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INTRODUCTION

There are many techniques to generate code for Finite State Machines (FSMs).  Yet, to this day, software engineers design their own simple state machines from the ground up.  And each time they face the same challenges – trying to make their code work efficiently while preserving the structure of the FSM to preserve maintainability.  In many instances, software designers often have no access to tools that generate FSM code or find them too generic and not appropriate for their work.  It is often easier to implement simple, tailor-made state machines manually, especially with the aid of good design patterns.  And there are quite a few patterns to choose from, which poses a difficulty, because it is not easy to determine with pattern best fits the problem to solve.

This paper describes design patterns for writing FSMs by hand.  Each pattern describes a separate FSM element.  This approach examines closely relationships between different FSM elements.  It builds on the author’s previous work on classifying design patterns for FSMs [Ada03].  Patterns described in this paper provide different solutions depending on the reader’s answers to the following questions:  How frequently is the FSM going to change?  How much state-specific data is needed?  How complex is the transition function (i.e. is input event and current state sufficient or is there coupling to something outside the FSM)?  Does the FSM have to change at run-time?

Many other FSM-related questions are beyond the scope of this work.  This papers is not concerned with comparing advantages of specific programming languages while implementing FSMs.  All patterns are implemented in C++, but if other languages provide a better solution, they are mentioned as well.  This paper does not address the advantages and disadvantages of implementing FSMs by hand rather than by using code generators.  Also, all patterns described in this paper apply to a single FSM.  Interactions between multiple FSMs produce many additional patterns, which are not discussed in this paper.  See “Conclusion and Future Work” for more on this.

MOTIVATING EXAMPLE

Let’s consider the FSM for traffic lights at an intersection
.  The intersection itself is a good candidate to be modeled as an FSM.  However, it is easier to implement it as a composition of multiple FSMs.  A simple, two-street crossing, for example is easier to model with two FSMs, one to control the lights on the main road and another one for the lights on the side road.  Assume that all lights are equipped with sensors that detect the incoming traffic.  In addition to handling the input generated by the sensors, the FSMs also communicate with each other by sending messages.  To simplify the discussion, assume also that the main light is green by default.

Let’s analyze the sequence of light changes.  Initially, the main light is green but its sensor does not report any incoming traffic.  If the sensor of the side light FSM detects a level of incoming traffic that is sufficient to change the light, it generates a signal for the side FSM.  In response, the side light FSM sends an input to the main light requesting permission to turn green.  The input causes the main light to change to yellow, and then red.  At this point, the main light responds to the side light with an input granting the request and the side light turns from red to green. 
  The FSM models of these two lights are illustrated in Figure 1.  States are described as circles, transition functions are arrows that show the direction of the transitions and are labeled with the inputs that cause them.
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Figure 1.  Traffic lights FSMs – main light and side light

The main light FSM has four states (GreenLight, YellowLight, RedLight, and ReadyForGreen).  ReadyForGreen is a logical state does not correspond to a different physical light.  It indicates that the main light is still red, but it will turn green as soon as the side light turns red.  The input alphabet of the FSM consists of five elements (GetGreen, YellowLightTimeout, RedLightTimeout, IncomingTraffic, and IntersectionRed).  IntersectionRed indicates that the side light FSM has just turned red.   GetGreen and IntersectionRed inputs are generated externally (by the side light FSM).  The main light FSM generates the other three inputs internally.  The transition functions map all inputs to states according to Table 1. 

In the table, states are listed as columns; inputs are listed as rows, and each pair of state and input correspond to next state.  For each state, the main light FSM transitions to a different state in response to at most two inputs.  The other inputs are either ignored (marked with ‘I’), because they don’t give the FSM any new information or indicate errors (marked with ‘E’).  
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Table 1.  State transitions of the main light FSM

The error combinations of states and events should not occur.  For example, it is not possible to receive the RedLightTimeout event in the GreenLight state, because when the FSM is in the GreenLight state the timer is not running.  Note that from the RedLight state, the main light FSM will transition to the ReadyForGreen state on two internal inputs – when its timer expires or when an incoming traffic arrives.  In addition to the state transition (to ReadyForGreen), the main light FSM also sends GetGreen input to the side light FSM.

Similarly, the side light FSM consists of the same four states (GreenLight, YellowLight, RedLight, and ReadyForGreen).  Its input alphabet contains the same inputs as the main light FSM, except that it receives GreenLightTimeout rather than RedLightTimeout.  This is because the side light FSM is red by default and it remains green only for a specific period of time.  The GreenLightTimeout event is generated when that time expires.  The transition functions map all inputs to states according to Table 2 below, following the same rules as in Table 1.
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Table 2.  State transitions of the side light FSM

To implement the traffic light FSMs, it not sufficient to define states, input alphabet, and the transition functions.  The processing may result in generating more events (e.g. YellowLightTimeout in the main light FSM generates IntersectionRed input to the side light FSM).  To accommodate these needs, software models of FSMs usually define two additional elements: actions and FSM data.  Action is the sequence of steps performed by the FSM upon the reception of a specific input in a specific state.  FSM data is the additional information stored by the FSM.  This data can arrive along with the input (e.g. GetGreen could be accompanied by the number of cars waiting for the light) or be generated internally by the FSM (e.g. the amount of time that the light is green per hour).  These two elements are used together with the three original components of the FSA: states, input alphabet (in FSMs usually called events), and transition functions to provide the complete definition.  

CODE FOR THE TRAFFIC LIGHTS EXAMPLE

The two traffic light FSMs described above are simplistic.  But even in this simple form, they are not trivial to implement.  Let’s consider only one of the FSM, the main light.  The code below is a procedural-style implementation of the FSM in C.  Some details are omitted here for brevity.  For example, there is no distinction between ignorable (I) and erroneous (E) events.  Both types are considered “unexpected” events.

// main_light_fsm.h

enum FSMEvent{

  GetGreen, 

  YellowLightTimeout, 

  RedLightTimeout, 

  IncomingTraffic, 

  IntersectionRed

};

enum FSMState{

  GreenLight, 

  YellowLight, 

  RedLight, 

  ReadyForGreen

};

enum FSMTimer{

  YellowLightTimer,

  RedLightTimer

};

#define YELLOW_LIGHT_TIME 1.2 /* seconds */

#define RED_LIGHT_TIME 20.0

// Functions defined

int handleUnexpectedEvent(FSMEvent input);

int setTimer(FSMTimer timer);

int timeout();

int processEvent(FSMEvent input);

// main_light_fsm.c

FSMState currentState = GreenLight;

int handleUnexpectedEvent(FSMEvent input){

  // collect data about erroneous event and store it persistently

  return SUCCESS;

}

int setTimer(FSMTimer timer){

  switch(timer){

    case YellowLightTimer:

      // pass YELLOW_LIGHT_TIME to the timer facility

      return SUCCESS;

    case RedLightTimer:

      // pass RED_LIGHT_TIME to the timer facility     

      return SUCCESS;

    default:

      // log data about erroneous timer and store it persistently

    }

  return FAILURE;

}

int timeout(){

  // invoked by the timing facility

  switch(currentState){

    case YellowLight:

      return processEvent(YellowLightTimeout);

    case RedLight:

      return processEvent(RedLightTimeout);

    default:

      // log the erroneous timeout and store it persistently

    }

  return FAILURE;

}

int processEvent(FSMEvent input){

  switch(currentState){

    case GreenLight:

      switch (input){

        case GetGreen:

          // side light FSM requested light change - go to yellow 

          // light

          currentState = YellowLight;

          return setTimer(YellowLightTimer);

        default:

          return handleUnexpectedEvent(input);

        }

      break;

    case YellowLight:

      switch (input){

        case YellowLightTimeout:

          currentState = RedLight;

