

Copyright © 2005 by Kanwardeep Singh Ahluwalia. Permission is granted to copy
for the PLoP 2005 conference. All other rights reserved. - 1 �

Warning Message Accumulator

Author

Kanwardeep Singh Ahluwalia (kanwardeep.ahluwalia@wipro.com or
kanwardeepa@yahoo.co.uk).

Address:
81-A, Punjabi Bagh,
Patiala � 147001
India
Phone: +91 9811016337
Fax: +91 124 4014355

Abstract. This paper presents the pattern �Warning Message Accumulator�. The
Warning Message Accumulator pattern applies to software systems which need to
accumulate all the warnings generated during execution and display them to the
end user. The pattern addresses this problem by consolidating all the warnings
generated without impacting execution.

Copyright 2005 by Kanwardeep Singh Ahluwalia. Permission is granted to copy
for the PLoP 2005 conference. All other rights reserved.

Example Consider a typical three-tier system. End-users interact with the
system using a presentation layer, typically a GUI. The middle-tier,
comprising the business logic, interacts with the persistence layer.
The persistence layer further interacts with the database. Let us
assume that on a particular event from the end-user, the system is
supposed to start a long and expensive task, which requires a lot of
space on the hard disk (e.g., to create a huge file) as well as the
database (e.g., to store a lot of information).

Typically the validation for availability of the required free space in
the file system is done in the business layer and the validation for
free database space is done in the persistence layer. Consider a case
when the system finds that there is not enough space in the file
system or in the database to carry out the intended expensive task.
An exception is thrown to the end-user from the business layer after
doing a check for free file system space, even before the persistence
layer validation is done. Next time the user, after making sure that
there is enough free space available in the file system again starts the
same task. This time the business layer does not give any warning
and it executes the expensive and long task. Unfortunately, this time
the end-user gets the message from the persistence layer regarding
the shortage of database space.

The end-user had to wait a long time for the business layer to process
the task before the persistence layer informs him about insufficient
database space. The ideal solution to the above problem is to show
both the messages from the business and the persistence layers to
the end-user during the first try only. However, since exceptions are
used for error handling, it is tough to do both the checks and show
the consolidated messages.

Context Systems that have a range of error situations, including non-critical
ones that should be reported to the user but which shouldn't stop
execution.

Problem Error handling is an important aspect of all software systems. When
certain validations fail in the system, errors are generated and
execution is stopped. However, there are certain situations which are
not so critical that the execution should be stopped, but still the end-
user should be informed. Usually exceptions are used to handle error
conditions in systems that make use of Object Oriented technologies.
However, in case there are multiple warning conditions to be checked
by various validations in the system during execution, then
exceptions are not the best choice. Exceptions break the execution as
soon as the first validation fails. This leads to the hiding of other

P
R
E
S
E
N
T
A
T
I
O
N

B
U
S
I
N
E
S
S

P
E
R
S
I
S
T
E
N
C
E

DB

End
User

Copyright © 2005 by Kanwardeep Singh Ahluwalia. Permission is granted to copy
for the PLoP 2005 conference. All other rights reserved. - 3 �

warnings which may arise as a result of failure of later validations.
The end-user has to wait until he fixes the first warning condition and
executes the same action again to be shown messages from later
validations.

The problem is that the end-user should be shown all warning
messages generated by validations at various stages of execution in
the system at once. To address this problem, the solution must
resolve the following forces.

• Availability of all warnings. The end-user should be able to see all
of the warning messages at once.
• Continued execution. The system should not stop the execution if a
warning condition is reached. Instead it should collect all such
warnings encountered during execution and show them to the end-
user after execution is over.
• Flexible. The solution should be simple and flexible. It should fit for
simple as well as complex systems making use of threads, etc.
• Extensible. The solution should be able to accumulate all forms of
warnings in the system, whether these warnings are strings, alarms
or any other form, which may be even persisted.

Solution Store the messages generated while executing a task and pass the
control of execution to the next level without stopping the task.
Introduce a Message Accumulator, which accumulates all the
warnings generated by validations at different stages of execution.
The Message Accumulator will keep track of the messages for a
particular task.

When validations encounter a warning situation, they will ask the
Message Accumulator to collect the generated warning information
and continue execution. After the execution is completed, all
accumulated messages from the Message Accumulator can be shown
to the end-user.

 Structure The following participants form the structure of the Warning Message
Accumulator pattern.
• A Message represents the warning information. It is a part of the

solution introduced by the pattern.
• A Message Accumulator stores all the Messages generated during

the execution of a task (a unit of work that involves multiple
participants). It is a part of the solution introduced by the pattern.

• A Validator checks to see if a critical situation is reached during
execution. It is a part of the application code.

