A C++ Framework for Orchestrator Design Patterns That Make Data Type-Independent Function Calls

Ralph Duncan1
Mentor Graphics

rvduncan@ieee.org

Laura Pullum1
Institute for Scientific Research

pullum@mindspring.com
Abstract

This paper describes a C++ class framework for building software component-based applications around data type-independent orchestrator design patterns. Such patterns orchestrate the control flow and data flow activities that characterize a software technique and do so in a data type independent manner. Software fault tolerance techniques based on managing replicated data and alternative calculations are good examples. An application built with this framework consists of one or more orchestrators, encapsulated data objects, and component objects that contain subordinate algorithms for the orchestator to invoke. The framework uses runtime type information and template virtual function pairs to ensure that orchestrator function calls with type-independent actual parameters are mapped to component functions with type-specific formal parameters. Like the External Polymorphism pattern [5], this pattern framework essentially allows polymorphic function invocation beyond what C++ provides; however, it differs in both its intent and means.

1. Introduction

This paper presents a C++ approach to building orchestrator patterns for certain kinds of control algorithms. This framework combines traditional control flow emphasis with OO constructs for modularity and reusability. Some control algorithms, such as those that implement high-level software fault tolerance techniques, are useful with a broad spectrum of data types [1, 2] and are fundamentally data type independent. Their critical functionality is orchestrating the control flow and data flow patterns that characterize the algorithm, regardless of the specific application data types being used.

For example, consider the major activities that characterize the N-Version Programming (NVP) software fault tolerance technique shown in Figure 1: obtaining the next round of data, passing it to alternative algorithms, sending their competing

Figure 1. Orchestrator 1: N-copy Programming control and data flow. Copyright R. Duncan 2003.

1 The authors developed the framework as employees of Quality Research Associates.

Figure 2. Orchestrator 2: Recovery Blocks technique control and data flow. Copyright R. Duncan 2004.

results to a decision mechanism and obtaining its verdict (Figure 1). This process can be driven by an orchestration algorithm that steers multiple inputs and outputs through a series of calculations and tests.

Similarly, the Recovery Block technique shown in Figure 2 invokes a series of algorithms until one produces a result that passes an associated acceptance test or the algorithm queue is exhausted.

In both cases, the actual orchestration pattern does not vary according to the application data types involved. It would be helpful to express such 'orchestrators' in a type-independent, reusable fashion but C++ does not provide this capability directly. The sections below discuss this language problem, describe how the framework overcomes it, and differentiate the framework and problem from familiar patterns and the problems they solve.

2. The Problem: C++ Limitations

It is desirable to deliver only the object code for the module containing such an orchestrator algorithm when the control algorithm is customized with proprietary features, such as facilities for time-out and interrupt handling or for managing distributed components. Thus, it would be helpful to implement such algorithms in C++ with reusable, data type-independent methods, rather than having to provide the source code for implementing type-specific versions of the algorithm in derived classes.

Specifically, when the control algorithm module invokes a virtual method supplied by a component algorithm object and sends it parameters, we would like to ensure data type-independence by coding both the invocation of the component, itself, and its parameter list as pointers to type-independent, C++ base class objects. Ideally, the runtime system would map this invocation to the actual component object’s method of the same name that uses parameter data types matching the invocation’s actual parameters and that are derived from the base class the caller used for its source code parameters. C++ doesn’t provide this kind of polymorphism [3]. However, our framework provides this capability by combining several relatively simple mechanisms.

3. Framework Applicability

Our C++ orchestrator pattern framework has the following characteristics:

· Provides control algorithm classes that are truly data type independent and private,

· Ensures easy addition of new types and preserves system scalability.

The framework is most applicable when the orchestration algorithm module has two attributes that militate against other solutions.

· If the algorithm module contains proprietary enhancements or features, this discourages supplying its source code as a basis for deriving type-specific variants of the algorithm as new subclasses.

· If the algorithm needs to combine data at a high level (Figure 1) or sequentially gauge the acceptability of multiple data items (Figure 2), this precludes simply

implementing these operations as C++ methods within each individual data object.

4. Orchestrator Design Pattern Framework

This framework combines elements of classic control-driven and object-oriented software approaches and consists of the following.

· Define a three-level class hierarchy with separate levels for classes that are

· Independent of data type and other application-specific dependencies,

· Data type dependent but independent of application-specific algorithms,

· Both data type and application algorithm-specific.

· Code the orchestrator’s calls to component object methods in terms of pointers to abstract base classes for both the components and the call’s actual parameters.