          // send IntersectionRed input to the side light FSM

          sideLightFsm->processEvent(IntersectionRed);

          return setTimer(RedLightTimer);

        default:

          return handleUnexpectedEvent(input);

        }

      break;

    case RedLight:

      switch (input){

        case RedLightTimeout:

        case IncomingTraffic:

          currentState = ReadyForGreen;

          // send GetGreen input to the side light FSM

          sideLightFsm->processEvent(GetGreen);

          return SUCCESS;

        default:

          return handleUnexpectedEvent(input);

        }

      break;

    case ReadyForGreen:

      switch (input){

        case IntersectionRed:

          // side light is now red, switch to green light

          currentState = GreenLight;

          return SUCCESS;

        default:

          return handleUnexpectedEvent(input);

        }

      break;

    default:

      // log data about invalid state and store it persistently

      break;

  }

  return FAILURE;

}

This code presents a complete, quick solution.  The bulk of the work is performed by the processEvent() function, which uses the incoming input event and the currentState to find the appropriate processing.  On the surface, it appears that this implementation is extensible.  It uses nested switch statements although the second level of switches handles at most two events and could have been implemented as an if statement.  Don’t let such apparent structure lull your sense of awareness.  This code is likely to break on the first attempt to extend it, because each change requires updates in multiple places in the code.

Let’s consider the implementation of the specific FSM elements.  Both states and events are enums.  It is easy to add new values, but adding new code for the corresponding processing is difficult.  Each new state requires new definition in the header file, a new case in the switch statement (possibly also in the timeout() method), and modifications of existing cases to implement transitions to the new state.  Actions are not structured at all, they are just blocks of code that correspond to event/state pairs.  Although setTimer() and handleUnexpectedEvent() methods seem to provide a level of code reuse, all actions could be implemented in a more structured manner (e.g. as functions).  This implementation of the main light FSM does not contain FSM data, but if it did, the data would most likely be stored in a global struct.  Lastly, state transitions are implemented as part of actions in a somewhat haphazard way (should the state change occur as the first or the last step of the processing? or perhaps somewhere in the middle?).  In short, this will work well only as long as there are no changes to the FSM.  

But this FSM must be extended before it can be useful.  Currently it does not to handle many features of traffic lights.  For example, to support left turn lights, two more states (GreenLeftArrow, YellowLeftArrow) and two more events (Yellow- and GreenLeftArrowTimeout) should be added.  Lights for pedestrians requires new states (Walk, DoNotWalk) to coexist with GreenLight state and two new events (WalkLightRequested and WalkLightTimeout).  Mechanical failures that cause traffic lights to go out of service also require a new state (BlinkingRed) and a new event (MechanicalFailure) that all states need to handle in the same way.  Supporting night-time lights requires adding BlinkingYellow state for the main light FSM (the side light FSM could reuse the BlinkingRed state).  And there is more.  So, what could be done to make this code more adaptable to changes?

There are many flexible FSM designs that enable graceful incorporation of such changes.  This paper explores some of them in greater detail.  Traffic light FSMs are used as examples throughout the discussion.

OVERVIEW OF THE PATTERNS

The remainder of this paper describes different patterns for implementing FSMs.  Each pattern focuses on a single FSM element.  They are divided into four categories corresponding to four FSM elements: states, events, actions, and state transitions
.  Each section is self-contained and different FSM elements are analyzed independently.  For simple FSMs, it is easy to separate FSM elements and to analyze them individually.  For more complex ones, interdependencies between elements become more visible, but the separation is important.  It allows dividing the implementation into discrete, small steps.

The first set of patterns describes ways to implement states.  States are the most critical, but also easiest to understand, parts of FSM, because each state has a value that can be manipulated.  This paper presents three ways to implement states: as enumerated values, methods, and classes.  These are three separate patterns, but it is easy to replace one with another. 

The second set of patterns describes ways to implement events.  Events are a set of inputs that FSM can recognize and act upon.  Events play a role complementary to states.  A combination of a current state and the incoming event dictates the specific behavior that the FSM needs to perform.  One may think about states as an array of methods and events as offsets to the array.  Another way to see them is as rows and columns in a two-dimensional array.  Lastly, it is also possible to consider events as an array of methods and states as indices into the array.  So, theoretically, events and states can be implemented similarly.  The only major difference between them is that states are internal to the FSM and events are usually generated by the external entities (but they can also be generated internally by the FSM).  Thus, events, just like states, can be implemented as enumerated values, methods, and classes.

The third set of patterns describes ways to implement actions, the behavior executed in response to reception of an event in a specific state.  In simple FSMs, an action is a one-line statement that performs state transition by assigning the new state to the currentState variable.  As such, it can be implemented anywhere in the code.  At the other end of the spectrum, it is possible to use sequences of actions to implement other actions, which suggests implementing actions as classes.  This paper describes three patterns for implementing actions: as unstructured code, methods, and classes.

The last set of patterns describes ways to implement state transitions, methods to change the current FSM state.  In many FSMs, state transitions are performed by actions.  Only more complex FSMs require a separate mechanism for separating actions and transitions.  Three patterns for state transition definitions are table, class, and state-driven transitions.

Each section introduces patterns starting with the simplest and evolving into more complex designs (see Figure 2).  The simplest designs from each category are the ones used in the example FSM code in the introduction.  The example uses ENUMERATED STATE, ENUMERATED EVENT, UNSTRUCTURED ACTIONS, and STATE-DRIVEN TRANSITION patterns.  See Appendix for summaries of other patterns.


[image: image4.wmf]ENUM

UNSTRUCT

ENUM

CLASS

METHOD

METHOD

METHOD

CLASS

CLASS

CLASS

TABLE

STATE

-

DRIVEN

S

T

A

T

E

E

V

E

N

T

A

C

T

I

O

N

T

R

A

N

S.


Figure 2.  Complete listing of FSM patterns.  Selected patterns described in this paper are shown in italics.  Arrows indicate that patterns are interchangeable.

Enumerated State

The main light FSM example, although written in C, could be easily adopted into an object-oriented C++ implementation by encapsulating all the functions above as methods in the class that implements the FSM.  In the example code, states are defined as enums, which is sufficient for the purpose of that example.  When an FSM has only few states, such as the main light FSM, defining a state as anything more complex than a simple data type seems wasteful.  There is nothing more to a state than its value (or name).  State attribute is simply a data value that indicates the current state of the FSM object.  The least complex way to refer to a state is to assign it a symbol.

Problem

How to define states as simply as possible?

On one hand, the object’s behavior is determined by an internal state that changes in response to events.  On the other hand, the behavior consists of changing the value of the current state.  Moreover, the object is small; it has only a few states, responds to only few events, and is not likely to grow, because all possible states (and consequently events) are already defined.

Solution

Fortunately, compilers make our life easier by assigning numbers as symbols.  Define states as enumerated values or integers.  To check the value of the current state variable, compare its value with a predefined set of constants.

enum FSMState{
  GreenLight, 

  YellowLight, 

  RedLight,   

  ReadyForGreen

};

Side note on other languages

Note that defining constants as enums guarantees that only valid values of FSMState can be used, because compiler performs the check.  But not all languages support enum.  A corresponding definition in Java would look as follows:

static final int S_MIN_STATE = -1;
static final int S_GREEN_LIGHT = 0;

static final int S_YELLOW_LIGHT = 1;

static final int S_RED_LIGHT = 2;

static final int S_READY_4_GREEN = 3;

static final int S_MAX_STATE = 4;

Two additional values, MIN and MAX are added to facilitate explicit checks to determine that a value of the state variable is larger than S_MIN_STATE and smaller than S_MAX_STATE.

An alternative way to encapsulate enums in Java is to implement a special class for them, as described in [Arm97].  Implementing them in a class ensures that the values, unlike in C++, are typesafe.

