes the single most critical decision you will need to
make as you adopt a test automation strategy. Because this is such a large and important topic, we will
attack it in three phases.

• First, in Fixture Management Decisions, we'll introduce the fundamental decisions we need to
make about the test fixture.

• Second, in Test Fixture Strategies we will summarize the two key test fixture management
strategies as well as several hybrid strategies.

• Finally, in Building Test Fixtures, we will deal with how you actually construct the test fixture in
each of the strategies.

Fixture Management Decisions
(Omitted due to limited space.)

Test Fixture Strategies
As we stated earlier, the choice of test fixture strategy is probably the most far-reaching decision you will
have to make as you adopt an automated testing strategy using XUnit. The right strategy could make
automated testing a "piece of cake" while choosing the wrong strategy could lead to large amounts of
wasted effort and frustration. Forewarned is for-armed!

18/08/2004 Copyright 2004 Gerard Meszaros, all rights reserved 4 of 20

Clean Slate Testing
In this approach, each test creates a temporary Private Test Fixture as it runs. Any objects or records it
requires are created by the test itself. Because the?test fixture visibility? is private to the one test alone, we
ensure that each test is completely independent because it cannot depend, either accidentally or on purpose,
on the output of any other tests that use the same fixture.

We call this "clean slate" because each test starts with a clean slate and builds from there. It does not
"inherit" or "reuse" any part of the fixture from other tests or from a Prebuilt Fixture.

The main disadvantage of Clean Slate Fixture is the additional CPU cycles it takes to create all the objects
for each test. This can make the tests run slower than a Prebuilt Fixture approach, especially if the test
fixture is constructed within a database.

We feel this is best addressed by applying one or more of the following patterns:

1. Construct a Minimal Test Fixture (the smallest possible fixture you possibly can) and
2. Speed up the construction by using ?Stub Out Slow? to bypass anything that takes too long to

construct.
3. Minimize the size of the fixture you need to destroy and reconstruct each time by using an

Immutable Shared Test Fixture for any objects that are referenced but not modified.

We have found that, on average, our tests run 50 (yes, fifty!) times faster when we use ?In-Memory
Database? (a variation of ?Stub Out Slow Component?) to replace the entire database with a set of
HashTables so we can do in-memory test execution. This is because a test doesn't just access the database
when it exercises the system, but it also writes records during fixture setup and deletes them during fixture
teardown. That's a lot of disk accesses in each test.

There is a lot to be said for minimizing the size and complexity of the test fixture. A Minimal Test Fixture
is much easier to understand and helps highlight the "cause and effect" relationship between the fixture and
the expected outcome. In this regard, it is a major enabler of Tests as Specification. In some cases, you can
make the test fixture much smaller by using Entity Chain Snipping to eliminate the need to instantiate
objects on which your test depends only indirectly. This will certainly speed up the instantiation of your
test fixture.

Ahead of Time Test Fixture Construction

18/08/2004 Copyright 2004 Gerard Meszaros, all rights reserved 5 of 20

There will be times when you cannot or choose not to use a Clean Slate Fixture test fixture strategy. In
these cases, you can use Prebuilt Fixture. This approach involves pre-building the test fixture and then
using it over and over again when you run your tests.

The most common example of Prebuilt Fixture is the ?Test Database?. In this approach, a database is
populated with some (possibly standardized) test data and all tests are written assuming this set of records.
This approach has the advantage that it executes much faster because there is little or no test fixture
creation overhead associated with individual tests. The main disadvantage is that it opens the door to a
number of smells, both ?code smells? and ?behaviour smells?. Examples of ?code smells? include ?Test
Code Duplication?, ?Obscurity Through Verbosity?, ?Mystery Guest? and ?Complex Teardown?.
Examples of ?behaviour smells? this approach breeds includes Unrepeatable Test, Interacting Tests and
?Test Run War?.

The ?Mystery Guest? problem is caused by the use of magic values that refer to particular objects in the
pre-built test fixture. The test reader cannot tell by merely reading the test how the referenced object affects
the outcome of the test without consulting the database. This can be partially alleviated by using a variable
with an Intent Revealing Name to hold the magic value so that the test reader is given some inkling about
why the test uses this particular object. This doesn't avoid Unrepeatable Tests, Interacting Tests and ?Test
Run Wars? but at least we can understand what the test was intended to do when it fails (Emoticon: smiley)
. To avoid a ?Test Run War?, each test runner must have its own copy of the test fixture. This is most
commonly done by using a ?Private Database?; either a ?Private Real Database? or ?Private Virtual
Database? . The ?Private Virtual Database? can be implemented using built-in database support (?DB
Schema per TestRunner?) or by using a ?Database Partitioning Scheme? (i.e., giving each potential test
runner its own set of customers, accounts, etc..)