· Provide an abstract base class to serve as the ‘carrier’ base class for all classes used as component method parameters.

· Use pairs of related virtual functions, one with data type-independent parameters and the other with type-dependent ones, to

· Tie together the highest and lowest class levels

· Perform parameter class ‘downcasting’ operations safely,

· Promote component plug-and-play reliability.

Figure 3 shows the class hierarchy with example classes drawn from fault tolerance. However, it omits implementation details, such as using templates to ease creation of level two and three classes.

Figure 3. O-O class framework and example classes (templates not shown). ©Ralph Duncan 2004.
4.1 Level 1: Control Algorithms, Data Carrier, Components

This level includes the orchestrators, dataCarrier class and the abstract base classes for any major technique components, such as objects that implement subordinate algorithms. In the software fault tolerance domain such components include transforms that alter data, voters or decision mechanisms that produce a single result from multiple candidate results, and acceptance tests that judge the acceptability of a potential result. Figure 4 below shows the key relationships among these three kinds of classes.

Figure 4. Level-1 Class relationships. ©Ralph Duncan 2004.

The orchestrator (controlClass in Figure 4) implements invoking the key component algorithm modules that define its essential control flow only in terms of calls to first level virtual functions (through pointers to component base class objects) and implements data flow only in terms of passing parameters in terms of pointers to objects of the dataCarrier base class.

The dataCarrier base class is simply an abstract base class used to derive classes for objects that encapsulate any kind of application data, whether simple or complex. The derived classes declare an appropriate data member, as well as methods to set and retrieve values for it.

Each base class for one of the subordinate algorithm components (e.g., componentClass in the figure) defines a virtual function for each of the component’s invokable actions and specifies its parameters solely in terms of pointers to objects of the base class dataCarrier

4.2 Level 2: Tying Things Together and Down-casting

This level defines two kinds of subclasses:

· The type-specific descendents of dataCarrier,
· Type-specific subclasses that are derived from the component classes introduced at level-1 (e.g., for algorithm variants, acceptance tests, voters and so forth).

Figure 5. Interlocking virtual function pairs unite type independent and dependent function calls. ©Ralph Duncan 2004.
The discussion below refers to Figure 5 and uses its classes and methods as examples of implementing interlocking functions. The component subclasses connect each key, type-independent level-1 function with the type-dependent analogues implemented by its level-3 descendents. The level-2 component subclasses accomplish this by doing the following for each level-1 function, f (e.g., doAction), that uses pointers to dataCarrier objects as its formal parameters:

· Declare a corresponding virtual function, f’ (e.g., doIntAction), whose type-specific formal parameters are pointers to appropriate carrier classes derived from dataCarrier,

· Implement f (doAction body) by

· using RTTI dynamic casting on the parameters to safely check and cast each pointer to a dataCarrier object into a pointer to the appropriate, type-specific carrier object (defined by one of dataCarrier’s subclasses),

· invoking the type-specific virtual function f’ (doIntAction) and passing it the newly cast pointers as parameters.

Level three’s end-use classes, like myIntAlgorithmVariant, then provide the various implementations of type-specific, f’ functions.

The level-two classes were originally hand-coded. However, the casting process is so predictable that our current implementation replaces separate level-2 subclasses for each combination of component and data types with a class template, such as the specificComponent template shown in Figure 6. Similarly, the type-specific derived classes for dataCarrier are produced by the specificCarrier template.

When we make a level-three component subclass with a template like specificComponent, we can skip making a separate level-two class, since the template supplies the requisite parameter casting code and utilities, and the level-three class need only implement the type-specific virtual function that is its raison d’etre. Figure 7 shows template and binding details.

Figure 6. High-level Framework model, using two templates. ©Ralph Duncan 2004.

Figure 7. Templates creating example ‘carrier’ and end-use classes. ©Ralph Duncan 2004.
Although this template-based system lacks the clarity of the original framework levels, in practice it can significantly speed implementation.

Figure 8. Level-3 classes with varying degrees of reusability. ©Ralph Duncan 2004.

4.3 Level 3: Application-Specifics and Plug-and-Play Components

Level three classes deliver concrete functionality needed by one or more applications. Some of these classes may be application-specific, while others can be reused in many different applications.

