Patterns for Managing
Distributed Development Teams

Patterns

for

Managing Distributed
Product Development Teams

Vincent Bricout, Denis Heliot, Adrian Cretoiu, Yiming Yang, Thierry Simien, Lise B. Hvatum

Sugar Land Technology Center, Schlumberger Oilfield Services

In recent years, an increasing number of companies and organizations have put in place geographically distributed teams to carry out development of various products – in particular software products. This trend has economic drivers (globalization, outsourcing) and has been facilitated by the IT revolution (better, cheaper communications). However, it has brought new challenges for the organizations to manage those distributed teams effectively [11].

Schlumberger is an international oilfield service company, present in 127 countries, with 19 R&D centers in Europe, North America and Asia. Over the past several years, it has run a variety of geographically distributed development teams. Experience from managing these teams was collected and discussed at several internal workshops [1,2,3,4,5,6,7,8]; specific resources were also allocated to evaluate and recommend anything from tools and licenses (VC systems, mobile phones, VPN, instant messaging, etc.) to techniques and best practices [4].

The collection of Patterns we present here is intended to capture that experience for two purposes: first, to make it available within our company to new teams and new team members involved in distributed team projects; secondly, to enable a communication with other companies that are working in a similar fashion.

It is worth mentioning that the project teams from which we draw our experience were not just geographically distributed, but culturally diverse and often in very different time zones. To be more specific:

· Much of the gathered experience is from working with teams in two engineering centers: one in Houston, Texas and the other in Beijing, China.

· The background of team members was anything from newly hired, young Chinese developers or Russian interns to American, British, Pakistani or French seasoned developers or domain experts with up to 25 years of experience.

· The time difference between Houston and Beijing is 13 or 14 hours depending on the season, meaning that no regular work hours could be shared between the centers.

Although these teams were primarily consisting of company employees, a lot of the ideas are probably applicable in outsourcing situations as well. Also, although several of the authors have a software background that may come through in the writing, the practices documented here are believed to be of general validity for product development.
Note to PloP 2004 readers! The paper is work-in-progress. 3 patterns were submitted to EuroPLoP 2004 (Frequent Short Meetings, Join for Completion and Prepared Workspace). For PloP 2004, we ask the readers to focus primarily on the new patterns (Early Bonding, Face-to-face Every 2 Months, Flexible Hours and Iterate As You Meet). As the work grows more complete, we plan to have a short-form of those patterns that are not the current focus of a paper. We also plan to expand the introduction with suggested sequences of patterns for the different roles in the organization (developer, project manager etc.) as well as the project phase (new, in the middle of development, close to complete, general). We may include other organizational patterns in these suggested sequences, as well as grow the number of references to external patterns.

Thumbnails (29)

The thumbnails below include patterns based on our experience with distributed teams, as well as proto-patterns based on recommendations made to better manage those distribution teams – and currently being tried throughout our organization. The latter are listed in blue color.
1. Commitment from All Centers – any center involved in the project must have a clear commitment to and ownership of the project

2. Defined Organization – all roles and responsibilities along with the reporting structure is clearly set and well communicated

3. One Project – the project team must truly be run as a single team with a single person in charge, and the same explicit objectives and project plan w/ budget, despite not being co-located

4. Explicit Communication Strategy – all means of communication and how/when they will be used is clearly defined

5. Early Bonding – emphasize on building the team from the start of the project, and include social events

6. Face-to-face Every 2 Months – make sure the team physically meets frequent enough during development

7. Iterate as you Meet – align the length of the iteration with the next physical team meeting

8. Common Terminology – make sure you do not get local “dialects” and that everyone understand the lingo of the problem domain

9. Continually Aligned Process – spell out the fundamental values, methodology and techniques used and keep it up-to-date for all team members

10. Local Guru – a person in each location who is on top of all issues on plans and status, requested changes, whom to contact for domain expertise etc.

11. Responsibility Model – code ownership and requirements ownership clearly defined

12. Common Baseline Management – set up for distributed development from the beginning

13. Prepared Troops – make sure all are trained on distributed development from the start of the project

14. Technical Risk is Everyone’s Job – globally understood and tracked

15. Common Storage – make sure there is only one project web page, only one documentation storage, a master storage of the code and issues (bugs and enhancements) etc.

16. Common Development Environment – use the same tools and technologies

17. Distributed Credit – make sure all team members get credited for success

18. Culture Awareness – some specific training may be necessary to learn to “read” team members from a different culture, and to ensure respect for others

19. Assigned Mentor – give a new team a mentor with experience in distributed development as mentor

20. Prepared Company – the overall structure and processes in the company may need to be adjusted to accommodate and support distributed teams

21. Prepared Workspace – local team rooms need to accommodate visiting team members, VC equipment need to be easily available etc.