To associate a state with a specific behavior, use a switch statement, as in the example code in the introduction, or an if statement.  The original example code shows the association of enumerated states and their corresponding behavior.  The action is responsible for setting the next state.  Also, the code has similar structure for all input events.

Consequences

+ State definition is simple and concrete.  Each state has a well-defined name and a corresponding value.  The compiler guarantees that the values are immutable (const), while names make code more readable.  Imagine what would happen if states were just numbers (as in the parser example, Figure 1) and a new initial state was added.  Some (if not all) of the states would need to be renumbered (effectively, renamed).  Having both names and values for states prevents this complication.  If state number changes, the change is isolated to only one place, where the mapping of name to value is defined.

- Changes of state definitions may affect a lot of code.  States defined as ints and enums are usually stored in header files so that they can be included in multiple files.  Modifying them is likely to result in recompiling many files.  It is possible to avoid this problem by defining state values in implementation files instead, but that makes them harder to find without proper IDE support.

- States are not modeled as independent entities.  This pattern separates the value of a state from its behavior.  The behavior is associated with other FSM elements, which makes it harder to understand the processing in each state.  This design is applicable if the number of states is small and not likely to change.  

- This solution is not object-oriented.  Data (i.e. value of the currentState variable) is kept separately from the code that manipulates it.  Most programming languages do not support associating behavior with enums or ints the way data and behavior is associated with objects.

Related Patterns

To extend the FSM to define and add new states, consider STATE METHODS or STATE CLASS as more flexible models to define states.  

In the context of ENUMERATED STATE, events can be defined using ENUMERATED EVENT or EVENT METHODS.  It does not make sense to implement events as classes for two reasons.  The first is purely pragmatic.  FSMs that use ENUMERATED STATE and UNSTRUCTURED ACTIONS are designed for simplicity, so events should also be designed as simply as possible.  The second reason is aesthetic.  Consider the code for mapping states to actions in UNSTRUCTURED ACTIONS.  If this code were to be moved to the event class, there would only be one method in the event class.  Having a class with one method is ugly and should only be done when necessary.  It is not necessary in this case.

State Methods

One of the shortcomings of the traffic light FSMs, as described in the motivating example, is that the same algorithm is used to change lights during the day as well as at night.  But the nighttime traffic is usually light and most of the traffic lights are not needed.  More sophisticated traffic lights solve this problem by entering a night mode – the main light blinks yellow (informing the drivers to proceed with caution) and the side light blinks red (which is equivalent to a stop sign).  

Adding this feature to the main light FSM requires a significant extension of the original design.  The main light FSM needs to support new state, BlinkingYellow, and the side light FSM needs to support BlinkingRed state.  Two new events, EnterNightMode and ExitNightMode, indicating to enter into the new states and to exit them, need to be added to both FSMs.  To implement these changes, make states explicitly bound to their behavior by encapsulating the behavior of each state in a method. 

Problem

How to add new states easily?  How to add new behavior to existing states?

On one hand, the object’s behavior is determined by an internal state that changes in response to events.  On the other hand, the complete behavior of the object should be implemented in one class to avoid exposing its internals to other entities, the object has only a few states, responds to only few events, has a relatively simple behavior, and the object is not likely to change extensively.  Lastly, good performance is preferred over maintainability.

Solution

Implement the behavior of each state in a separate method.   

Table 3 shows the state transition table for the main light FSM with the support for the night mode highlighted in red.  Note that none of the existing transitions need to be modified.  Instead, all states now need to support the new events.
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Table 3.  Main light FSM with support for night mode.  Changes made to Table 1 are shown in red italics.

Code below shows the state method for GreenLight state that includes the handling of EnterNightMode event.

void MainLightFSM::greenLight(FSMEvent incomingEvent){

  switch (incomingEvent) {

    case GetGreen:

      // Side light FSM requested light change - transition to 

      // yellow light state

      currentState = &MainLightFSM::yellowLight;

      setTimer(YellowLightTimer);

      break;

    case EnterNightMode:

      // If the sensor does not report incoming traffic, 

      // change the light to blinking yellow 

      if (!isIncomingTraffic()){

        currentState = &MainLightFSM::blinkingYellowLight;

      }

      else { // if not, try again, later

        setTimer(RetryNightMode);

      }

      break;

    // other events

}

Note that there is an additional condition for changing the lights to the night mode.  In case of heavy traffic, more checks are required to ensure that the light does not change from green to blinking yellow, because it will appear to the drivers as regular yellow light for a period of time long enough to cause problems.  A possible solution is to add a timer that generates the EnterNightMode event at discrete intervals (specified by RetryNightMode) until the state change is performed successfully.

To define the FSM using state methods, define the current state as a pointer to the current state function.  

const MainLightFSM* currentState;
In addition, define processEvent() method on the FSM.  This method is invoked by the Client to send an input event.  Define it to invoke the current state method passing in the received event.

void MainLightFSM::processEvent(FSMEvent event) {

  (this->*(currentState))(event);

}

Note that the use of function pointer as the indicator of the current state is not an optimal solution, because it is no longer possible to query the current state for its name.

Side note on other languages

This is not a problem in languages that fully support reflection, e.g. Smalltalk.  In Smalltalk, each state can be stored as a symbol that can be invoked as a method.

MainLightFSM>>processEvent: anEvent

  self perform: currentState withArgs: (Array with: anEvent).

MainLightFSM>>greenLight: anEvent

  anEvent = #GetGreenEvent ifTrue

    [self setimer: #YellowLightTimer.

     self currentState: #yellowLight.].

  “handle more events here”

Message perform: withArgs: in the processEvent: method invokes the state method whose name matches the name of the current state symbol.

Variant - State Methods Struct [Hen03]

A small variation on the concept of state methods is to define each state as a collection of methods, where each method corresponds to the processing of a specific input event in that state.  Since each state needs to handle all events, define the state method struct as a list of function pointers corresponding to functions for all the events, listed in a specific order.

// state type declaration – list of events

typedef void (MainLightFSM::*function)();

struct MainLightState {

  const function getGreen, 

                 yellowLightTimeout,     

                 redLightTimeout, 

                 incommingTraffic, 

                 intersectionRed,

                 enterNightMode,

                 exitNightMode

};

The keyword const above indicates that the function pointers can only be assigned once, at initialization.

Define the current state of the FSM class as the pointer to the appropriate instance of the MainLightState struct.  Declare one static instance of MainLightState struct for each concrete state.

static const MainLightState green_light;

static const MainLightState yellow_light;

static const MainLightState red_light;

static const MainLightState ready_for_green;

static const MainLightState blinking_yellow_light;

For each state, put the code for each action in a separate method.  Map each event to its corresponding action method.  The mappings correspond to transitions defined in Table 3.

const MainLightFSM::MainLightState MainLightFSM::green_light = 

{

  &MainLightFSM::setYellowTimer,

  &MainLightFSM::error,

  &MainLightFSM::error,

  &MainLightFSM::ignore,

  &MainLightFSM::ignore,

  &MainLightFSM::tryEnteringNightMode,

  &MainLightFSM::error

};

Only setYellowTimer() and tryEnteringNightMode() action methods are specific to the GreenLight state, because they encode the behavior required to perform transitions from GreenLight to YellowLight or BlinkingYellowLight respectively.  Note that incomingTraffic and intersectionRed events do not require any action in the GreenLight state.  They are using a default ignore() method, which provides uniform handling of events to ignore.  The same idea applies to the use of error()  method.