Figure 8 shows a class hierarchy for the general software fault tolerance class Variant, which encompasses very broad functionality. One level-three subclass calcFueleftFrom-Burnrate, is likely to be reusable in multiple applications. The reusability of its peer, calcFuelLeftFromAcmeSensor, may be very limited, depending on how customized this sensor and its drivers are. In contrast the two Voter subclasses for floating-point values, exactMajorityVoter and formalMajorityVoter, are highly reusable software components, that can be used with multiple software fault tolerance techniques (e.g., NVP, NCP) and with diverse applications. Requiring these end-used classes to implement a general, type-specific virtual function, such as

float doVariantAction(floatCarrier *);

or

float selectMajorityResult (

const vector<floatCarrier*> &candidates);

creates a simple interface that facilitates plug-and-play reusability.

Figure 9. Example classes for an application of the Recovery Blocks orchestrator . ©Ralph Duncan 2004.
4.4 Example Classes
Figure 9 shows some example classes for an application based on the Recovery Blocks orchestrator pattern introduced in Figure 2. The class hierarchies for the alternative algorithm and acceptance test components are shown (with the control algorithm class and data carrier hierarchy omitted).

This application uses two variant algorithms to estimate the amount of fuel remaining. If the quickest to execute, which reads from one or more fuel tank sensors, does not deliver a realistic value (according to the acceptance test), the orchestrator executes the more time consuming method of estimating the remaining fuel from the various burn rates and their durations thus far during the trip.

Because fault tolerance orchestrators are very general, the level-1 and 2 class names and the interlocking virtual function names will tend to be abstract. In this case, application specificity will often be revealed by the level-3 class names.

Since we have now reviewed the framework’s levels and an example, the next section compares this overall approach to other research.

5. Related Patterns and Research

This section compares the orchestrator framework to the external polymorphism pattern, to some familiar patterns from Gamma, et al. [4] and to other software fault tolerance OO work.

5.1 External Polymorphism Pattern

The External Polymorphism pattern for C++ proposed by Cleeland, Schmidt and Harrison [5] uses a separate class hierarchy and several templates to provide a mechanism for treating unrelated classes in a polymorphic manner. The central idea is to project common behavior on unrelated classes, allowing a client to call a common virtual function as if it existed throughout some collection of classes. The pattern mediates this call, translating it into the relevant functions that do exist in those classes.

Despite similarities, the two patterns differ significantly. The External Polymorphism pattern is geared to allow client classes to call end-use functions in a variety of existing, unrelated classes. The orchestrator pattern is geared to allowing control algorithm classes to make type-independent calls into a class hierarchy of plug-and-play, end-use components that are being created for this purpose. The practical emphasis of the former pattern is to allow clients to use a single method name that can be transmuted into calls to different names. In contrast, the our pattern’s practical emphasis is allowing a function call with data type-independent arguments to be transmuted into one with type-specific arguments.

5.2 Adaptor, Bridge and Visitor Patterns

Comparisons with other well-known patterns also merit discussion. Our level-two classes provide functionality similar to that of object adaptor patterns [4, pp.139-150]. However, our level-two classes connect an interface defined in an abstract base class to a closely related interface that must be available in a set of its own third-level derived classes, rather than provide a general capability to connect an interface to interfaces from other class hierarchies.

Our scheme shares the bridge pattern’s motivation to decouple an abstraction from its implementation [4, pp. 151-161]. However, our abstractions at level-one (e.g., FindMajorityResult) will only be refined along two dimensions, data type specificity and algorithmic implementation. Our level-three algorithm implementations (e.g., findFormalMajority) are data type-specific and, thus, are naturally derived from a type-specific abstract parent class. Since our first-level class is not amenable to further refinement along other dimensions (like typical bridge pattern scenarios), our implementation classes are derived from the abstraction class, not from a separate class hierarchy.

The visitor pattern [4, pp. 331-344] serves algorithms that can encounter a variety of object types, usually during a single application execution. A typical use involves algorithms that visit various kinds of graph nodes. Every traversed object’s class implements a virtual function, such as acceptVisit, which receives as an input parameter a reference to an object that provides a switching function. Each visited class’ implementation of acceptVisit invokes a method in the switching object that is appropriate for its particular class, and passes a reference to itself as an actual parameter. The switching object’s class, therefore, must declare all the different call-back methods that can be invoked in this fashion. Although node classes could share visit methods, the switching class typically contains a method specific to each class of object the traversal might visit.