22. Pilot Team Space – to gain experience with specially designed work areas, try out the solution on one team first

23. Flexible Hours – redefine the team’s work hours and give the team members flexibility outside common team time
24. Frequent Short Meetings – applying the Scrums or Daily Meetings (XP) in a distributed setting
25. Temporary Engagement – short-term assignments at the other location will enable team members to get to know other team members better

26. Carefully Selected – team members should be screened for personality and the team carefully built over time for maximum cohesion

27. Conflict Management – a pre-defined way of managing conflicts, possibly involving an independent party outside the core team

28. Social Funds – make sure some funding is allocated to improving the personal relations between the team members (team building, celebration of achieved milestones etc.)

29. Join for Completion – bring the development team together with testers on a single site for completion

The above patterns and proto-patterns can be grouped as follows, where the same pattern can belong to several different groups:

Organization
Patterns that deal with how to set up your organization to support the distributed development:

Commitment from all (1)

Local Guru (10)
Defined Organization (2)

Responsibility Model (11)
One Project (3)

Prepared Company (20)
Communication

Patterns that deal with communication within the team and between the team and other parts of the organization:

One Project (3)

Responsibility Model (11)
Explicit Communication Strategy (4)
Culture Awareness (18)
Early Bonding (5)

Flexible Hours (23)
Face-to-face Every 2 Months (6)
Temporary Engagement (25)
Iterate as you Meet (7)

Social Funds (28)
Common Terminology (8)

Join for Completion (29)
Continually Aligned Process (9)

Training and Mentoring
Patterns that apply both the team and to the overall organization to prepare individuals and entities that are to take part in the distributed development:

Common Terminology (8)

Culture Awareness (18)
Local Guru (10)

Assigned Mentor (19)
Prepared Troops (13)

Prepared Company (20)
Process

Patterns that apply to the (iterative) development process as applied by the team:

Explicit Communication Strategy (4)
Common Baseline Management (12)
Early Bonding (5)

Global Focus on Risk (14)
Face-to-face Every 2 Months (6)
Prepared Company (20)
Iterate as you Meet (7)

Flexible Hours (23)
Continually Aligned Process (9)
Frequent Short Meetings (24)
Responsibility Model (11)

Join for Completion (29)

Team

Patterns that deal with the creation and evolution of the project team:

One Project (3)

Culture Awareness (18)
Early Bonding (5)

Prepared Workspace (21)
Common Terminology (8)

Temporary Engagement (25)
Continually Aligned Process (9)
Carefully Selected (26)
Local Guru (10)

Conflict Management (27)
Prepared Troops (13)

Social Funds (28)
Distributed Credit (17)

Join for Completion (29)

Work Environment

Patterns that apply to the physical environment of the team, as well as to tools and procedures:

Common Terminology (8)

Prepared Workspace (21)
Common Baseline Management (12)
Pilot Team Space (22)
Common Storage (15)

Flexible Hours (23)
Common Development Environment (16)

Acknowledgements

Our first submission was to EuroPLoP 2004, and was shepherded by Jens Coldewey who did a fantastic job. He convinced us to use the Alexandrian form, and guided us strongly on the structure of the paper, not only drastically improving the EuroPLoP submission but more important creating the foundation for our future work.

We are grateful to Mary Lynn Manns who as our shepherd for PloP 2004 not only helped improving the new patterns, but who took on the whole submission. Her guidance has helped tremendously in clearing up the different sections (especially on resulting context and rationale), and in maturing the patterns with reflections on possible “not-so-good” consequences.

Warm thanks are going to Linda Rising who is helping us develop the internal patterns culture by training and mentoring us, and who has also given us valuable feedback on the work on several occasions.

Internal References

1. “Cross-Center Development Rules”, Schlumberger Software Métier publication, September 2003

2. “Recommendations/Action items on Collaboration Technology at SPC”, memo from Sugar Land Product Center, 15 November 2002

3. “Process Tailoring for Distributed Team Projects”, by Denis Heliot, presentation at SLB Software Process & Testing Workshop, September 2003

4. “Global Team Interim Report”, by Yimimg Yang, SLB internal presentation, 2003

5. BGC-SPC Collaboration Project Recommendations, SLB internal presentation, April 2003

6. “BGC/SPC Cooperation – Feedback from the WellEye Project”, by Simon Fleury, SLB internal document, March 2003

7. “DecisionXpress – a short note about a joint project between SPC and BGC”, by Pascal Rothnemer, SLB internal document, March 2003

8. “Cross-Center Project Management Procedure”, SLB Beijing GeoScience Center internal document, November 2003

9. “Featured Practice”, Schlumberger’s Global Team Coordination Toolkit, draft by Corporate Executive Board, May 2004
External References

10. “A Generative Development-process Pattern Language” by James O. Coplien, PloPD-1 Book p. 183-237, editors Coplien and Schmidt”, Addison Wesley 1995

11. “Using an Agile Software Process with Offshore Development” by Martin Fowler, http://www.martinfowler.com/articles/agileOffshore.html
12. “Can absence make a team grow stronger?” by A. Majchrzak, A Malhutra, J. Stamps and J. Lipnack, Harvard Business Review, May 2004

Early Bonding

Meeting face-to-face with the users at our field locations has always been promoted within our company. After we started working with distributed teams in engineering, we have been urged to see each other when initiating collaboration, and social events have been a natural part of the meetings.