Note that this pattern describes more than just a way to implement states of the FSM.  It describes a complete FSM implementation with behavior structured around states.  Initially, the Client invokes an event method, such as enterNightMode().  

void MainLightFSM::enterNightMode(){

  (this->*(currentState->enterNightMode))();

}

The event method invokes the method corresponding to the location of enterNightMode() event in the MainLightState structure.  In this case the method will be resolved to tryEnteringNightMode().

void MainLightFSM::tryEnteringNightMode(){

  if (!isIncomingTraffic())

    currentState = changeState(blinkingYellowLight);

  else
    setTimer(RetryNightMode);

}

Note that event methods must be public, so that the Client can invoke them, while action methods should be private.

Consequences

+ The complete state behavior is defined explicitly in one place in the code.  The behavior corresponding to each state is encapsulated in a separate method (or a set of methods).  Moreover, explicit mapping of events to actions is encoded in the state definition.  All the FSM data and behavior is implemented in one class.

+ Often an optimal implementation of states.  For FSMs where the state-dependent behavior is not too complex, the use of state method results in a very compact implementation.  

+ Good performance.  Only two levels of indirection are required to handle each incoming event; one to select the current state and one to process the specific event.  This implementation is as efficient as ENUMERATED STATES.

+ Short methods.  (Variant only) All actions and events are implemented in separate methods, which make them simple to understand.  This, however, does not translate into simplified understanding of the behavior from each state’s perspective as noted in the last liability.

- Adding new states and events affects the existing code.  Adding new events means modifying each concrete state.  In the case of the variant, it also means modifying the definition of the state struct.  While definitions of new states are isolated from the existing code, at least one existing state needs to be modified to add a state transition to the new state.

- This design does not handle behavior associated with transitions.  FSMs can define behavior that occurs specifically during the state transition (i.e. when the state is not defined).  It is not possible to implement such behavior here.

- Poor code readability. (Variant only)  It is difficult to understand the behavior of each state, because its implementation is spread out over many methods that are not tied explicitly to the state.  The state is encoded in a pseudo-tabular structure that shares the disadvantages of the tabular form (behavior logic and transitions cannot be viewed together) and the disadvantages of describing states explicitly (behavior and state changes are mixed together).  Only small FSMs can benefit from this explicitness.

Related Patterns

To make state definition flexible and extensible, use STATE CLASS.

If this design is too complex and unlikely to change in the future, consider scaling down to ENUMERATED STATES.  Since all the FSM elements are well separated in STATE METHODS, it is easy to map them back to less complex implementations. 

The original version of this pattern uses ENUMERATED EVENT, while the variant is usually associated with EVENT METHODS.  Both use STATE-DRIVEN TRANSITION for changing the current state.  The original pattern can be used with either UNSTRUCTURED ACTIONS or ACTION METHODS, while the variant uses only ACTION METHODS.

State Class [GHJV95]

Another major feature missing in the traffic light FSMs is the left-turn light.  Usually, intersections have a separate left-turn lane, which is controlled by two separate lights – green turn arrow and yellow turn arrow.  Adding them requires even more extensions to the original FSMs.  Turn lights require two new states (GreenLeftArrowLight and YellowLeftArrowLight) and corresponding events.

By now, it should become apparent that this FSM model requires many extensions before it can become a complete traffic light system.  Adding more features means adding more states to the FSM.  If the code for each state is separated from other states (e.g. in a separate source file), adding a new state will not affect existing ones.  To isolate a state from other states most effectively, encapsulate each one in its own class.

Problem

Adding a new state results in changing the code of existing states.  How can we protect the existing code from unnecessary changes?

On one hand, the object’s behavior is determined by an internal state that changes in response to events.  On the other hand, the organization of the logic that manages an object’s state should be able to scale up to many states without becoming unmanageably large.  Adding new states should not affect the existing code, yet new states should be able to reuse the existing code easily.  The object should be able to handle a large number of events.  Actions performed in response to incoming events should be non-trivial.  Lastly, the design should shield the Client from the changes of implementation at the cost of more complex internal implementation.

Solution

Implement each state as a class.  Build a state class hierarchy that shares a common interface, corresponding to the incoming events.

To present a concrete example, let’s update the main light FSM from Figure 2 to support the two new states.  It is also necessary to add a new event that indicates the green arrow light timeout.  The implementation of the yellow arrow light can reuse the event and the timer used for the yellow light, because both yellow lights should have the same length.  These new states are inserted between ReadyForGreen and GreenLight states.  Figure 4 contains the new state diagram of the main light FSM.
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Figure 4.  State diagram of the main light FSM with support for left turn signals.  Changes made to Figure 2 are shown in red.

Adding new states requires changes in state transitions.  Table 4 includes the new transitions needed to support the updated FSM.  Note that, with the exception of one transition (in ReadyForGreen state upon the reception of IntersectionRed event), the original transition table remains unchanged.  All the existing states simply treat the new event as an error.  This is not always the case.  For example, adding night-lights, described in STATE METHODS, would require specifying new transitions for each of the existing states.
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Table 4.  Main light FSM with support for left turn signals.  Changes made to Table 1 are shown in red italics.
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Figure 5.  Class diagram of the State Class

Updated state diagram and the transition table make it easy to map each state to a class.  Because all classes should handle each event, all classes share the same interface, defined in the abstract MainLightState class.  Figure 5 depicts the complete class diagram of the State Class.  All subclasses of the State class hierarchy inherit all the methods from the base class.  These methods are omitted from the figure for readability.

The Client is separated from the State class hierarchy and needs to know only about FSMContext class.  This class also keeps track of the current state, handles timers, and stores FSM-specific data (if any).  

Only State classes perform the actual processing, so they know when to perform state transitions.  But the current state is stored in the Context class, so it provides the changeState() method.  To enable state classes to set next state (and to modify the class data), State classes also need a reference to the Context class, which is passed in as a parameter to each event method.  Let’s give Table 3 a closer look.  Each cell in the table corresponds to exactly one state and one event.  In the code, each cell corresponds to a body of each concrete event method.  Each method corresponding to a cell that specifies a state transition will call changeState() method.  This is one way to map actions to events.  Another one is to encode the transition table directly in the code.  STATE-DRIVEN TRANSITION explores the first approach in more detail.  In contrast, TRANSITION TABLE describes many possible ways to implement the second approach.

Creating and deleting state objects on each state change can be costly.  But since all FSM data is stored in the Context, State classes are context-free and only implement the state-specific behavior.  As a result, it is sufficient to keep one instance of each concrete State class (using the Singleton pattern [GHJV95, p. 127]).  For each instance of the FSM, and one Context object is created.  Single instance of each concrete State class can be shared by multiple Context instances, according to the Flyweight pattern [GHJV95, p. 195].  Alternatively, instances of the State class can be created and destroyed as needed, if this overhead is acceptable.  Use this approach when not all states may be entered during the execution of the FSM and state changes do not occur frequently.

Some events may be handled the same way by most (or all) classes.  For example, handleUnexpectedEvent() method in the original code of main light FSM is used to handle many events.  Such behavior can be implemented in the base class and overridden by the concrete classes that require different processing.  One drawback of this approach is that it is easy to forget to implement the behavior.  With abstract methods, the responsibility to check for completeness is deferred to the compiler.

Note that this pattern describes more than just a way to implement states of the FSM.  It describes a complete FSM implementation, where states play the most important role and other FSM elements are used to complement the state.  Each state handles events that are implemented using EVENT METHODS.  The body of each event method is implemented as ACTION METHOD BODY.  State transitions are encapsulated in calls to changeState() method according to STATE-DRIVEN TRANSITION.