All these approaches solve the problem by ensuring that tests run from different test runners find different
objects even though they are using the same identifier (i.e., the key). To avoid having Unrepeatable Tests,
you must ensure that each test leaves the pre-built test fixture in the same state as it found it (i.e., treat it as
an Immutable Shared Test Fixture) This is easier said than done because it must do so regardless of the
outcome of the test. It must understand what the SUT would do to the state of the fixture when the test
succeeds and undo it upon successful completion. If the test fails, it must accurately assess what changes
the SUT did make and undo those. This can very easily lead to ?Complex Teardown? which will make the
tests very hard to write? ?Data Leaks? are inevitable and just as hard to debug as ?memory leaks? because
the tests that fail as a result are not the tests that are leaving behind the leftover test fixture data.

One way to avoid the ?Complex Teardown? is to use Automated Teardown. In this technique, anything that
is newly created or modified by the test is registered with the Automated Teardown mechanism so that it
can automatically clean it up in the teardown method (which is run regardless of whether the test passes or
fails.) Because the Automated Teardown mechanism can be a separate component (well, at least a separate
method) and not embedded in each Test Method, it can be tested using automated Self-Checking Tests.

Another problem associated with Prebuilt Fixture is ?Fragile Fixture?. This occurs when tests fail merely
because we've added additional objects/rows to an existing test fixture. This will happen if the tests assume
they know what is already in the database (including the assumption that the database is empty) and code
their assertions based on that knowledge. As soon as someone extends the fixture to support new tests, any
tests that "know" what used to be in that part of the fixture will likely fail. A common strategy for dealing
with this is to use ?Before and After Delta Assertions? for verifying the expected results. First, the test
queries the results before adding its own objects. Then it adds the objects and queries again. Then it
removes the original results from the new results to cancel the impact of any objects/records that already
existed. This should handle the straightforward cases but it does increase the complexity of the tests by
adding an extra step before the ?test fixture setup? phase of the test. It works best when the newly added
test objects are created from scratch because adding existing objects could be affected by changes to the
predefined test fixture.

Building Test Fixtures
(Omitted due to limited space.)

18/08/2004 Copyright 2004 Gerard Meszaros, all rights reserved 6 of 20

Test Fixture Strategy
Strategies for organizing the test fixture.

Clean Slate Fixture
Make sure each test creates its own private fixture and tears down the fixture and any objects created
during the test.

Every test requires some of kind of test fixture that defines the state of the world before it starts to execute
the SUT. The test fixture can either be set up in each and every test or they can be "reused" across many
tests. In all the but simplest test suites, keeping track of what each test needs in the way of a fixture is
complicated and error prone. Even just making sure you don't write Unrepeatable Tests is a challenge. And
taking into account what other every other test depends on while you are modifying a Shared Test Fixture
is not a scalable solution. You are bound to encounter Interacting Tests and their shared test environment
cousin ?Test Run War?.

Another key role of the fixture setup logic is to facilitate Tests as Specification. We do this by making the
relationship between the test fixture (the preconditions of the test) and the assertions (the expected
outcome) very obvious. This enables the test reader to get a good understanding of what the SUT is
expected to do. Shared Test Fixtures tends to result in ?Mystery Guests? because they hide the test fixture
from the reader.

18/08/2004 Copyright 2004 Gerard Meszaros, all rights reserved 7 of 20

The solution is to have each test start with a "clean slate" and build its own well-understood Private Test
Fixture.

How It Works
When doing "normal" unit testing in a garbage collected environment, Clean Slate Fixture is the naturally
occurring default behaviour for all tests. You have to try hard to have objects leftover by one test affect
another test's outcome.

The problem occurs when the SUT starts to "remember" things between invocations of its API. Once it is
"stateful", the likelihood that something is left behind by another test increases. This is particularly true if
each test does not (or cannot) create its own instance of the object in question. A good example of this
when we use ?Singletons? within our designs. The ?Singleton?, in effect, instantiates itself the first time it
is used and hangs around as long as it deems fit. So the tests have lost control over the starting state of the
SUT.

The key to the solution is two-fold:

• Have each test build its own fixture, use it, and then clean it up explicitly.
• Define the test fixtures in such a way that it doesn't matter if other tests didn't clean up properly.

Both points are equally important and each has its own implementation patterns.

To minimize the effort and maximize the comprehensibility, build a Minimal Test Fixture regardless of
whether you use Implicit Setup, Delegated Setup or Inline Setup. For any objects that won't be garbage
collected, you can use Automated Teardown to minimize the effort, complexity and the likelihood of test
bugs.

To make tests indifferent to other tests messing up the environment, use some kind of ?Database
Partitioning Scheme? to give each test its own "virtual address space". One way to achieve this is to use an
Anonymous Creation Method to create the "root" object of the fixture (the one all the other objects are
associated with) thereby ensuring a different "virtual address space" each time the test is run. When doing
outcome verification, only include objects within the private address space. These techniques are
particularly important when testing systems with databases underneath them because a shared database
instance is the perfect ?Singleton?.

When To Use It
When you are most concerned about test robustness and repeatability, have each test build its own Private
Test Fixture from scratch starting with a "clean slate". If, however, you find that Clean Slate Fixture results
in tests that take too long to execute because of all the extra overhead of setting up and tearing down the
test fixture, consider using a Shared Test Fixture, a Prebuilt Fixture or a hybrid approach such as
Immutable Shared Test Fixture.