Emphasize on building the team from the start of the project, and include social events.

You manage a project where the team members are distributed on engineering centers that are geographically far apart. The time difference is significant. Define Organization and One Project are applied, giving a good organizational foundation for the new project. The team members do not know each other well, especially between the locations. The team members have different backgrounds, cultures, and development experience.

How can you quickly create a team where the team members know and trust each other, and share common goals and understanding of the product they are to develop?

The team members need to get to know each other for the team to function. The technical skills, domain expertise and personality of each person need to be understood by the others. This process is slower and more difficult when the team members are at separate locations.

The project goals, work methodology, process and communication models, roles and responsibility model within the team, all has to be defined as quickly as possible not to lose valuable time in the development. This is hard to get sorted unless the team members know each other to a certain level.

Trust and respect between the individuals on the team have to be built from the start. It is very hard to turn around a situation with difficult relations and frustrated team members in the middle of a hectic development phase. Early focus brings the best opportunity to avoid the “they and us” feeling that can destroy productivity and motivation within the team. To build trust and respect the individuals need to spend time together.

Therefore:

Focus on building the team from the very start of the project. Optimally have a “boot-strap” period up to 3 months where all team members spend time together face-to-face with a good balance between work and social situations.

Use this phase to establish common goals and objectives. Create the vision statement together as a teambuilding activity. Discuss the business model and functionality of the system. Possibly visit customers/users as a team. Decide on the development methodology and techniques, how to manage common deliverables (like software configuration management), the roles and responsibilities within the team
, and how to communicate and resolve possible conflicts. Follow up with Face-to-face Every 2 Months and Frequent Short Meetings.

You need to plan the activities well before bringing people together, so that this time is perceived by the team members to be productive and beneficial. Be especially aware of the team members that need to travel and spend time (weeks) abroad. You show respect and appreciation of their effort by making sure the bonding period has clear achievements. Just bringing the people together with no clear plan of action will cause frustration and work against creating a good team feeling.

Since the distributed setting makes the jelling harder, it is necessary with a certain investment to achieve this, and this investment must be done at the start of the project to have the best effect. If you expect that it is hard get approval for the spending, you need to prepare your arguments well. Look at other team experience. Did other team do the investment? Is there a Pilot Solution? Can you find “ammunition” in retrospective results, or in publicly available documents, like books or articles?

Because of the cost and the time to travel, you will naturally scale the exercise based on the need of the team and the nature of the project. This solution is clearly not the right choice if the project is very short, if team members already know each other from earlier projects, or if the traveling is not possible for financial or other reasons.

— oOo —

You are speeding up the process of generating a “jelled” team. People who know each other communicate much easier, and the team can build on the good level of trust and the knowledge of the strengths of each team member. People will take on roles on the team in a natural way.

There are clear deliverables from this initial period. Project goals and team objectives are defined, and work methods and development tools are chosen.

Be aware that there is always a risk of poor chemistry between individuals on the team, and the intense “boot-strap” period may escalate these problems.

One of our project managers wrote after his project was over: “Last year I was given the opportunity to work with a team of BGC engineers. I am glad I could experience this, and I hope I will continue collaboration work with BGC. A friendly relationship has been strongly established between the BGC engineers and myself. This is not only good for people, but for the Company too, because such trustful relationships produce better project achievements, higher quality products, and eventually increase the overall engineering productivity. […] The team was setup in January, together with a vision, and work started immediately. We had a first physical meeting immediately, which is very important. You want to meet asap people you will work with, face to face.”

Originator: Lise B. Hvatum

Sheperded for PLoP 2004

Face-to-Face Every 2 Months

“Communication with the [remote] team has been a major issue since beginning of the project. The language problem, the time difference and the geographical distance have contributed to make communication difficult.” ”Communication-wise, you face a very simple problem: every time there is a misunderstanding, you loose time.”

Make sure the team physically meets frequent enough during development.

You are a project leader and have been assigned the task of managing a cross-product center team to successful completion of a project. Once the project milestones have been laid out, a distributed team resorts to daily communication via e-mail as well as weekly videoconferences in order to address a lot of the day-to-day issues.

With part of your team half way around the world and language issues, a backlog of miscommunication in the common understanding of project details develops over time. The team has to address them before the project runs adrift. How do you get a distributed team to operate as ‘one for all and all for one’?

Frequent business travels have become commonplace in large organizations. There are limitations to how often and for how long individuals are willing to travel to a far-away location, face jet lag and “eat strange food”, all of this at the expense of their personal life, in order to meet the distributed team project objectives. These limitations vary from one individual to another depending on their personal situation. In addition, frustration among the team members may arise if upper management begins to think that requiring individuals to travel for 2 weeks every 2 months for extended periods of time is the norm or “business as usual”.

The perception of upper management is that distributed projects save money for the company. These ‘Face-to-face every 2 months’ iterations may offset the cost-cutting benefits of cross-center product development.