We could implement parameter down-casting in a visitor-style switching object. However, we already use templates to produce down-casting methods as part of creating level-three classes, so there is no incentive to use a switching class to do this. Moreover, the visitor pattern is geared to algorithms that encounter many different kinds of classes in a single execution run. In contrast, the orchestrator pattern serves control algorithms that manipulate objects of one or two classes (datatypes) per algorithm instantiation. Thus, there is scant reason to use a switching class for one or two object types or, worse, in scalability-killing fashion for every type with which the algorithm could be used.

5.3 Other OO Fault Tolerance Research

L.L. Ferreira and C.M.F. Rubira have presented several OO patterns for implementing software fault tolerance techniques [6,7]. They describe a general-purpose reflective state pattern [6], which divides an application into meta level components that implement finite state machine transitions and base level components that produce application-specific state information. The authors propose a software redundancy pattern [6] that applies this reflective approach to managing software, hardware and environmental fault tolerance techniques. They describe the higher level MetaTransition objects as implementing acceptance test or voter decision mechanism functionality, using the state information that MetaState objects obtain from the results of base level redundant components.

This approach’s emphasis is on using a state machine to implement fault tolerance techinques and on separating state machine control functionality from application-specific redundant components. There original papers [6,7] givve no explicit description of how type-specific end-use components are produced. This approach and our own share an interest in abstracting and separating control mechanisms. Whereas Ferreira and Rubira appear to start with high-level state machine patterns and reflective architectures in order to apply them to their central interest, fault tolerant technique control, we started with fault tolerant technique control patterns and became interested in the mechanics needed to abstract data type specificity out of control algorithms in general.

6. Experience

Laura Pullum first sought to produce reusable, type-independent fault tolerance technique executives for a 1997 research project her company, Quality Research Associates (QRA), performed for the US Air Force [8]. Ralph Duncan coded this early system in C++, but largely relied on C constructs, such as function pointers or void * formal parameters to provide executive type independence. During 1998-2000 the system evolved through internal R&D efforts and a pair of research projects for prime contractor Sentar, Inc. into a three-tier C++ class hierarchy, using polymorphism and RTTI casting [9, 10].

For the a Sentar-led Air Force study we used the framework to implement the NCP fault tolerance technique, which casts data into alternative forms, does calculations with each form, then compares rival results. The data consisted of flight plans and their constituent waypoints. The alternative forms were the various ways such waypoints may be specified (e.g., latitude/longitude, military codes). The second study, for the National Science Foundation, implemented the N-Version Programming techniques for an application that sent character string messages via alternative communications channels (email, pager, FAX). Both applications are reported more fully in an Aerospace Conference 2001 paper [11]. These experiences showed that the approach was viable for complex data types (e.g., aggregates), far beyond the integer, floating point and array types we had originally envisioned.

Ralph Duncan’s further changes to the system consist of using C++ templates to automate much of the work involved with creating middle-tier subclasses.

7. Conclusions

This framework extends C++ by providing external polymorphic behavior to function call families implemented with a variety of different formal parameter data types (or function results). The resulting orchestrator patterns can concentrate solely on weaving the desired control and data flow patterns. The approach is attractive when one wants neither to share the orchestrator algorithm code nor redevelop it for each data type-specific instantiation. The approach is scalable, handles data types that are simple or complex and, when combined with template use, is easy to implement.

8. Acknowledgements

The original orchestrators were developed under the Air Force’s Rome Laboratory contract F30602-95-C-0283. Much of the three-tier class framework versions of NCP and NVP were developed while working on prime contractor, Sentar’s, Rome Laboratory contracts (F30602-97-C-0094, SEN-97-C-QRA-0094) and National Science Foundation contract DMI 9861270.
9. References

[1] A. Lee and T. Anderson. Fault Tolerance: Principles and Practice, Springer Verlag, 1990.

[2] L. L. Pullum. Software Fault Tolerance: Techniques and Implementation. Artech House, 2001.

[3] “External Polymorphism,”, http:/c2.com.cgi/wiki?ExternalPolymorphism, retrieved Sept. 14, 2003.

[4] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns: Elements of Reusable Object Oriented Software. Addison-Wesley, 1995.

[5] C. Cleeland, D. C. Schmidt and T.H. Harrison, External Polymorphism: An Object Structural Pattern for Transparently Extending C++ Concrete Data Types. Proc. 3rd Pattern Languages of Programming Conf., Allerton Park, Illinois, Sept. 4-6, 1996.

[6] L.L. Ferreira and C.M.F. Rubira. Reflective Design Patterns to Implement Fault Tolerance. Proc. Object-Oriented Programming Systems, Languages, and Applications, Vancouver, Canada, Oct. 18-22, 1998.