Motivating Example
Come up with a better example.
public void testPurchase_firstPurchase() {
 Customer buyer = new Customer(17, "FirstName", "LastName", "G", "ACTIVE");
 ...
}
public void testPurchase_subsequentPurchase() {
 Customer buyer = new Customer(18, "FirstName", "LastName", "G", "ACTIVE");
 ...
}

Refactoring Notes
Use Extract Method refactoring to remove the direct call to the constructor and replace the number 17 with
a call to a method that returns a value guaranteed to not be the id of any existing Customers.

18/08/2004 Copyright 2004 Gerard Meszaros, all rights reserved 8 of 20

Solution Example
In the refactored code below, we have extracted the Customer creation code into
createAnonymousCustomer
public void testInvoice_firstPurchase() {
 Customer buyer = createAnonymousCustomer();
 ...
}
public void testInvoice_firstPurchase_subsequentPurchase() {
 Customer buyer = createAnonymousCustomer();
 ...
}

In the implementation of createAnonymousCustomer, we have replaced the Hard-coded Value 17 with a
call to getUniqueCustomerId. Different ways of implementing getUniqueCustomerId are discussed in
Distinct Value Generation.
public Customer createAnonymousCustomer() {
 BigDecimal uniqueid = getUniqueCustomerId()
 return new Customer(uniqueid,"FirstName" + uniqueid, "LastName" + uniqueid);
}

Standard Test Fixture
Define a standard fixture (and the procedures to build it) and use it in several tests.

Context
To execute an automated test, you require a text fixture that is well understood and completely
deterministic. You want to avoid designing a completely different fixture for every test.

Problem
How do you minimize the effort of designing test fixtures?

Forces

• If other tests have access to the same test fixture, those tests may leave the fixture in an
unexpected state which could affect the results of other tests using the same fixture.

• A fixture set up within the test is guaranteed to be there regardless of how the test is run.
• It takes additional design effort to design a specific test fixture for each test.
• A simple test fixture specific to a test is easier to understand than a more general fixture that

satisfies the needs of many tests.
• It takes additional computational cycles to build a new test fixture for each test.
• It takes fewer computational cycles to build a simple test fixture for a single test than to build a

large general-purpose test fixture.

Therefore ...
Design a Standard Test Fixture that can be used by several or many tests. Define a method (function or
procedure) that builds the Standard Test Fixture and call it from each test.

Implementation Notes
The choice of Standard Test Fixture is independent of the choice between Private Test Fixture and Shared
Test Fixture because Standard Test Fixture focuses on reusing the design of the fixture, not when it is built
or its visibility. You still need to decide whether each test will build its own instance of the Standard Test
Fixture (a Private Test Fixture) or whether you will pre-build it as a Shared Test Fixture and reuse it across
many tests.

18/08/2004 Copyright 2004 Gerard Meszaros, all rights reserved 9 of 20

Motivating Example
 public void testStatus_inital() {
 // setup:
 Flight flight = createAFlight()
 // Exercise SUT & verify outcome:
 assertEquals(FlightState.PROPOSED, flight.state());
 // teardown:
 flight.destroy();
 }

 public void testStatus_cancelled() {
 // setup:
 Flight flight = createAFlight()
 flight.cancel();
 // Exercise SUT & verify outcome:
 assertEquals(FlightState.CANCELLED, flight.state());
 // teardown:
 flight.destroy();
 }

Refactoring Notes
The most obvious refactoring is from a Private Test Fixture to a Standard Test Fixture. Another refactoring
is from a Test Method using Inline Setup to Standard Test Fixture by using Extract Method refactoring.
Extracting the fixture setup into a separate method makes the fixture available to any tests that require it. If
all the tests in a Testcase Class require the Standard Test Fixture, then Extract Method refactoring can be
used to create a Shared Setup Method. Along the way, you will introduce Fixture Holding Instance
Variables to hold onto the fixture objects. Within each Test Method, you can refer to the objects in the
fixture using the instance variables, or you can access them using Finder Methods. It is not advisable to use
Hard-Coded Values to refer to objects in the Standard Test Fixture as these will result in ?Mystery Guest?
and ?Fragile Tests?.

Solution Example
 Airport departureAirport
 Airport destinationAirport
 Flight flight

 public setup() {
 super.setup();
 departureAirport = new Airport("Calgary", "YYC");
 destinationAirport = new Airport("Toronto", "YYZ");
 flight = new Flight(departureAirport, destinationAirport)
 }

 public void testStatus_inital() {
 // implicit setup
 // Exercise SUT & verify outcome
 assertEquals(FlightState.PROPOSED, flight.state());
 // teardown:
 flight.destroy();
 }
 public void testStatus_cancelled() {
 // implicit setup partially overriden:
 flight.cancel();
 // exercise SUT & verify outcome
 assertEquals(FlightState.CANCELLED, flight.state());
 // teardown:
 flight.destroy();
 }

18/08/2004 Copyright 2004 Gerard Meszaros, all rights reserved 10 of 20

Related Patterns
As stated earlier, the choice of Standard Test Fixture is independent of the choice between Private Test
Fixture and Shared Test Fixture because Standard Test Fixture focuses on reusing the design of the fixture,
not when it is built or its visibility. This pattern can be at odds with Minimal Test Fixture because the more
broadly you plan to share the fixture, the larger it tends to get.