In order to save money, the smaller part of the team might be tempted to do the traveling. But in a project with many dependencies to other groups, the group with less domain expertise should travel most often. The maximum benefit in terms of knowledge sharing is when they meet with the rest of the team at the location where most of the expertise resides.

Therefore:

Have the team members meet physically at one of the team locations on a regular basis, preferably every 2 months. They should spend about 10 days together, aligning design issues and development priorities. Allow time for social events together.

The time together is partly spent working as a “normal” local team, but with focused sessions on architecture and project planning to ensure that the team members align up on the core issues. It usually takes the team a week to work out the wrinkles from the last iteration’s backlog and regain efficiency. The second week is highly productive. Then the benefits of the face-to-face meeting diminish during the third week as the individuals traveling begin to miss home.

The frequency of project milestones may vary depending on the overall time span. The distributed team may find it convenient and natural to meet face-to-face at every milestone, even if the span differs from the recommended 2 months. When it makes sense in the development cycle, the team can use the opportunity to bring in users to test the product and give feedback, much in the way it works when they Join for Completion.

The 10 days include a weekend. This gives an opportunity to have social events like trips with the whole team. You may include local family members if the company culture supports it. And remember to make events outside office hours optional. At the same time you have to take very special care of the visiting team members who spend days away from home and family. Be open in team discussions and find a balance that people are happy with.

— oOo —

Physically getting together not only allows the team to address their backlog, but also to celebrate the accomplishments of the past iteration, draw some lessons learned and re-energize for the next milestone.

A distributed software team needs to meet face-to-face on a regular basis in order to be effective, meet the project deadlines and function more like a co-located team. If not, deadlines may quickly slip as the virtual team misses the element of “care” – that can only result from human interaction and shared extra-curricular activities – in order to overcome the added complexity of a distributed project.

Always keep in mind that this level of traveling and time spent with the team can result in difficult team relations and de-motivation. Unless the pressure can be openly discussed and each individuals needs are sufficiently respected, you may have a degradation of the team over time.

A team of 5 engineers including the project lead (2 in Houston, 3 in Beijing) worked on an 8-month project to integrate computation engines into a real-time application. The team members in Beijing were involved in requirements gathering during the concept study, and had already traveled to Houston to learn the domain knowledge required to understand the product vision. On the day after the construction launch, the Houston team members traveled to Beijing to start building an offline prototype.

In Beijing, the team was co-located in a conference room for maximum efficiency (ideas literally bouncing off the walls). The team enjoyed lunch and most of the time dinner together during the first week (an opportunity for cultural dining for the Houston team and bonding for all). After only 4 days, the team had built a prototype of the offline mode of the application. The team celebrated by spending time together at the Great Wall during the weekend. They then spent the next week refining the offline prototype and looking at the transition from offline to online operations.

During the next month, the Houston team members built the framework for real-time operation while the team members in Beijing prepared for the move to an entirely new set of data structures. Two months after the Houston team had left Beijing, the Beijing team came to Houston in order to assemble the pieces of the puzzle with field test to be launched a couple of weeks later. This gave the team members in Houston a chance to reciprocate the warm welcome received in Beijing earlier.

The project was made a success in part at the expense of the team members’ family life and personal goals as well as their development and training. The strain resulting from the project pace even resulted into friction on one occasion in spite of the team’s best efforts to operate as a tight group. The team, however, was able to quickly regroup with a major deadline at hand and worked out the pressure much like a family would.
Originator: Vincent Bricout

Sheperded for PLoP 2004

Iterate as You Meet

A couple of distributed teams in our company started aligning up their iterations with when they were physically meeting as one team. These teams found this to be a very powerful solution.

Align the length of the iteration with the next physical team meeting.

You manage a project where the team members are distributed on engineering centers that are geographically far apart. The time difference is significant. The team meets Face-to-face Every 2 Months. They spend about 10 days together, aligning design issues and development priorities. The team is using an agile software development methodology with iterations.

Iteration transitions (complete and assess one iteration, plan and start the next iteration) require intense communication and are hard to do through virtual meeting techniques. How can a distributed team do effective iteration transitions?

The iteration transition is a very important phase in the development process. For a local team, it is effectively done in a few days. First the integration effort – then less than a day for the iteration assessment – and finally some days to plan the next iteration as people need to refine estimates on specific assignments… ask themselves and other questions about the next task at hand… and more generally mature the plan.

For global teams, the means of communication seriously affect the ability to do an efficient transition. It takes several days more to get through the issues that must be covered. Long meetings are lasting into the night for the western location/start before dawn for the eastern location.

The detailed plan for the next iteration needs to be understood and accepted by all team members. Remote team members will not have the same understanding or feel the same ownership as the members who were on-site where the new plan was developed. The planning details are hard to do by VC or phone – and it is essential to do it right so to minimize any potential misunderstanding.

The iteration assessment includes a demo/test session of the completed user scenarios. The most effective way is to team up the tester and the developer so that they can tune the functionality together.

Therefore:

Plan the iterations so that they coincide with the Face-to-face Every 2 Months events. If this leads to longer iterations than the team desires, they may choose to do more frequent iterations, but then do every second or third iteration when they meet.