• A Task Handler that manages the execution of a task in the
system. It is a part of the application code. The basic function of
the task handler is to receive the requests from the end-user and
delegate them to the lower layers. After the execution is
complete, the task handler responds back to the end-user. In case
of multithreaded applications, task handler has more work to do.
Since there are multiple tasks being executed in the system at
any given time, so the task handler also keeps mapping of a task
with respect to the thread which is executing it. This is not
required in the case of single threaded applications because there
is only one active task being executed in the system at any given
time. Here, the task handler does not keep a mapping of a task

Copyright © 2005 by Kanwardeep Singh Ahluwalia. Permission is granted to copy
for the PLoP 2005 conference. All other rights reserved. - 4 �

with respect to the thread. Instead, it simply receives the request
from the end-user and delegates it further to lower layers.

The following describes the color scheme adopted for displaying
various participants.

The following CRC cards describe the responsibility and collaborations
of the participants.

The following class diagram illustrates the structure of the Warning
Message Accumulator pattern.

Message

Validator

Message_Accumulator *

*

Task_Handler

*

*

*
*

Dynamics For Single threaded applications:

In single threaded applications, the solution is fairly simple as there is
only one active task in the system at any given time. The task
handler receives a request to initiate a task from an actor, e.g., GUI.
It delegates the execution of the task to the validator to see if some
critical situation is reached. If yes, then it asks the message

CLASS
 Message

Responsibility
• Stores the warning

information

Collaborator

CLASS
 Message_Accumulator

Responsibility
• Maps the Message

wrt a key that is
unique for task
being executed

Collaborator
• Message

CLASS
 Validator

Responsibility
• Checks for warning

situations during
execution of a task

Collaborator
• Message

Accumulator

CLASS
 Task_Handler

Responsibility
• Receives request for

task execution
• Delegates execution

to other participants
• Collects response

from participants

Collaborator
• Validator
• Message

Accumulator

Participants from
application

Participants from
solution introduced

Copyright © 2005 by Kanwardeep Singh Ahluwalia. Permission is granted to copy
for the PLoP 2005 conference. All other rights reserved. - 5 �

accumulator to provide an instance of message where the information
about that particular situation can be logged. If the message instance
does not exist, then the message accumulator creates an instance of
message and reuses it when requested by validator in the future.

 : GUI : Task Handler : Validator : Message
Accumulator

 : Message

initiate task

wait for task completion

Accumulated Message

execute()
validate

getMessage()

Message

getMessage

Messaage

LogInformation

For multithreaded applications:
In multithreaded application, there can be multiple tasks being
executed in the system at any given time. The message accumulator
keeps a mapping of messages with respect to tasks. The task handler
receives a request to initiate a task from an actor, e.g., the GUI. In
addition to this, task handler usually identifies a unique key for that
particular task (e.g., thread id of a thread assigned to a task for
complete duration of its execution). Then it delegates the execution of
task to the validator, along with the unique key to see if some critical
situation is reached. If yes, then it asks the message accumulator to
provide an instance of the message where the information about that
particular situation can be logged. The message accumulator further
checks if there is an existing instance of the message for that
particular task. If not then it creates an instance of message for that
particular task and reuses it when requested by the same task in
future.

Copyright © 2005 by Kanwardeep Singh Ahluwalia. Permission is granted to copy
for the PLoP 2005 conference. All other rights reserved. - 6 �

 : Validator : GUI : Task Handler : Message
Accumulator

 : Message

initiate task
execute(key)

validate

getMessage(key)

Message wrt key

LogInformation

wait for task completion

getMessage(key)

Messaage wrt key

Accumulated Message

Logging of message can be done by multiple validators in the system.
The message accumulator will accumulate the messages generated by
multiple validators.

Upon completion of the task, task handler asks the message
accumulator to provide all the accumulated messages, if any, for the
completed task. The task handler will then forward these messages to
the actor who initiated the execution of task.

Copyright © 2005 by Kanwardeep Singh Ahluwalia. Permission is granted to copy
for the PLoP 2005 conference. All other rights reserved. - 7 �

Example
Resolved

Consider the example in which the end-user wants to have
information about the shortage of file system space and database
space during the initial execution. In this case the layer that interacts
with the user interface can act as task handler. The business and
persistence layers can act as validators because these layers perform
available space validations. Assuming that the task handler allocates
a particular thread for the execution of the task, the thread id can be
used as a unique key for the task. The following interaction diagram
shows how the example can be resolved using the Warning Message
Accumulator pattern.

 : GUI : Business
Layer

 : Persistence
Layer

 : Presentation
Layer

 : Message
Accumulator

 : Message

ini tiates
doWork(key)

Validate

geMessageForKey(key)

Message object wrt key

LogInformation(messageString)

doWork(key)

getMessageForKey (key)

Message object wrt key

LogInformation(messageString)

WaitForValidationToBeOver

getMessageForKey (key)

Message object wrt key
ConsolidatedWarningString

Manages Key

val idate

Consequences There are several benefits of using the Warning Message

Accumulator pattern:

Copyright © 2005 by Kanwardeep Singh Ahluwalia. Permission is granted to copy
for the PLoP 2005 conference. All other rights reserved. - 8 �

• Availability of all warnings. The Warning Message Accumulator
pattern allows the end-user to see all the consolidated warning
messages encountered during a particular execution. The message
accumulator collects all the messages, which are later shown to
the end-user.