Variant - Single State Class [Pal97]

An alternative FSM implementation of States as classes is to have one State class and to create one instance of the class for each state.  This design is summarized in Figure 6.  To implement the FSM as Single State Class, define a State class (StateMapper in the figure) that contains a table mapping incoming events to action functions.  Make each state an instance of StateMapper class to define different mapping of events to actions.  Have the Context class (State-Dependent Object in the figure) hold a reference to the current state and provide the event-handling interface for the Client.  In addition, implement all actions as methods in the Context.
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Figure 6.  Class diagram of Single State Class

Incoming events are processed similarly to the State class.  First, the Client invokes handleEvent() method, passing an event as input.  The Context forwards this request to the State object corresponding to the current state.  

void StateDependentObject::handleEvent(FSMEvent event) {

  currentState.processEvent(*this, event);

}

The State object then looks up the method that corresponds to the incoming event in eventActionMap.  Lastly, it invokes the method back on the Context
.  

void StateMapper::processEvent(StateDependentObject& context,  

                               FSMEvent event) {

  Action action = lookupAction(event);

  // Lookup returns an action function, execute it

  (context.*(action))();

}

In the process of executing an action, State-Dependent Object may replace the current StateMapper object with a new one, corresponding to the new state.

This variant is clearly simpler and more compact than the original state pattern.  It also presents a complete FSM design that uses ENUMERATED EVENTS, ACTION METHODS, and TRANSITION TABLE.  However, this design is less modularized and will not scale well as new states and events are added, because new action methods are added to the Context class making it monolithic and difficult to maintain.

Consequences

+ State-specific behavior is localized and partitioned between states.  Changes to each state are completely isolated from other states.

+ State transitions are performed explicitly in the code.  Each state knows exactly what is the next state to transition to in each situation.

+ Adding new states is easy.  Add a new subclass of State and provide implementation of all the actions.  If base class provides reasonable default behavior, override only those actions that require different handling.

+ Standardized interface.  All State classes are guaranteed to provide the handling for all events.  Otherwise, the code will not compile.

+ Having the Context class increases encapsulation.  The client only needs to know about the Context, regardless of how complex the internal FSM implementation is.  The implementation can change without affecting the Client.

+ Behavior is separated from state changes.  A small modification of the model described here would be to make the Context class perform state changes.  Then, concrete State classes would only implement the behavior.  The Context can decide which action to invoke on the State class and when to perform the state transitions.  On the negative side, all the state changing logic is stored in one class, the Context.  It may result in the explosion of the size/complexity of this class.

- This pattern makes the FSM design more complex.  The state element is implemented in two classes (State and Context), which may be too complex for a simple FSM.  Consider for example an FSM with 3 states and 4 events.  It can be implemented with STATE METHODS in 5 methods and one class.  State Class would require 20 methods, scattered over 5 classes, to accomplish the same result.

- Additional space requirements.  New objects take up extra space, but state objects can be shared.  Only one instance of each State class is needed.  Multiple instances of the Context class can interact with the same State instance, because all the instance-specific data is stored in the Context, while the State class only implements context-free behavior.

- The Context class is responsible for providing the correct mapping between incoming events and the behavior defined by the State class hierarchy.  The context class delegates all external events to corresponding methods in the interface of the State class.  This results in a tight coupling between the Context class and concrete events.

- Concrete states are not completely isolated.  It is not possible to add a new subclass of the State class without modifying the existing classes.  At least one existing class must be modified to add a state transition to the new state.

Related Patterns

If this pattern is too complex for the problem at hand, consider replacing it with STATE METHODS or even ENUMERATED STATE.  

This pattern is usually combined with EVENT METHODS or EVENT CLASSES (to model incoming events) and ACTION METHODS or ACTION CLASSES (to model actions).

This pattern cannot be combined with TRANSITION TABLE, because it uses STATE-DRIVEN TRANSITION to perform state transitions.

Event Class

The traffic light project, implemented diligently according to the FSM designs described in this paper, has been a huge success.  Now a large city is interested in deploying this system in all of their traffic lights.  Their transportation department has only one request.  Occasionally all the traffic lights on all the intersections need to be able to communicate with every other traffic light.  This is necessary when a problem occurs in the central traffic control office.  Another vendor provides the software for the central office, so you should not be surprised.  When the central traffic control goes out of service, the traffic lights system should recognize the problem and should start behaving like a distributed system.  Each traffic light FSM must determine the optimal scheduling of the system and its own light by communicating with all other lights.

Implementing a distributed FSM does not require adding new states.  Instead, the algorithm to determine the next state changes, because the new state is now determined by examining data received from other traffic lights.  That data is passed as events that carry additional, event-specific information.  To associate the data with its processing, encapsulate each event in a class.

Problem

Need to implement well-encapsulated events that can be easily passed within an FSM and between FSMs.

On one hand, the object’s behavior is determined by an internal state that changes in response to events.  On the other hand, the number of events is significantly larger than the number of states and more likely to fluctuate.  Events should be implemented so that they can be added and removed at run-time (while the number of states is unchanged).  Lastly, events should know how to execute the behavior associated with them, including transitions to the new state.

Solution

Build a class hierarchy of events.  For each event object, define how to analyze its input, how to store the data in the FSM, and how to perform the event-specific action (including 
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Figure 8 State diagram of the main light FSM with Events modeled as classes.
state transition) for the current FSM state.  To make events flexible, the interface of the FSMEvent class hierarchy needs to account for many cases: can the event be processed? should it be ignored? does its reception indicate an error?  The left side of Figure 8 illustrates the FSMEvent hierarchy.  FSMEvent declares a wide interface, but defers all of the implementation but processEvent()to derived classes.

void FSMEvent::processEvent(FSMContext& ctx){

  context = ctx;

  processInThisState(ctx.currentState());

}

Only concrete event classes know how they can be processed in each FSM state, so implement the processInThisState() method in each derived class.  Depending on the current state, the event may be processed completely (in proceed() method), treated as error (in handleError() method), or ignored.  

class GetGreenEvent: public FSMEvent{

  void processInThisState(FSMState& state){

    if (state == GreenLightState::instance())

      proceed();

    else if (state == ReadyForGreenState::instance())

      handleError();

    else

      ignore();

  }

  void proceed(){

    analyzeInput(); // store event data in the Context
    context.changeState(YellowLightState::instance());

    YellowLightState::instance().action(context);

  }

  void handleError(){

    // sender should not have sent this message now

    MsgOutOfOrderEvent* event = new MsgOutOfOrderEvent(ctx);

    sender.process(*event);

  }

};

This is the only FSM pattern that requires the Client of the FSM to be actively involved in the processing.  The Client is responsible for creating the appropriate event object, for populating its data, and for passing it to the appropriate FSM.  Typically, Clients should not have so much responsibility.  However, in this case, Clients are other instances of the FSM, so they already implement this processing.

Note that encapsulating events in classes described here produces an event-centric FSM design.  Designing such a FSM implies that the other FSM elements must adhere to specific constraints.   States implement only event-independent behavior (e.g. setting timers on the FSMContext class) and their interface can be as small as a single method.  Actions are methods on events and states.  State transitions are implemented inside Events.  Refer to Figure 8 for the complete picture.  This is clearly not a well-balanced FSM design.  Event classes perform almost all of the processing, while other elements are underutilized.  A more balanced, but less flexible version of this pattern is described below.

Variant – Event Type classes [Ack95]

Another way to implement distributed FSMs is to separate the analysis of event data from processing the events.  To accomplish this, partition the event handling between two class hierarchies.  Make Event classes responsible for analyzing their data and State classes responsible for performing actions depending on that data.  Have the FSM associate each incoming event with an Event class that knows how to interpret its data.  Once it stores the data in the FSM, make the Event class invoke the corresponding method on the current state object.
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Figure 9.  FSM design using Event Type classes

In this implementation of Event classes, Clients are not passing objects of type Event, but rather populating the event data to pass to the FSM.  The FSM itself needs to match each event data with the Event class that can act as its wrapper.  To make this possible, each Event class provides a query to check if it can handle a specific event and a method to perform the processing.  Define the interface of superclass MainLightEvent with two methods (see Figure 9).  The isWrapperFor() method checks whether the event type passed in EventStruct can be handled by this subclass of MainLightEvent class.  The processEvent() method interprets the data associated with the event (passed in by the Client in the EventStruct) and invokes the proper processing.  The actual processing is defined in the current FSMState class.