The iteration assessment is part of the activities the team does during the physical meeting. They first complete the current iteration (use “time-boxed” iterations), and make up status versus plan at this stage of the project. The integrated system is demo’ed and possibly tested by user representatives, and feedback is gathered. New requirements are also included, and an updated risk assessment is done.

All this information is incorporated as the team member sits down together to update their project plan. They change the overall plan and do the details of the next iteration. Work is distributed on the team members. The global team also discusses system architecture and required design changes.

The new iteration is started before the remote team members leave. Daily meetings and informal communication help aligning the team members as they start on their new tasks.

Note that the break from work coming naturally from the weekend during the 10 days meeting Face-to-face Every 2 Months is essential. This gives the team members the necessary distance to the intense planning that will enable them to ask critical questions and better come to terms with the new tasks assigned to them.

— oOo —

The iteration assessment gets very efficient as the team members are together. You do not need long meetings struggling with time difference and poor communication. The joint team develops a detailed plan for the next iteration, and a revised overall plan. This gives ownership by all team members and less opportunity for misunderstanding.

The tight co-location of testers and developers is the same that we recommend for the final tuning of the system in Join for Completion. Pairing up developers and testers for short, intensive, periods is very effective. Communicating the system functionality is direct and does not take elaborate written descriptions. Corrections and improvements are made quickly and feedback given immediately.

Iteration assessments are communication intensive development events. By scheduling them when the team is physically co-located, we can do them more efficiently and with less opportunity for misunderstandings. We have found this to be the best use of the co-located time for the team.

This solution may not apply for teams that have very short iterations. Other teams may find it limiting and/or adding to company bureaucracy. Basically the values behind the development process need to fit with iterative development for this pattern to apply.

One team described their experience with this pattern as follows: “What is important is that everybody has a very clear idea of what to do and how that fits in the whole project when leaving … we typically achieve that in ~10 days: one week, one week-end plus a couple of day: the first week is integration (Monday to Wednesday), iteration assessment (Thursday, say), listing the task to be done and the technical problem to tackle (Thursday, Friday); the week-end is a break, an opportunity to sleep on some issues – it can also be used to investigate specific issue if needed ; the first two day of the 2nd week is next iteration planning – the visit wrap-up before the remote team leaves is an opportunity to finalize the iteration plan”.

Originators: Lise B. Hvatum, Denis Heliot

Sheperded for PLoP 2004

Flexible Hours

“Using portable computers, phones, and other technology, staff work flexible hours at home or away from the office, providing more opportunities for one-to-one communication during “off-hours”. Establishing dedicated time slots for direct contact also facilitates collaboration. For example, a twice weekly ninety-minute window in which team members commit to being available to their teammates provides a regular forum for problem discussion and resolution.”

Redefine the team’s work hours and give the team members flexibility outside common team time.

You manage a project where the team members are distributed on engineering centers that are geographically far apart. The time difference is significant, as the locations do not overlap at all on regular work hours. There is a strong communication need between the team members. They have Frequent Short Meetings and direct contact team member to team member several times a week.

To be able to communicate with each other, team members must work outside normal work hours. How can you reduce the negative impact on the developers?

Communicating with remote locations can require developers to be available outside regular work hours. Often people located in the west start their second work shift after dinner, and continue until after midnight. The team members in the eastern location may need to start work at 4AM in the morning. This can be required 2-3 times a week. The company culture and maybe even the policy demand that people are present during normal work hours from 8am to 5pm. This makes employees try to work both the regular hours plus the extra hours for the team communication, creating a very high load on the employee.

Working a regular day plus the required extra hours to allow same-time communication within the team will mean long days and short nights maybe several days per week. But people are feeling awkward about arriving late at the office, or leaving very early. Coming in late looks lazy. Leaving early is very visible. There is no visibility for those working from home in the evening or early morning.

The introduction of distributed teams has changed the work situation for many employees, while company bureaucracy is stuck in the traditional thinking regarding work hours. Just consider time sheets. How many electronic time sheets let you have two work sessions per day?

The need for being available outside the work hours that are normal in your country on a frequent basis will necessarily have an impact on the private life of the employee and his/her family. Unless it is managed carefully, it can be a very stressful situation for the individual.

Therefore:

Define “common time” for the team and establish this as part of their normal work hours. For the remaining hours of work per week, give the team members full flexibility.

Make an official statement at each location to establish the practice in a formal way, and ensure that the administrative systems/practices can deal with the reality of the hours worked.

Structure the work hours so that not every evening is work. Align with the planned Frequent Short Meetings as time they are required to attend. Try to get as close to a normal working week as possible.

— oOo —

By making their late/early hours part of the “official” time for the team members and informing their co-workers at the centers, the developers no longer need to feel bad about not being in the office during the full normal work day. You created a new norm.

You may lose a few work hours with this scheme compared to the more rigid set-up. But you need to consider whether you will lose any productivity. How efficient is a developer turning up at work at 8am in the morning after working with Beijing until 2am the night before?