Related Smells
As you make a Standard Test Fixture more reusable across many tests, it tends to get larger and more
complex. This can lead to ?Fragile Fixture? as the needs of new tests introduce changes that break existing
clients of the Standard Test Fixture. Depending on how you go about building the Standard Test Fixture,
you may also find yourself entertaining a ?Mystery Guest? if the cause/effect of the SUT behaviour is not
easy to discern because the fixture setup is hidden from the test.

Minimal Test Fixture
Use the smallest possible fixture for each test.

Context

To execute an automated test, you require a text fixture that is well understood and completely
deterministic. You want to achieve Tests as Specification.

Problem

How do you minimize the effort of designing test fixtures?

Forces

Same as Private Test Fixture unless otherwise noted.

• It takes additional design effort to design a specific test fixture for each test.
• A simple test fixture specific to a test is easier to understand than a more general fixture that

satisfies the needs of many tests.
• It takes fewer computational cycles to build a simple test fixture for a single test than to build a

large general-purpose test fixture.

Therefore ...

Design a Minimal Test Fixture that includes only those objects that are absolutely necessary to express the
behaviour that the test verifies. Another way to phrase this is "If the object is not important to the test, it is
important not to have it included in the test." This is important for achieving ?Test as Specification? and for
avoiding ?Slow Tests?.

Implementation Notes

To build a Minimal Test Fixture, ruthlessly remove anything from the fixture that does not help the test
communicate how the SUT should behave. You can hide the attributes of objects that don't affect the
outcome of the test but which are needed for constructing the object by using Creation Methods to fill in all
the "don't care" attributes with meaningful default values. You can also hide the creation of necessary
depended-on objects within the Creation Methods. Or, you can eliminate them entirely by installing a Test
Double to do Entity Chain Snipping. This is truly an example of creating a Minimal Test Fixture!

Some good "Ocam's Razors" for determining whether an attribute or object is really needed:

• An attribute shouldn't affect the behaviour of the SUT in the specific circumstance, and
• the attribute is not referenced during assertions on other objects.

It is one thing to minimize the size of the test fixture itself. It is also good to minimize the amount of code
required to create the test fixture. Creation Methods are a common way of achieving this goal. When

18/08/2004 Copyright 2004 Gerard Meszaros, all rights reserved 11 of 20

writing tests that require badly formed objects as input (for testing with invalid inputs) a common approach
is to use One Bad Attribute.

Refactoring Notes

Solution Example

Related Patterns

Related Smells

Shared Test Fixture
The test fixture is created once and used by many tests.

To execute an automated test, you require a text fixture that is well understood and completely
deterministic. Your tests are taking too long to execute mostly due to the time it takes to set up a Private
Test Fixture in each test.

How do you make your tests run faster?

How It Works
The concept is pretty simple: create a test fixture that outlasts the lifetime of a single Testcase Object. This
allows multiple tests to use the same test fixture without destroying it and recreating it between tests.

When To Use It
Use a Shared Test Fixture when you cannot afford to use a Clean Slate Fixture. Typically, this is because it
takes too long to build a new fixture for each test.

The biggest issue is that a Shared Test Fixture can lead to Interacting Tests or even a ?Test Run War? since
tests may depend on the outcomes of other tests. Another issue is that a fixture designed to serve many tests
is bound to be much more complicated than the Minimal Test Fixture needed for a single test. This will
typically take more effort to design and can lead to a ?Fragile Fixture? down the road when you need to
modify it.

A Shared Test Fixture will often result in a ?Mystery Guest? because the fixture is not constructed inside
the test. This can be mitigated by the use of Finder Methods to access the relevant parts of the fixture.

Implementation Notes
Among the things you will need to decide on is just how far and wide you want to share the fixture. It is
one thing to share the fixture between all the tests in a single Testcase Class and an entirely different thing
to share it with any and all users and tests that happen to be running at the same time.

There are two key questions to decide upon:

18/08/2004 Copyright 2004 Gerard Meszaros, all rights reserved 12 of 20

• Fixture Setup Strategy - How do you construct the Shared Test Fixture?
• Shared Fixture Access - How do you access the Shared Test Fixture?

This leads to several options for implementing Shared Test Fixture.

• SuiteFixture Setup
• Lazy Fixture Initialization
• Prebuilt Fixture

If the fixture will only be shared by tests in the same Testcase Class, you can simply move fixture creation
to the ?Shared Setup Method?. If you want to share it across many Testcase Classes, or you have resources
that need to be cleaned up, you'll need to use a ?Test Setup Decorator? to hold the setup and teardown
methods. A third option is to prebuild the fixture at some point before the tests are run. A common way to
do this is with a Data Loader or ?Database Population Script?. The latter is an example of a Back Door
Fixture Setup wherein we bypass the SUT and interact with its database directly.