• Continued execution. The Warning Message Accumulator pattern
allows continued execution if a warning is encountered. The
execution is not stopped as it is a warning condition and not an
error condition. The warning messages are collected by the
message accumulator and the execution continues.

• Versatile. The Warning Message Accumulator pattern is flexible. It
can be used for simple single threaded application as well as
multithreaded execution. In multithreaded applications, since
there are multiple tasks being executed at any given point of time,
message accumulator keeps a mapping of messages with respect
to tasks that generate those messages.

• Extensible. Using Messages, any type of information can be
stored. Since it does not define any data type, messages can be
strings, application specific objects like alarms, etc. Further,
warning messages can be persisted easily by mapping the
message class to a database table or simply a flat file. This will
allow the messages to be available for reference in the case
system goes down without any prior notification, e.g., in case of a
crash.

There are some liabilities using the Message Accumulator pattern:
• Execution constraints. In case the system generates warnings that

do not impact the flow of execution, i.e., flow is not required to be
diverted when non-critical situations are encountered, then the
Warning Message Accumulator pattern can be easily used.
However, when a system faces critical situation and still wants to
continue but with a modified flow, then care has to be taken to
divert the flow to the next level where further validations can be
done.

• Memory. Since all the messages are being accumulated by
message accumulator, system may run short of memory if the
rate of generation of messages is too high and/or the message
size is significant. This problem suggests the conception of other
patterns. These patterns may be addressing this problem by
showing accumulated messages to the user even before the task
is completed and destroying them so that the memory is released.

Known
Uses

Compiler. A typical compiler compiles the source code and
simultaneously displays the warnings encountered during compilation.
It does not stop compilation when warnings are encountered. The
warning messages can be displayed to the end-user either in some
file/console or some other storage media while still keeping the
compilation going.

Scheduler application. A typical scheduler while starting a
scheduled task does some validations that may result in warning
conditions. These situations are not so critical that the intended task
can not be started. For instance, if the file path for log generation
specified by the user does not exist, then the scheduler will still
execute the task, but generates the log in some other default path.
Here it collects the warning message but still continues execution.

Copyright © 2005 by Kanwardeep Singh Ahluwalia. Permission is granted to copy
for the PLoP 2005 conference. All other rights reserved. - 9 �

This warning message is shown to the end-user at the time of
scheduling the task.

Order Management System. In an Order Management System,
usually a Wizard-like UI is provided for order creation. In the wizard
form, the user can enter the information in parts on each page and
then press the Next button to reach the next page. After the
information is added to the last page, the user likes to validate the
information entered in all pages before executing the order creation.
Here, validation by the system gives the user a detailed report of all
possible warnings/errors in one attempt rather than one at a time.

Separation of an employee from employer. The Warning
Message Accumulator has a real-world known use case. When an
employee resigns from a company, he is supposed to get a �No
objection certificate� from various departments. Once this process is
started by the human resource department, the required form goes to
all concerned departments like administration, library, finance, etc for
their certification, which states that employee does not owe anything
to their department. If a department finds that the employee owes
something to them, the proper message is filled-in on the form and
the form is passed on to other departments for their verification.
Once it is routed through all the concerned departments, human
resource hands over the form to the employee. The employee looks
at all the information filled in by various departments and acts
accordingly. Here departments are acting as validators and human
resource department as task handler.

See Also Warning Message Accumulator allows continued execution in
situations arising out of not so critical or meaningful errors. The
pattern Meaningless Behavior in CHECKS Pattern Language [1] also
mentions about ignoring situations which does not have any business
sense and continue the execution. Both these patterns allow
continued execution in case of non-critical errors.
While the Warning Message Accumulator is more suitable for systems
executing tasks in transactional modes or for enterprise applications,
its usage can be extended to real time systems having continued
execution by the application of the patterns George Washington is still
Dead, The Bottom Line, Five Minutes of No Escalation Messages and
IO Gatekeeper from Telecom IO pattern language [2]. The application
of these patterns along with Warning Message Accumulator will make
the display of accumulated warning messages more meaningful to the
end-user.

Credits I would like to thank Robert S. Hanmer who was my shepherd for
PLoP�05 for his valuable review comments.

I would also like to thank the authors of the book POSA Volume 3 [3]
� Michael Kircher and Prashant Jain for their guidance and valuable
suggestions while writing this pattern.

Credit also goes to the participants of writer�s workshop at PLoP�05
who gave very useful comments.

Copyright © 2005 by Kanwardeep Singh Ahluwalia. Permission is granted to copy
for the PLoP 2005 conference. All other rights reserved. - 10 �

References [1] �CHECKS Pattern Language of Information Integrity� by Ward
Cunningham (PLoPD1).
[2] An Input and Output Pattern Language (Telecom IO) by Robert S.
Hanmer and Greg Stymfal.
[3] �Pattern-Oriented Software Architecture (POSA) volume 3� �
Michael Kircher and Prashant Jain.