Implement this interface in all MainLightEvent subclasses.  Because all event data is passed in the EventStruct on each method invocation, event classes are context-free.  Only one instance of each event type is needed so define all MainLightEvent subclasses using the Singleton pattern [GHJV95, p. 127].

class GetGreenEvent: public MainLightEvent {

  bool isWrapperFor(const struct EventData& es) const {

    return (es.event == E_GET_GREEN) ? true: false;

  }

  void processEvent(FSMState& state, struct EventData& es){

    // interpret event data

    analyzeInput(es);

    // ask state method to process it

    state.getGreenAction(*this);

  }

  static MainLightEvent& instance();

};

To make this solution even more flexible, event data encapsulates information about other events that may need to be handled by the FSM.  For example, an instance of GetGreenEvent, in addition to its usual data, may include additional data that indicates a global change, such as “switch to distributed mode.”  Such data would instruct the processor of the incoming event to modify the set of events that the FSM could handle by registering and deregistering events at run-time.  Figure 10 shows the sequence of method calls illustrating this case.
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Figure 10. Processing of getGreenEvent that registers two new events with the FSM

Note that encapsulating events in classes described here produces an event-centric FSM design.  Designing such a FSM implies that the other FSM elements must adhere to specific constraints.  Figure 9 illustrates one FSM design using Event classes based on [Ack95].  States are implemented in the FSMState hierarchy and follow the rules of STATE CLASS pattern.  The FSMContext class does not define the Client interface, because this pattern can support multiple FSMs, each with its own Context class.  Instead, FSMContainer provides the initial interface for the Client.  It determines which Event class should be invoked by querying all currently registered Events.  Each Event class analyzes the incoming event and data before forwarding it to the currentState.  Aside from these modifications, the FSM operates according to the rules of STATE CLASS: ACTION METHODS define the interface of the FSMState classes and transitions are performed using STATE-DRIVEN TRANSITIONS.

This FSM design is more balanced than the original pattern.  The processing is separated between two class hierarchies, Events and States.  But it is less flexible than the initial version, because it can process only the events that have been defined at compile time (see Consequence 3).

Consequences

+ Mapping of the incoming event to its processing is encapsulated in the Event class hierarchy.  Each incoming event is initially analyzed in the corresponding Event class.  The class knows how to process the event (original case) or which entity to invoke to perform the processing (variant).

+ Adding new events does not require changing existing code.  (Original case only) Events know how to process themselves and most of the processing is encapsulated inside of them.  This is useful when building FSMs that have a constant number of states, but need to support ever-expanding set of events.

+ Two FSMs running different versions of the code can communicate.  (Original case only) FSM need not know that it is processing a newly defined event, because that event’s processing is completely encapsulated in the event object.  If the event object interfaces correctly with the FSM, it can process itself.  This is useful for software upgrades.

+ Can register and un-register events at run-time.  (Variant only) FSM keeps a list of currently supported events.  The list can grow and shrink as events in the system change.  Thus the size of the FSM is tunable.  If the additional events are only used in rare occasions, the overhead of registering and deregistering them is acceptable.

- Too complex for most FSMs.  Implement Events as classes only if the number of valid events can vary at run-time.  Otherwise, events are best modeled as data that is analyzed from the perspective of the current state and processed by actions.

- FSM implementation is not balanced.  (Original case only) Most of the processing is implemented in Event classes, while responsibilities of other FSM elements are limited.

- Only analysis of event data is better modularized.  (Variant only) This pattern does not make passing events easier for the Client.  The Client does not pass Event objects nor does the Client define the method to execute when the event in processed.  Client has only two options: pass all events to one method (processEvent()), or invoke a different method for each event.  Encapsulating event types in classes makes the FSM code more readable, but from the Client’s perspective the design is not different from EVENT METHODS or ENUMERATED EVENT.

Related Patterns

If the additional complexity of separating events into classes is no longer necessary, scale down to EVENT METHODS.

This pattern is combined with STATE CLASS, ACTION METHODS, and STATE-DRIVEN TRANSITION to define a complete FSM.  Data passed with the event is used to enable run-time updates of new events.  This is not the optimal solution in a system with many events, because the state transition code becomes too complex.  An alternative way of implementing FSMs with events reconfigurable at run-time is to use TRANSITION TABLE CLASS.

Action Class [vGB99]

A recent addition to traffic lights is the ability to control them remotely from emergency vehicles (e.g. ambulances).  This feature is especially helpful during the rush hour when intersections are packed with cars and emergency vehicles have less ability to maneuver around the traffic.  By communicating with the light from inside the vehicle, it is possible to change the red light to green light faster.  It is also possible to keep the green light on longer than usual.

To implement this feature correctly, it is necessary to pass through (possibly many) intermediate FSM states.  It is not feasible to expect that the operator of the emergency vehicle would send in multiple events sequentially.  Instead, one event should produce a (possibly long) sequence of actions.  The traffic light FSM itself needs to invoke the actions in the appropriate order.  In the simplest case, all intermediate actions will be empty; FSM will pass through all the states until it reaches the green light.  But it is also possible to perform additional processing in the intermediate states.  Only the sequence of state transitions needs to be preserved.  Thus it makes most sense to associate such behavior with state transitions, rather than states.  

One way to implement the support for the emergency vehicles is to associate the incoming event with a sequence of actions.  To accomplish this, actions of the FSM should be implemented so that they can be easily combined into sequences, can be stored as well as replayed without duplicating the code.  To do so, implement actions as classes.

Problem

Need an extensible model for actions so that they be reused, undone, composed into sequences and/or attached to other FSM elements.

On one hand, the object’s behavior is determined by an internal state that changes in response to events.  On the other hand, the FSM encapsulates a lot of complex behavior, implemented as individual actions.  It should be easy to reconfigure actions, to add new actions, and to undo previously performed actions at the cost of lower performance.  To limit the unnecessary duplication of code, it should be possible to compose new actions out of existing ones.  Lastly, it should be possible to keep the implementation of actions intact while the number of states, events, and transitions fluctuates.  

Solution

Encapsulate each action in a separate class.  Combine all new classes into the Action class hierarchy.  Action class hierarchy is likely to be large; usually there are more actions than states.  Fortunately, actions should be small – their interface consists of only one method, executeAction(), that performs the processing associated with the action.

class MainLightAction {

  virtual void executeAction(FSMContext& ctx, 

                             FSMData& data) const = 0;

};

This pattern supports many types of actions: actions executed at entry to a new state (state entry), at exit from a state (state exit), and on state transitions (which may or may not lead to a change of FSM state).  From the perspective of the action class, it is irrelevant which type of action it implements.  Each can be used as an entry, exit, or transition action.  Name each MainLightAction subclass after the action it performs so that it can be used in all cases.  Here is an example of an action that can be used to support emergency vehicles:

class BypassThisStateAction: public MainLightAction {

  void executeAction(FSMContext& ctx, FSMData* data) const { 

    // Optionally, store info about this emergency vehicle,

    // passed in FSMData, if any.