Motivating Example
This example shows a Testcase Class which is setting up the test fixture using Implicit Setup. Each Test
Methods uses a Fixture Holding Instance Variable to access the contents of the fixture.
 Airport departureAirport
 Airport destinationAirport
 Flight flight

 public setup() {
 super.setup();
 departureAirport = new Airport("Calgary", "YYC");
 destinationAirport = new Airport("Toronto", "YYZ");
 flight = new Flight(departureAirport, destinationAirport)
 }

 public void testStatus_inital() {
 // implicit setup
 // Exercise SUT & verify outcome
 assertEquals(FlightState.PROPOSED, flight.state());
 // teardown:
 flight.destroy();
 }
 public void testStatus_cancelled() {
 // implicit setup partially overriden:
 flight.cancel();
 // exercise SUT & verify outcome
 assertEquals(FlightState.CANCELLED, flight.state());
 // teardown:
 flight.destroy();
 }

Note that the setup method is run once for each Test Method. If the fixture setup is fairly complex and
involves accessing a database, this could result in ?Slow Tests?.

Refactoring Notes
To convert a Testcase Class from a Standard Test Fixture to a Shared Test Fixture, you simply use a
?Convert Instance Variable to Static? refactoring to make the fixture outlast the creating test instance and
use ?Lazy Initialization? to avoid recreating it for each Test Method.

To introduce a ?Test Setup Decorator?, just use the ?Move Method? refactoring to transfer the Shared
Setup Method to it. You'll also need to create a suite method on some object that instantiates the ?Test
Setup Decorator? as a wrapper for your Test Suite Object.

Solution Example

18/08/2004 Copyright 2004 Gerard Meszaros, all rights reserved 13 of 20

This example shows the fixture converted to a Shared Test Fixture and the Test Methods modified to use
the Fixture Holding Class Variable to access the contents of the fixture.
 static Airport departureAirport
 static Airport destinationAirport
 static Flight flight

 public setup() {
 super.setup();
 if (departureAirport == nil) {
 departureAirport = new Airport("Calgary", "YYC");
 destinationAirport = new Airport("Toronto", "YYZ");
 flight = new Flight(departureAirport, destinationAirport)
 }
 }

 public void testStatus_inital() {
 // implicit setup
 // Exercise SUT & verify outcome
 assertEquals(FlightState.PROPOSED, flight.state());
 // teardown:
 flight.destroy();
 }

 public void testStatus_cancelled() {
 // implicit setup partially overriden:
 flight.cancel();
 // exercise SUT & verify outcome
 assertEquals(FlightState.CANCELLED, flight.state());
 // teardown:
 flight.destroy();
 }

18/08/2004 Copyright 2004 Gerard Meszaros, all rights reserved 14 of 20

Shared Fixture Construction
Techniques for constructing the Shared Test Fixture.

Prebuilt Fixture
The test fixture is created once and used by many tests possibly over many test runs.

Context
Your tests are taking too long to execute mostly due to the time it takes to set up a test fixture in each test.
Even the time it takes to create a Shared Test Fixture each time you run the tests is still slowing down your
tests too much for your liking.

Problem
When is the Test Fixture constructed?

Forces

• If other tests have access to the same test fixture, those tests may leave the fixture in an
unexpected state which could affect the results of other tests using the same fixture.

• A fixture set up within the test is guaranteed to be there regardless of how the test is run.
• It takes additional design effort to design a specific test fixture for each test.
• A simple test fixture specific to a test is easier to understand than a more general fixture that

satisfies the needs of many tests.
• It takes additional computational cycles to build a new test fixture for each test.
• It takes fewer computational cycles to build a simple test fixture for a single test than to build a

large general-purpose test fixture.
• Setting up the fixture ahead of time may result in Unrepeatable Tests if the tests modify the

fixture.

Therefore ...
If you cannot afford to build a new test fixture for each test run, pre-build the fixture and reuse the fixture
in many test runs.

Implementation Notes
A common way to do Prebuilt Fixture is with a Data Loader or ?Database Population Script?. The latter is
an example of a Back Door Fixture Setup wherein we bypass the SUT and interact with its database
directly.

When using Prebuilt Fixture, the tests must be Self-Cleaning Tests otherwise they will become
Unrepeatable Tests as their leftover detritus starts interfering with subsequent test runs

The fixture you create using Prebuilt Fixture is a Shared Test Fixture but you still need to decide how
broadly you want to share it. You can keep it relatively private if you ensure that each developer has their
own ?Private Database?. This gives the developer control over how many test runners can access it at one
time.

You'll need to decide how often you want to refresh the Shared Test Fixture as it is bound to decay over
time as various tests modify it and forget to put it back the way they found it. (You'll know when it does
happen because you'll start to see tests failing when they should pass.)