Having to work late takes time away from the family. Now you give the developers the opportunity to use the flexible work hours to join an event at their child’s school, or shop during the day, or take care of other private things during what was before regular work hours. By giving the developers flexibility you will most probably get some in return, like being open to be contacted on the cell phone during private time by remote team members that urgently need help.

It will of course be more difficult to keep track of who works when. A few individuals may take the opportunity to work less than the full week. Probably the most annoying result is that people will not always be in when you expect them to.

When the locations for the distributed team members have significant time differences it will be necessary to redefine the official work hours for the team to enable communication and reduce the negative effects on private time.

<story needed!>

Originator: Lise B. Hvatum

Sheperded for PLoP 2004

Prepared Workspace

When in need of more office space, we decided to take an area of our building with large individual offices and modify it into team rooms. We would not only use the space more efficiently, but had the opportunity to create space that was especially designed for the software teams that were to move in. Two of the teams were working with team members abroad, and the design of the rooms reflected their special needs.

Design a work environment that supports the way the distributed team is working.

You manage a project where the team members are distributed on engineering centers that are geographically far apart. The time difference is significant. The team believes in physical proximity and face-to-face communication. They do this by meeting Face-to-face Every 2 Months and having Frequent Short Meetings.

The global project team wants to communicate as a complete team several times per week, and meet at team locations on a regular basis. The traditional office structure with individual offices does not offer the needed flexibility. How do you design a work area to support the communication needs and work methods of your team?

Distributed teams that apply agile development methods recognize that good and frequent communication is key to success. They want to minimize time and effort lost in contacting team members and setting up get-togethers. Communication with remote team members must be possible at short notice. But meeting rooms and communication equipment require reservations, are often too scarce, and frequently not available when needed on short notice.

Visiting team members need to spend as much time with the local team as possible to focus on knowledge of system design and functionality, and to improve team relations. Because the office structure does not accommodate visitors, they are placed at whatever available office space we can find. This can be far away from the local team, even in another building.

The team members all need private time. Visiting team members may need it even more because their window to call home may be during work hours. But if there are private offices, these are often permanently occupied.

Therefore:

Create team collaboration space for the local team with flexibility to accommodate both virtual meetings and visiting team members. Design the space to facilitate communication, and make it general enough to accommodate other teams later.

The space could be one room or a combination of private rooms, meeting areas and shared team space. Use flexible furniture that is easy to move and reconfigure. To convert a meeting area to work space for the visitors, use tables that can be taken apart and moved with little effort.

[image: image1.jpg]Meeting table -
VC equipment or visitor space

(%

Information radiator

Team Silent
Space Room

Equip the meeting area with necessary communication tools (VC equipment, broadband network connection etc.) so that the global team can get together virtually for status and planning meetings as well as for design events. Use Information Radiators
 so that visiting team members quickly can get the picture of the local teams progress and individual assignments.

Some team members may be negative about losing their private office. Or they may need private space because of personnel responsibilities. Adding a Silent Room
 may solve the need for privacy. It can be used by several individuals according to need, but is not the permanent workspace for anyone.

You may still choose to add single offices. But be aware that those who tend to want/need separate offices are usually senior staff that the other team members need to spend time with (managers, architects and domain experts). You have to carefully consider the balance between individual needs and the effect on team communication. Some special offices may be placed so that they form an integral part of the workspace. Let the doors face the work area and use glass walls to support the feeling of one room.

Your management may not be convinced about the need for a specially designed team space. A Pilot Team Space solution for one team may be a way forward. With good metrics it may be possible to show better productivity as a result of the modifications. Or you can focus on risk management. Show that the risk in running the team in a distributed way can be made smaller by being willing to invest in their environment. With careful planning, the cost of the building modifications can be kept minimal: Remove a few (non-bearing) walls to create bigger space, and keep one small office as Silent Room, with a door in to the team. Glass walls are nice but not necessary.

The decision to do the investment in tools and a reconstruction of the building needs to be based on the possible gain in productivity of the current project and of other project groups that could gain from the new environment later. The pattern should be applied early in the lifetime of the project.

· oOo —

In the new work environment, short meetings are easy to do without up front planning and room reservation. Lack of meeting space or communication equipment does not delay development progress. Even if more tools like VC equipment are needed, this could ambulate between a few teams to reduce cost.

The environment and the tools available support the work methods of the distributed team both when they meet virtually and when team members are physically at the site. Visiting team members are co-located with the local team in the same space, and will pick up useful information from conversations. They will feel more as part of the same team, and get more opportunity to socialize with their teammates.

Visiting team members that co-locate with the local team members in a common space will feel more as “equal partners” in the project. They get more opportunity to socialize with their teammates, building trust and respect that will help achieving a well-performing team.

The risk in running the team in a distributed way can be made smaller by being willing to invest in their environment. Note that a reconstruction period will disrupt the team progress. Also note that even when trying to make the space general enough for new teams, we have seen that other types of teams taking over the team rooms designed for software teams do not seem to find the space suitable for their needs. Unless some software development team will occupy the space for a longer time, this solution may not fit your situation.