  }

  static MainLightAction& instance();

};

This action can be used in many transitions.  Existing actions can also be changed to classes easily.

class GreenToYellowLightAction: public MainLightAction const {

  void executeAction(FSMContext& ctx, FSMData* data) { 

    TimerObject* t = new TimerObject(YELLOW_LIGHT_TIMER);

    t->startTimer();

    ctx.storeTimer(*t);

  }

  static MainLightAction& instance();

};

It is also possible to add new, generic types of actions, such as state entry.  By default, state entry may require storing statistical data about the length of each light.

class DefaultStateEntryAction: public MainLightAction {

  void executeAction(FSMContext& ctx, FSMData* data) const { 

    // peg stat for state entry, e.g. current timestamp

  }

  static MainLightAction& instance();

};

Note that this pattern describes more than just a way to implement FSM actions.  The use of Action Class implies a specific action-centric FSM implementation.  One such FSM implementation is described in [vGB99] and summarized in Figure 12.  Action objects perform all the important processing.  Other FSM elements merely link actions together and invoke them in the proper order.  FSMTransition class (described in detail as Variant I of TRANSITION CLASS) executes actions related to each transition.  FSMState executes actions related to entering and exiting each state.  The Action objects are context-free (only one instance of each object is required).  On each invocation, action receives the FSMContext object and the incoming EventData object so that it can modify FSM data stored in FSMContext.

Since actions described here can be combined into sequences, stored, and replayed, the best way to implement them is to use the Command
 pattern [GHJV95, p. 233].  Mapping the classes to the terminology of Command pattern, all Actions play the role of Commands.  The FSMContext, FSMState, and FSMTransition classes play the role of Invokers, because they execute the Actions.   FSMContext invokes the initial action, FSMState invokes entry and exit actions, and FSMTransition invokes an action on transition.  Lastly, FSMContext class is the Receiver, because it stores the data that Actions update while they execute.
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Figure 12.  FSM design using Action classes
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Figure 13. New event causes a state change and an invocation of three action methods

Only the FSMContext class contains instance-specific data.  All the other classes are context-free.  The FSMContext object knows only about the concrete FSMState objects, so it delegates the processing to the current instance of the FSMState class.  The state class (which may also invoke a concrete action) checks whether a state transition is required by querying its FSMTransition object.  Lastly, the current FSMTransition object invokes a concrete action corresponding to the transition.  The reference to the FSMContext object is passed along in each step.  Figure 13 shows the sequence diagram for a typical state change.

Note that the implementation of FSMState used here differs from the STATE CLASS implementation.  In this implementation, there is only one state class, FSMState.  Each state is an instance of that class and defines its transitions as mappings of incoming events to FSMTransition objects (using TRANSITION TABLE CLASS rather then STATE-DRIVEN TRANSITION).  Each instance defines the behavior of each state by referencing an entry and exit action, which is invoked appropriately when state change occurs.

Variant – One Action class [YA98a]

An alternative way to implement action class is to define a single action class that contains all the action methods.  This variant is used in “A Pattern Language of Statecharts” [YA98a].  Have the Action class encapsulate each action in a method, which is invoked by concrete state classes to handle incoming events.  Define state-independent actions as methods on the Action class.  Define the State base class as a subclass of the Action class.  Redefine state-specific actions in the concrete State classes.

Consequences

+ Actions are independent entities.  Modifications to the code of one action are isolated from all other code.  Various types of actions (on entry, on exit, on transition) can be reused in all contexts without changes.  For example, an entry action of one state can be used as an exit action of another state if they have the same behavior.
+ Actions can share behavior through inheritance.  It is possible to subclass actions and to extend their behavior incrementally.

+ Actions can delegate execution to other actions.  Every incoming event handled by the FSM is usually mapped to a single initial action, but multiple actions may be executed before the processing completes.  Smaller and more self-contained the actions are more reusable.

- This design is too complex for most systems.  Building a hierarchy of classes so that they implement one method is usually not needed, unless actions are complex and can be reused in many contexts.

- Additional levels of indirection.  Separating the behavior into many action classes results in many function calls between classes.  In the worst case, one exit action, one transition action, and one entry action needs to be executed on each state transition, which may have a negative effect on the performance.

Related Patterns

ACTION METHODS are by far the most typical way of implementing actions in the FSM.  Revert to them whenever this pattern seems too complex for the problem at hand.
The decision to implement actions as classes implies a specific FSM implementation, where states and (optionally) transitions need to be defined as classes as well, while events should not be classes.  Action classes contain the behavior for processing the incoming events.  Defining actions as classes implies that the events should be defined as a data type that stores the value of the event, but not its behavior.  This pattern typically appears in FSMs designed using STATE CLASS, ENUMERATED EVENT, and TRANSITION TABLE CLASS.

Transition Table Class [Pal97] [vGB99] [FR98] [SC95]

Let’s reconsider the problem of implementing a distributed traffic light FSM.  Under special circumstances, each traffic light needs to communicate with every other traffic light.  Such communication requires additional data transmission between traffic lights.  Fortunately, this situation occurs only in emergency cases and does not produce additional processing overhead during regular operation.  

The solution described in EVENT CLASS adds a new set of events that are used specifically in the distributed case.  All events (and their handling) are encapsulated in classes and the additional events are instantiated only in that case.  An alternative design of the distributed FSM is from the perspective of transitions, rather than events.  We can add simple events for communication between FSMs, but put the logic for handling them inside the transition mechanism that reconfigures itself while entering the distributed mode.  If the transitions are hard-coded (in a TRANSITION TABLE or inside STATE-DRIVEN TRANSITION), they cannot be easily modified.  Were state transitions encapsulated in a separate class, the FSM would be able to register and deregister transitions at run-time.  So, encapsulate the state transitions in a class.

Problem

Need to define a flexible state transition mechanism that can be manipulated at run-time.

On one hand, the object’s behavior is determined by an internal state that changes in response to events.  On the other hand, the transitions should be implemented separately from the behavior, because the number of transitions fluctuates as states and events are added, removed and modified.  It should be possible to add and remove transitions at run-time.  Lastly, transitions should know how to execute the behavior associated with them.

Solution

Define a single transition table class to encapsulate the state transition mechanism.  The class interface provides methods to invoke existing transitions (performTransition()) and to modify them by adding and removing transitions (using addTransition() and removeTransition()) at run-time.

class TransitionTableClass {

  public:

    void performTransition(FSMContext& context, 

                           FSMEvent event){

      Action action = lookupAction(event);

      // Lookup returns an action function, execute it

      (context.*(action))();

    }

    // run-time updates of the state change mechanism

    void addTransition(Transition t);

    void removeTransition(Transition t);

  private:

    // map event and state to an action function

    Action lookupAction(FSMEvent e) const;

    // internal representation of the transitions
    Transition eventActionMap;

};

When Client (e.g. current state class) invokes performTransition() method, TransitionTableClass looks up the action function (corresponding to the incoming event and the current state) and invokes it.  Note that the action function to invoke can be defined in any class (e.g. in Context), not necessarily in the TransitionTableClass.

With the transition algorithm encapsulated in a small and stable interface of the TransitionTableClass, it is possible to change the internal representation of the state change mechanism without affecting the external interface.  Transitions can be stored as linked lists or multidimensional arrays.

This implementation of transition table is similar to one in [Pal97] (refer back to Figure 6), which uses state class (StateMapper) to encapsulate transitions.  In [Pal97], there needs to be one instance of StateMapper per state.  TransitionTableClass offers a flexibility of having one object per FSM or per state (or any other combination that is convenient for a given problem).  In addition, TransitionTableClass can be expanded into many more complex designs described below as variants.

Variant I – Actions on transitions [vGB99]

Rather than having one class that encapsulates the entire transition table, define an FSMTransition class for a single state transition.  Make each concrete state transition an instance of this class.  Now it is easy to extend the behavior of each transition by associating an action with it.  As a part of processing the transition, the transition instance will execute the action on transition, if one is defined, set the new state (on the Context), and invoke its entry method. 

class FSMTransition

{

  const FSMState& newState;

  const FSMAction* transitionAction;

  void executeTransition(FSMContext& context, 

                         FSMData& data) const {

    if (transitionAction)

      transitionAction->executeAction(context, data);

    context.changeState(newState);

    newState.enter(context, data);

  }

};

This variant is used in the FSM implementation described in ACTION CLASS.  Note that this variant does not have a central repository of all transitions such as TransitionTableClass in the main version.  Instead, the functionality to add and remove transitions is distributed among FSMState classes.  Each state contains references to all the transitions that are valid for that particular state.  Adding new states requires adding new instances of FSMTransition class.  For details of the complete FSM, refer to ACTION CLASS. 