Motivating Example
TBD

18/08/2004 Copyright 2004 Gerard Meszaros, all rights reserved 15 of 20

Find example

Refactoring Notes
The most obvious refactoring is from a Shared Test Fixture (shared between tests within a single test run)
to one shared between multiple test runs.

Solution Example
There is no "typical" example of a Prebuilt Fixture because the reason for prebuilding the fixture often
dictates how it must be prebuilt. Most often, it is not built in code (at least not the same kind of code our
XUnit tests are written in!). It may be built manually using the user interfaces of other applications or by
other applications based on input files or database contents. As far as we are concerned, the main thing is
that it was there before we ran our first test run and it will still be there well after the test run is done.

A common way to prebuild the fixture is to use database tools to reload snapshots taken earlier. The
databases may be restored using these snapshots on a regular schedule (say, every night or weekend) or on
an "as needed" basis.

Because the fixture exists before the test executes, the test must find the relevant objects in the fixture. The
most robust way is by using Finder Methods as shown here:
public void testPurchase_firstPurchase() {
 Customer buyer = findCreditworthyCustomer();
 ...
}
public void testPurchase_subsequentPurchase() {
 Customer buyer = findCreditworthyCustomer();
 ...
}

Related Patterns
The most obvious alternative is ?Just In Time Fixture Construction? (A.K.A. "Clean Slate Setup") of a
Private Test Fixture.

Related Smells
While Shared Test Fixture opens the door to Interacting Tests, Prebuilt Fixture is particularly likely to
result in Unrepeatable Tests.

Care has to be taken when coding the tests to ensure that you don't end up with a ?Fragile Fixture? as a
result of tests depending too heavily on assumptions about what exists in the fixture.

Lazy Fixture Initialization
Let the first test that needs the shared test fixture create it.

Context
You have chosen to use a Shared Test Fixture and want to be able to run each test independently. (That is,
you want to avoid the ?Lonely Test? problem.

Problem
How do you know it is time to build the shared test fixture?

Forces

• If several tests are sharing the same test fixture, they can't all build the fixture otherwise it won't be
shared.

• The test fixture needs to be built before the first test executes.

18/08/2004 Copyright 2004 Gerard Meszaros, all rights reserved 16 of 20

• The test fixture should be cleaned up after the last test completes otherwise the test fixture will be
left dangling.

• If the test fixture is set up outside the test, the test cannot be run unless the fixture setup code is
also run. This introduces a dependency.

Therefore ...
Use ?Lazy Initialization? to construct the fixture in the first test that needs it. Let all the other tests discover
that the fixture is already created and that they can reuse it thus avoiding the effort of constructing it.

Implementation Notes
Since the point of Shared Test Fixture is to save execution time and effort by having multiple tests use the
same instance of the test fixture, we'll need to keep a reference to the fixture we create so that we can find
the fixture if it already exists and inform other tests that it now exists once we have constructed it. If the
test fixture is only being shared within a single Testcase Class, the simplest solution is to use a Fixture
Holding Class Variable for each fixture object we need to hold a reference to. But if we want to share the
test fixture between many Testcase Classes we'll need some other solution.

A common solution is to use a Test Fixture Singleton to access the fixture. In some cases, the singleton is
the shared ?Test Database?. But for in-memory test fixtures we'll have to create a real ?Singleton? object to
access the fixture.

Similarly, if the Lazy Fixture Initialization will be done from several different Testcase Classes, we would
prefer not to duplicate the ?Lazy Initialization? logic in each class. The two obvious places to put the setup
and teardown logic are a ?Test Helper? or within the Test Fixture Singleton. The latter eliminates the need
for a ?Test Helper? class but may introduce some type dependencies if you want to use the same Test
Fixture Singleton for different types of fixtures.

The biggest detracting factor for Lazy Fixture Initialization is that fact that while it is easy to discover that
you are the first test and you need to construct the fixture, it is difficult to determine that you are the last
test and that the fixture should be destroyed. Most members of the XUnit family of Test Automation
Frameworks do not provide a way to determine this other than using a Fixture Setup Decorator for the
entire test suite.

Motivating Example
Rework this example

In this example, we have been building a new fixture for each Testcase Object.
 Airport departureAirport
 Airport destinationAirport
 Flight flight

 public setup() {
 super.setup();
 departureAirport = new Airport("Calgary", "YYC");
 destinationAirport = new Airport("Toronto", "YYZ");
 flight = new Flight(departureAirport, destinationAirport)
 }

 public void testStatus_inital() {
 // implicit setup
 // Exercise SUT & verify outcome
 assertEquals(FlightState.PROPOSED, flight.state());
 // teardown:
 flight.destroy();
 }
 public void testStatus_cancelled() {
 // implicit setup partially overriden:
 flight.cancel();

18/08/2004 Copyright 2004 Gerard Meszaros, all rights reserved 17 of 20

 // exercise SUT & verify outcome
 assertEquals(FlightState.CANCELLED, flight.state());
 // teardown:
 flight.destroy();
 }
Note that we are using Implicit Fixture Setup (where the Test Automation
Framework calls the setup and teardown methods for each Testcase Object.) This
means we already have the fixture setup and teardown logic nicely packaged up
in the setup method.