A project team had 4 employees in Houston and 3 in Beijing. Some time into the project, it was decided to move the Houston team from single offices into a common area. The new team room had a private silent room, and a meeting area in the middle of the room. The space was big enough to accommodate the visiting team members. Flexible furniture supported meetings and space for the visitors. VC equipment was not permanently installed. Since the team room was initially made for this team, they were free to design the configuration of the workspace and the actual pieces of furniture. This gave them ownership, and they could decide what they needed to support their own work methods. It was also a positive factor to get a newly decorated room with new furniture. The solution worked well for the team.

Originator: Lise B. Hvatum

Sheperded for EuroPLoP 2004
Sheperded for PLoP 2004

Frequent Short Meetings

We have come to focus on communication when working with remote team members. Not just to discuss system development issues, but also to keep relations between team members healthy over time. With many different cultures, and development centers in several parts of the world, we have learned a lot about how to communicate.

Combine frequent planned and spontaneous meetings to keep the team focused.

You manage a project where the team members are distributed on engineering centers that are geographically far apart. The time difference is significant. The team meets Face-to-face Every 2 Months. They spend about 10 days together, aligning design issues and development priorities.

Global team members tend to drift apart on priorities and design during the 6-8 week periods between physical meetings. Uncoordinated local decisions and assumptions gradually lead to quality problems like architectural discrepancies and usability issues. How can you avoid this drift?

Continuous team communication is vital for the project to ensure that all are working in the same direction. We want no team member to get stuck on a task. All the small decisions made at each location must be made known globally. There has to be a constant focus on the shared system design. And risk management and project planning must be up-to-date on a global level. Team members at each site are co-located in open team space and communicate frequently and informally. But informal communication between sites is difficult for several reasons: it may be outside work hours for your colleagues, there is a higher threshold to contact a team member by mail or phone than directly face-to-face, there are no accidental meetings at the coffee bar, etc.

A local team can easily have short, daily meetings and get together spontaneously when needed. For teams that do not share common work hours, preplanned meetings cause fewer problems, and minimize the negative effect on team member’s private life (families) of having to be available late evenings or early mornings.

Daily meetings are normally focused on development status and priorities. A distributed team also needs to keep a constant focus on the system design.

In a local team, the members have easy access to the project architect and the domain experts. These people can walk around and help the developers during the workday. In a distributed team, it is necessary to organize formally to ensure that all the team members have good access to the knowledge resources.

Meetings are necessary, especially when informal communication is less efficient. But meetings take time. Developers are usually negative to time spent in meetings.

Trust and respect between the team members is key to keep a team functional. Communication problems and the resulting quality problems on the system increase the frustration level between developers. The team feeling breaks down and results in a “they” and “us” attitude.

Therefore:

Schedule frequent meetings for the global team that focus on architecture as well as on progress. Architects and domain experts should attend. Make sure the meeting schedule is known well ahead to allow team members to plan for availability. A fixed weekly schedule may be the best way to solve this.

Keep the meetings short and “to-the-point”. If the team is negative to meetings, you can use other terminology. What you are really doing is working! So you can have an “architecture & design session” once per week, led by the architect. And two weekly “workouts” led by the project leader. You could even use Scrum techniques like:

· Stand up during the “workouts” to emphasize short duration.

· Be very strict on the time/level of detail for each team member’s contribution.

· Defer special discussions and follow up to smaller settings outside the global meeting.

Short, preplanned meetings on a regular basis balance the need for spontaneous communication with the need to plan your work hours. The meetings need to be frequent enough that issues are not forgotten or being solved by workarounds.

— oOo —

When you get the whole team together in very focused events, you limit the effect of sub-teams drifting apart on system design and project priorities. To reverse or change a local decision should not cause too much extra work with only 2-3 days between the meetings. Less drift inside the team means less potential for later problems.

The meetings ensure that all developers have access to the architects and other experts. By reducing the frustration caused by drift between the centers, the personal relations between the team members will be less strained.

The number of planned meetings may cause a feeling of bureaucracy, and when set outside normal work hours will be a burden on the people. You can try to minimize the effect by using Flexible Hours. In the weeks just before and after meeting Face-to-face Every 2 Months, you can reduce the number of meetings, or even skip them.

Note that preplanned meetings cannot always substitute for the need to get together spontaneously, something that is difficult for locations with different time zones. Also be aware that virtual meetings are not as good as face-to-face communication, and the team does need to meet physically during the development.

Our US teams that work with the center in Beijing have several meetings per week. This has been an absolute must, as all the heavy expertise was located in the US at the start of this collaboration. The young team members in China were depending completely on frequent contact with the senior developers. We could immediately see the effect of dropping communication for even just short periods. Preplanning of meeting time is not to be avoided. We share no normal work hours between the two centers. Unless people were willing to be flexible on work hours, e-mail was the only means of communicating.