[7] L.L. Ferreira and C.M.F. Rubira. Integration of fault tolerant techniques: a system of pattersn to cope with hardware, software and environmental fault tolerance. Proc. 28th Int’l. Symp. On Fault-Tolerant Computing, Munich, June 23-25, 1998.

[8] L. Pullum, et al., “Data Diverse Software Fault Tolerance Techniques for C3I Technologies: Phase II Technical Report,” Quality Research Associates Technical Report, Rome Laboratory contract F30602-95-C-0283, November 1997.

[9] B. Daniel, J. Yalowitz, M. Whitten, L. Pullum, R. Duncan, et al., “Final Report for Fault-Tolerant Cooperative Intelligent Agent Systems for Distributed C3I,” Sentar Technical Report, Rome Laboratory contract F30602-97-C-0094, May, 1999.

[10] J. Yalowitz, M. Whitten, A. Schooley, L. Pullum, and R. Duncan, "SBIR Phase I Final Report: Reliable Distributed-Object Computing with Fault-Tolerant Cooperative Intelligent Agents," Sentar, National Science Foundation Contract DMI 9861270, July

1999.

[11] R. Duncan and L. Pullum, “Object-Oriented Executives and Components for Fault Tolerance”, Proc. Aerospace Conf., Big Sky, Montana, Mar. 10-17, 2001.

Algorithm 0

Ans0

Algorithm 1

data

Ans1

subclass

floatTruncate

Transform

subclass

floatMajority

Voter

Level 3

Data type-dependent Application-dependent

subclass

floatTransform

subclass

floatVoter

subclass

floatCarrier

Level 2

Data type-dependent, Application independent

Level 1

Data type-independent

class

Transform

class

Voter

class

DataCarrier

classes

NVP, NCP,

RetryBlocks

Control

Algorithms

Parameter

Data Types

Subordinate Algorithms (Components

Algorithm 3

Acceptance

Test

answer

yes/no

data

data

<<uses>>

calcFuelLeftFrom

AcmeSensor

calcFuelLeftFrom

AverageBurnrate

controlClass

dataCarrier *pData, *pAns;

componentClass* pAlg1;

pAns =

 pAlg1->doAction(pData);

componentClass

virtual dataCarrier*

 doAction (dataCarrier *)in);

dataCarrier

<<uses>>

<<uses>>

Algorithm 2

Algorithm 4

answer

floatVariant

Variant

estFuelFromSensor

floatCarrier*

 doFloatAction (

 floatCarrier* f)

 {…}

is_realisticFuelLevel

bool applyFloatTest (

 floatCarrier* f)

{…}

floatAlgorithmVariant

virtual floatCarrier* doFloatAction

(floatCarrier* f);

dataCarrier* doAction (…){…}

floatAcceptTest

virtual bool applyFloatTest

(floatCarrier* f);

bool applyTest (…){…}

estFuelFromBurnRate

floatCarrier*

… doFloatAction (

 floatCarrier* f)

 {…}

floatFormal

MajorityVoter

floatExactMajority

Voter

Voter

algorithmVariant

virtual dataCarrier* doAction(

dataCarrier* d);

floatVoter

acceptTest

virtual bool applyTest

(dataCarrier*);

Decision

Mechanism

ANSs2data

Data

Source

Ans2

data

Algorithm 2

Orchestrator

Algorithm queue

Current

Algorithm

Invoke algorithm

Invoke acceptance test

if (accept)

 use answer

elseif (algsRemain)

 use next algorithm

else

 report failure

void doIntAction (intCarrier* pi) {…}

myIntAlgorithmVariant (Level-3)

<<implements>>>

<<uses>>>

intAlgorithmVariant (Level-2)

virtual void doIntAction (intCarrier* pi) {}

void doAction(const dataCarrier* pd) {

 // performs RTTI dynamic_cast

 if (cast_successful) {

 doIntAction (((intCarrier*) pd);

 }…

}

<<implements>>

algorithmVariant (Level-1)

virtual void doAction (dataCarrier * d);

DataCarrier

Component

ControlAlg

classes

classType

carrierType

classType,

defaultValue

specificComponent

specificCarrrier

myIntComponent

intCarrrier

<<uses>>

algorithmVariant

(component)

<<uses>>

<<uses>>

specificVariant

classType,

carrierType

dataCarrier

specificCarrier

classType,

defaultValue

intCarrier

<<bind>>

<int, 0>

myAlgIntAlgorithmVariant

<<bind>>

<int, intCarrier>