Refactoring Notes
To use Lazy Fixture Initialization at the Testcase Class level, we merely insert the ?Lazy Initialization?
logic into the setup method so that only the first test will cause it to be run.

Don't forget to remove the teardown logic as it will render the ?Lazy Initialization? logic useless if it
removes the fixture after each Test Method has run! Sorry, but there is nowhere that you can move this
logic to so that it will be run after the last Test Method has completed.

If we want to do use Lazy Fixture Initialization at the Suite of Suites level, we will need to do a bit more
work. First, we'll need a way to hold a reference to the test fixture independently of any one Testcase Class.
And we'll need a place to put the fixture setup logic; let's assume we can use a Test Fixture Singleton for
both roles. We'll use ?Rename Method? refactoring to rename the setup method to better reflect what it is
doing (e.g. setupAirportsFixture.) Then we'll use ?Move Method? refactoring to move it to the newly
created AirportFixture Test Fixture Singleton class. Now, we'll add a new setup to our Testcase Class that
calls setupAirportsFixture on AirportFixture. We'll also do a ?Move Variable? refactoring to move any
variables we were referencing from the setup logic to AirportFixture and make them public so we can still
access them from the tests.

Solution Example
Here, we are creating the fixture using ?Lazy Initialization? by checking if our Fixture Holding Class
Variable is empty before calling methods to setup the fixture. We then use the variables to access the
objects in the fixture from our tests. Note that while there is a teardown method on AirportFixture, there is
no way to know when to call it! That's the main consequence of using Lazy Fixture Initialization. And since
the variables are static, they will not go out of scope so the fixture will not be garbage collected.

Some IDEs (such as Eclipse) and some Test Runners automatically reload your classes every time the test
suite is run. This causes the original class variable to go out of scope and the fixture will be garbage
collected before the new version of the class is run. In these cases there is no negative consequence of using
Lazy Fixture Initialization.
 static Airport departureAirport
 static Airport destinationAirport
 static Flight flight

 public setup() {
 super.setup();
 if (departureAirport == nil) {
 departureAirport = new Airport("Calgary", "YYC");
 destinationAirport = new Airport("Toronto", "YYZ");
 flight = new Flight(departureAirport, destinationAirport)
 }
 }

 public void testStatus_inital() {
 // implicit setup
 // Exercise SUT & verify outcome
 assertEquals(FlightState.PROPOSED, flight.state());
 // teardown:
 flight.destroy();
 }

18/08/2004 Copyright 2004 Gerard Meszaros, all rights reserved 18 of 20

 public void testStatus_cancelled() {
 // implicit setup partially overriden:
 flight.cancel();
 // exercise SUT & verify outcome
 assertEquals(FlightState.CANCELLED, flight.state());
 // teardown:
 flight.destroy();
 }
 public teardown() {
 super.teardown();
 // Cannot do much else here because we don't know
 // whether or not the last test has run yet!
 }

Related Patterns
If you need to ensure that the test fixture has been cleaned up after the last test completes, you'll want to use
a Fixture Setup Decorator instead of Lazy Fixture Initialization.

Related Smells
The main reason for using a Shared Test Fixture and hence Lazy Fixture Initialization is a ?Slow Test?
caused by too many test fixture objects being created each time every test is run.

Fixture Setup Decorator
Wrap the test suite with a Decorator that sets up the shared test fixture before running the tests and tears it
down after all the tests are done.

Sketch goes here.

If you have chosen to use a Shared Test Fixture whether it is for reasons of convenience or necessity and
you have chosen not to use a Prebuilt Fixture, you'll need to ensure that the fixture gets built before each
Test Run. Lazy Fixture Initialization is one strategy you could employ to create the test fixture "just in
time" for the first test. But if it is critical to teardown the fixture after the last test, how do you know that all
the tests have been completed?

How It Works
Fixture Setup Decorator works by "bracketing" the execution of the entire test suite with a set of matching
setup and teardown "bookends". The pattern ?Decorator? is just what we need to make this happen. We
construct a Fixture Setup Decorator that holds a reference to the Test Suite Object we wish to "bracket"
and pass it to the Test Runner. When it is time to run the test, the Test Runner calls the run method on our
Fixture Setup Decorator rather than the one on the actual Test Suite Object. The Fixture Setup Decorator
does the fixture setup before calling the run method and tears down the fixture after it is done. Because it is
calling the run method on the suite, it knows exactly when the suite has finished (because the suite returns
control to the caller).