Originator: Lise B. Hvatum

Sheperded for EuroPLoP 2004
Sheperded for PLoP 2004

Join for Completion

We have on several occasions brought developers and testers together for the final tuning of the system before commercialization and delivery. Possibly the most extreme was to have the developers actually sailing on a seismic exploration vessel just before the start-up of the first commercial job with a new system. But it is efficient. Working with geographically distributed teams, this practice is continued.

Bring the development team together with testers on a single site for completion.

You manage a project where the team members are distributed on engineering centers that are geographically far apart. The time difference is significant. The product you are working on is close to completion. A number of users are on-site with engineering to perform the final system testing.

You expect that you will find a number of issues during the final tuning and qualification of your product before release. How can you make the problem identification and correction efficient and focused?

Intense testing by users to qualify the system for commercial use will certainly result in a number of issues that must be corrected before you can deliver. To deliver on time is important, still it is not an option to deliver before the qualification team is ready to approve the release. The fact that your developers and testers are not co-located does inevitably slow down your rate of correction. Some issues must be dealt with very quickly as they prohibit testing of functionality further down the workflow (hiding other problems).

When working individually with the testing users, there is always a risk that we make changes that are based on the opinion of a single individual. There is also a risk that developers are not focusing on the right issues to fix based on a global priority. When we are working directly with individual testers, we will often accept their issues as our highest priority. It is a heavy process to coordinate all the input to decide on the right order for corrections, and difficult for each developer to keep to a global “official list” rather than fixing what the tester tells them directly.

Issues are recorded in a tracking system, but it is time consuming and inefficient to write detailed explanations. The most effective way for a tester to explain the problem and the necessary corrections to the developer is to run the system with the developer watching. A developer at a remote site will need a written explanation with details to be able to fix the problem.

The remote team members will not feel the same pressure or be motivated by working side by side with the users. Still, these team members are equally important for completing the project.

Therefore:

Gather the whole team (developers, architects, domain experts, and internal and external testers) together in one location for the final tuning of the product before delivery.

Twice per day, have a status meeting where the corrected and new issues are presented. Use this opportunity to make sure that requested changes are urgent and agreed, and make the users consolidate the priorities of what is most important to correct.

You will need dedicated space. If possible, place the whole team together in one room (a Prepared Workspace created for the occasion?). It can be off-site given that the testing can be done properly, with good connectivity back to the engineering site. You may have to bring in extra equipment to do the testing at one location.

Make use of the possibility to team up a user and a developer so that they can do the smaller corrections on the fly as they are detected (“pair bug fixing”). This can be very efficient.

The financial side will always be an issue for engineering. The cost of this exercise is most likely low compared to what the users gain in improved quality, but it is hard to measure and prove that this is the case. The best approach is to start small, and use the experience from pilot activities to help in the decision making
 with management.

If it is not feasible to get the testers to come to the engineering site, engineers may have to travel to user locations instead.

— oOo —

You have increased the chance of delivering a high quality product on time. Communication is face-to-face and there are no time zones or other obstacles to deal with. With the testers and the developers at a single site, you can reduce the formality and level of detail in tracking defects.

By bringing testers and developers together twice per day, it is easier to coordinate priorities and make all aware of the ongoing modifications, and of the current problems. The risk of tuning the system to individuals is lower, as the testers are able to discuss with each other on tuning of the functionality. Users that participate in the testing activity get trained on the new system. If done with care the event can be defined as training and get financial support from your training organization.

The team created from combining users and developers can give engineering very useful contacts in the user community for later. The users will feel ownership of the product, and may be a good help in introducing the new system in a positive way to their peers. Hopefully they also left the activity with a better understanding of engineering and product development challenges.

There is always a risk of exposing the unfinished system to users. Even if bugs are corrected and the system tuned before the actual shipment is done, users taking part in the testing may communicate a poor image to their colleagues, creating a perceived but untrue image of a poor product that it may be difficult to get rid of later.

This pattern was applied on two different teams in our department in 2003. Testers came in from several field locations, and we had an empty lab that was converted into a testing room. It had space for several work areas where a tester and a developer could sit together, plus a big meeting room table where status meetings were done twice daily. Systems were borrowed from the on-site training center. They also helped out in providing field personnel to take part in the testing. For both projects, the final tuning was very successful, and the systems were delivered on time.
Originator: Lise B. Hvatum

Sheperded for EuroPLoP 2004
Sheperded for PLoP 2004

� Bootstrapping in the collection “Capable, productive and Satisfied” by Paul Taylor, Proceedings from PLoP 1998

� “Agile Software Development” by Alistair Cockburn, p. 84, Pearson Education, 2002

� Private Space in the collection “Interaction Patterns of Agile Development” by Jens Coldewey, Proceedings from EuroPLoP 2002

� “Fear Less and Other Patters for Introducing New Ideas into Organizations” by Dr. Manns and Dr. Rising. Addison-Wesley, 2004

� Developer on Site in the collection “Patterns for the End Game” by Mark Prince and Andy Schneider, Presented at EuroPLoP 2004

7/20/2004
page 1 of 1
7/20/2004
page 4 of 20