Note: There are 2 more variants of this pattern ([FR98] [SC95]), not included here due to space limitations.

Consequences

+ The interface is separated from the implementation of the state transition mechanism.  Can easily change the protocol of state transitions without affecting the interface that adds and removes them.

+ New transitions can be easily added and removed at run-time.  It is possible to build an FSM with completely new set of transitions at run-time.  In the extreme case, all transitions may be changed.  Of course, all the transitions need to be defined earlier.  It is not possible to link new code dynamically.

+ Support for actions on transitions.  This design allows associating actions with transitions so that during a state change a behavior can be executed (e.g. to verify that the state change can occur).  This is a major feature of FSMs that other transition patterns do not support.

+ Smaller memory footprint of transitions.  Only the transitions that are currently active are stored in memory, so the overall size of transitions, compared to TRANSITION TABLE, is smaller.

- Too complex for most FSMs.  When no transitions on actions are defined, each transition class performs limited functionality.  It is wasteful to create new classes to implement a one-line function.

- Difficult to verify validity and completeness of reconfigured transitions.  During the reconfiguration, it is difficult to check whether adding or removing transitions produces a valid FSM.  The FSM cannot assist the user in ensuring that the resulting transition setup is valid.

- Significantly slower execution. (Reflection Variant [FR98])  FSMs implemented using pattern have lower performance, because reflection requires two independent levels of FSMs (metadata and actual FSM).  This requires additional method invocations to query the lower level, which results in additional processing overhead.

Related Patterns

A scaled-down version of this pattern is TRANSITION TABLE.

The use of this pattern usually implies the use of STATE CLASS, because this complex state change mechanism is not appropriate (too elaborate) for simple FSM designs.

EVENT CLASS describes the addition of events to the main light FSM at run-time.  Modifying events at run-time makes sense only if it is accompanied by corresponding changes to the state transition mechanism.  If the mechanism is STATE-DRIVEN TRANSITION, then all the changes are encapsulated in STATE CLASS, but it is more convenient to use TRANSITION CLASS instead.  

CONCLUSION AND FUTURE WORK

This paper describes patterns for designing individual FSM elements.  It explains how to build a more complex implementation of each element and how to combine them into complete FSMs.  It is a survey of practical design ideas for software engineers, who are building FSMs incrementally.  The typical sequence of designs for each element is also incremental.  The first design pattern is unstructured; next ones add more structure by defining methods, classes and class hierarchies.

This paper presents a new, uniform way of analyzing complex, multi-dimensional design patterns.  Without this approach, it is difficult to make any comparisons between different FSM design patterns, because they usually differ in the implementation of multiple FSM elements.  A single design pattern can address changes to only one dimension well.

Many aspects of FSMs have not been addressed here.  The sole focus of this paper is the set of patterns for a single FSM.  Designs that require substates [Dou98a], statecharts [Har87] [YA98a], and interactions between multiple FSMs [Odr96] are not addressed yet.  Similarly, incorporating the concurrent, embedded [Sam02], and real-time [Dou98b] FSM patterns is a part of future work.

Another way to extend this work is to provide a more generic format for describing design patterns for complex models (such as FSMs).  Such a format should be applicable to other areas that deal with complex, multi-dimensional models.  This goal is the hardest to achieve, but it could potentially be the most meaningful contribution of this paper.
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APPENDIX

Here are summaries of other FSM patterns referenced in this paper that appear in the complete version on the web site.

Enumerated Event

The main light FSM example provides a simple FSM implementation with all FSM elements implemented using the least complex model.  The least complex way to refer to an event is to assign it a symbol (a number or a name).

How to define events as simply as possible?

There are several simple solutions.

Define events as integers.  Define events as enumerated values. Define events as strings.

Event Methods

Let us reconsider Ignored and Error transition functions from the main light FSM example.  Most {event, state} pairs map to these two transition functions.  Also each event can result in only two transitions, which is much smaller than the number of states.  In such FSMs, it is simpler to consider transitions as event- rather than state-dependent.  This means that events should be encapsulated as separate functional entities.  So define separate methods for each event. 

You would like to associate behavior corresponding to specific events with the invocation of these events. 

Define one method for each (internal and external) event.  

Unstructured Actions

The main light FSM example provides a simple FSM implementation with all FSM elements implemented using the least complex model.  The least complex way to define an action is to implement it as a sequence of statements that is associated with an event or a state, e.g. as a case statement in a switch.

How to define actions as simply as possible?

Implement actions as a sequence of steps corresponding to specific combinations of current state and incoming event.  Actions could be implementations of clauses in if statements or cases within switch statements.  

Action Methods

Being mechanical devices, traffic lights sometimes malfunction.  This happens usually during bad weather conditions, which compounds the resulting chaos.  In response to a mechanical failure, traffic lights change to blinking red lights and every intersection becomes a four-way stop.  

Handling malfunctioning traffic lights in the software is a complex, multi-step process.  First, store all available error-related information in a permanent storage.  Then reset all statistical data.  Next send an alarm to the traffic control office.  Finally transition to the BlinkingRed state.  To support this sequence of steps effectively, it is necessary to handle the MechanicalError event in every state.  Rather than duplicating the handling in every state, encapsulate the complete action as a method.

This situation seems similar to the one described in EVENT METHODS.  The difference is that here, the action method has many steps so it is important to encapsulate them in one place in the code.  The example in EVENT METHODS does not contain multiple steps.  Instead, it suggests separating behavior based on the event (rather than state), because that produces a more coherent design for that specific case.  

How to give structure to unstructured actions?

Define a method for each action. 

Transition Table [Car92]

The description of main light FSM example uses two graphical representations of the FSM – a table and a state diagram.  The tabular representation is much more structured than the State diagrams.  It is more readable and easier to change, especially if new transitions occur between states that are far apart in the state diagram.  The tabular format is easier to read and follow, because each event corresponds to one row that defines its relationship to each FSM state.  Encode this tabular description in the FSM code.  

Mixing the code that implements FSM behavior with the logic for changing states makes state changes hard to follow.  Need to define a separate structure for state transitions.

Localize the mapping of states and events to a specific action in a transition table.  In the table, map {current state, event} pair to {new state, action function} pair.  

State-Driven Transition [DA96]

Let us look at the main light FSM example again.  In each state, there are at most two events that cause a transition to a different state.  Other events are either handled without changing the state, or ignored.  In such a kind of FSM, defining state changes explicitly in the code is a good strategy.  State transitions are not frequent and defining a separate entity to encapsulate them is not necessary.  In this case, the best approach is to define state transitions as a part of the behavior of the state.

Need to define state transitions as the integral part of the flow of control.

Implement state transitions in the same code where the behavioral logic is defined.  Treat state transitions as a natural extension of the FSM logic.











































� The traffic light model used here is borrowed from [Spa00].


� Note that this traffic light follows the American model.  In Europe, for example, yellow light is displayed also on change from red to green light, resulting in the sequence: green, yellow, red, red and yellow, green.


� FSM data is not addressed here.


� � See [Hen03] for the complete discussion of consequences.


� This technique, called double-dispatch, was originally described in [Ing86].


� This pattern may seem like a Strategy, but it is not.  If Actions were Strategies, the State or Transition class would select one of them from a list of choices on each invocation.  Instead, they are context-free and operate only on the data stored in the Context class.  Each action processes one command, not a complete algorithm.
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