The basic approach is to create some code that sets up the fixture, delegates test execution to the test suit to
be run, and then executes the code to tear down the fixture. To better line up with the normal XUnit calling
conventions, we typically put the code that constructs the test fixture into a method called setup and the
code the tears down the fixture into teardown. Then our Fixture Setup Decorator's run logic consists of
three lines of code:
 void run() {
 setup();
 theSuite.run();
 teardown();
 }

When To Use It

18/08/2004 Copyright 2004 Gerard Meszaros, all rights reserved 19 of 20

Use a Fixture Setup Decorator whenever it is critical that a Shared Test Fixture be set up before every Test
Run and that it is torn down after the run is complete. It may be critical because tests are using Hard-coded
Values that would cause the tests to fail if run again without cleaning up after each run (Unrepeatable
Tests.) Or it may just be the issue of the database slowly filling up with data from repeated test runs.
Another reason if the tests need to change some global parameter before running and want to change it
back when they are done. Stubbing out the database to avoid ?Slow Tests? is one common reason for this;
setting global switches to a particular configuration is another.

Motivating Example
In this example, we have a set of tests that use Lazy Fixture Initialization to build the Shared Test Fixture
and Finder Methods to find the objects in the fixture. We have discovered that the leftover fixture is
causing problems so we want to clean up properly after the last test has finished running.
 TBD

Since there is no easy way to do this with Lazy Fixture Initialization, we will have to change our fixture
setup logic to use a Fixture Setup Decorator instead.

Refactoring Notes
When creating a Fixture Setup Decorator, we can reuse the exact same fixture setup logic; we just need to
call it at a different time. So this refactoring consists mostly of moving the call to the fixture setup logic
(ideally just a call to a Creation Method) from the Testcase Class(es) to the setup method of a Fixture Setup
Decorator class. This class is usually a subclass of a generic Fixture Setup Decorator class that implements
the setup/run/teardown sequence as a ?Template Method?. We just provide a concrete implementation of
the setup and teardown methods.

If our instance of XUnit does not support Fixture Setup Decorator directly, we can create our own Fixture
Setup Decorator super class by building a single-purpose Fixture Setup Decorator and then introducing a
constructor parameter and instance variable to hold the test suite to be run. Finally, we do an ?Extract
Superclass? refactoring to create our reusable super class.

Solution Example
In this example, we have moved all the setup logic to the setup method of a Fixture Setup Decorator. We
have also written some fixture teardown logic.
class TypicalFixtureSetupDecorator extends FixtureSetup {
 void setup() {
 MyTestHelper.setupStandardFixture();
 }

 void setup() {
 MyTestHelper.teardownStandardFixture();
 }
}

Variations
Reusable Setup Decorator

The ?simplest thing that could possibly work? is to hard-coded the name of the decorated class in the suite
method of the decorator. This causes the decorator to act as the Test Suite Factory for the decorated suite.
 static TestSuite suite() {
 return new SuiteDecorator(TestSuiteToBeDecorated.suite());
 }

This is certainly simple but we will need a different Fixture Setup Decorator for each class we want to
decorate.

18/08/2004 Copyright 2004 Gerard Meszaros, all rights reserved 20 of 20

Reusable Setup Decorator

If we want to reuse the Fixture Setup Decorator for different test suites, we can parameterize the Fixture
Setup Decorator's constructor method with the Test Suite Object to be run; this means that the setup and
teardown logic can be coded within the Fixture Setup Decorator eliminating the need for a separate ?Test
Helper Class? class just to reuse the setup logic across tests. To make it easy for the Test Runner to create
our test suite, we'll also need to create a Test Suite Factory that calls the Fixture Setup Decorator's
constructor with the Test Suite Object to be decorated.

Many members of the XUnit family of Test Automation Frameworks provide a reusable super class that
implements Fixture Setup Decorator. All you have to do is subclass this class and implement the setup and
teardown methods as you would in a normal Testcase Class. When instantiating your Fixture Setup
Decorator class, pass the Test Suite Object you are decorating as the constructor argument.
 static TestSuite suite(testSuite) {
 return new SuiteDecorator(testSuite);
 }
Pushdown Decorator

One of the main drawbacks of using a Fixture Setup Decorator is that that tests cannot be run by
themselves because they depend on the Fixture Setup Decorator to set up the fixture. One way we have
circumvented this drawback is to provide a means to push the decorator down to the level of the individual
tests rather than the whole test suite. This required a few modifications to the TestSuite class to allow the
Fixture Setup Decorator to be passed down to where the individual TestCase Objects are constructed
during the ?Automated Test Method Discovery? process. As each object is created from the Test Method it
is first wrapped in the Fixture Setup Decorator before it is added to the ?TestSuite Object's? collection of
tests.

Of course, this negates one of the main sources of a speed advantage of using a Fixture Setup Decorator by
forcing a new test fixture to be built for each test. In our case, this wasn't a problem because we were using
the decorator to replace the real database infrastructure with an in-memory database so we got our speed
improvement that way. (See Memory Improves Speed.)

Acknowledgements
I would like to thank all the clients and co-workers who shared the experiences which ultimately led to
these patterns. Michael Stal provided useful comments while shepherding some related patterns for
EuroPLoP 2004. I would especially like to thank my PLoP 2004 shepherd, Danny Dig, for all the detailed
comments he provided on these patterns.

References
[UTMJ] Johannes Link et al, “Unit Testing With Java : How Tests Drive the Code” Morgan Kaufmann
April 2003

[McKinnon] Endo Testing (Mock Objects)

