Secure Pre-forking - A Pattern for Performance and Security

Munawar Hafiz
University of lllinois at Urbana-Champaign
e-mail: mhafiz@uiuc.edu

December 15, 2005

Abstract

In a multi-tasking environment, the standard practices for performance improvement are pre-forking
and resource pooling [11] of processes. However, if the processes in the resource pool have infinite life-
time, a malicious attacker can utilize this feature by compromising one process and then using it to attack
and compromise other processes. This paper presents a performance and security pattern for resource
pooling. The secure pre-forking pattern prescribes that limited lifetime is an essential feature for the
processes in the resource pool. Older processes are periodically evicted from the resource pool and new
processes are spawned in their place. This pattern therefore mitigates the trade-off between performance
and security.

Background

This pattern is listed in [7] with other security patterns from the domain of Mail Transfer Agent (MTA)
architecture. AMail Tranfer Agentis a computer program that transfers electronic mail messages from one
computer to another. The most popular MTAsendmail Other Unix compatible MTAs argmail, Postfix

exim Courier, ZMailer etcThe main requirement for an MTA architecture is security. But sendmail was not
designed with security in mind, because the primary architectural requirement at the time of its development
(early 1980) was flexibility. The architecture of gmail is motivated by the series of security breaches in
sendmail. However, gmail is not only more secure than sendmail, it is also more efficient and easier to
understand. The security of gmail is based on a few patterns [9] and understanding its architecture can help
people make other applications secure. Postfix has gained popularity as an MTA because it has the same
interface like sendmail but it does not have problems with security and reliability. The architecture of Postfix
closely follows the design principles of gmail. A lot of security patterns of the gmail architecture are found in
Postfix. Additionally, Postfix improves performance. It shows better performance than gmail and sendmail in
benchmark tests.

The pattern presented in this paper comes from Postfix architecture. The performance advantage of Postfix
comes from its adoption of security patterns that also add to the overall system performance. The server
process that handles incoming mails from remote MTAs binds and listens to the SMTP port. When a mail
send request comes from a remote MTA, the listener process forks a Postfix child process to handle this
task, hands the task over to that child process and goes back listening to the port. To reduce the process
creation overhead, child prcesses are pre-forked and kept in a resource pool in Postfix. However, if the child
processes have infinite lifetime it creates a vulnerability that can be exploited by malicious attackers. Secure
Pre-forking pattern removes this vulnerability by assigning a limited lifetime to the processes.

The example of Apache web server is used in the pattern as a motivating example. This illustrates the
applicability of this pattern to solve a more general problem rather than a specific problem pertinent to the
domain of MTA architecture.

SeCU re Pre-fOrkl ng Performance, Security

Pattern Name
Secure Pre-forking

Intent

In a multitasking server environment, pre-forking is a widely used mechanism for improved performance.

If the pre-forked processes run as daemon processes, then they pose security and reliability risks. When an
attacker compromises one of the daemon processes, he can use this process to try to infect other processes
more effectively because the daemon processes never die. To avoid this vulnerability, all the pre-forked
processes should be created with a limited lifetime and new processes are forked in their places after this
pre-defined time span.

Also Known As
Mortal Daemon.

Motivation

Apache is a well-known web server that runs on Unix as a pre-forking server. On startup, it creates a pool
of child processes ready to handle incoming clients. As requests are processed, Apache tries to make sure
that there are at least a few spare servers running for subsequent requests. If the process spawning cost is
negligible, procsses do not need to be pre-forked. Instead a bunch of listeners listen to web requests and fork
processes lazily. In practice, process creation has significant overhead. Pre-forking enhances the performance
of the server by reducing the process creation overhead when a connection request comes through. However,
this architecture has some security issues.

The pre-forked processes reside in a resource pool. When a request comes, the listener process hands the
task to an idle process taken from the resource pool. Once the task is finished, the process returns to the
resource pool. These processes remain resident until the server is shut down. The consequences of a security
compromise with these processes are more severe, because the processes give the attacker a working ground
that remains resident in the system for a long time. This can be utilized to further exploit other processes.

How can the vulnerability associated with daemon processes be minimized?

The solution is to limit the lifetime of daemon processes. The processes are monitored so that they are killed
after serving a pre-configured number of requests. The identification criterion for the processes that need to
be killed is not a single paramter like the number of requests served. Multiple parameters are considerd for
this. The identified process is killed and a new process is forked and included in the resource pool in its place.
Information about the new process is passed to the monitor mechanism for control purpose.

Apache uses this approach. Apache has various configuration parameters that are used during server startup
and process management. Startup parameters are used by the master server to spawn off a number of child
processes and to put them in a resource pool. Memory resident data structures are maintained by master
server for process accounting. Based on these data values, processes are replaced after their limited lifetime.

Applicability

Network servers handling concurrent requests usually exhibit multitasking architecture with resource pooling.
This pattern is used to make the resource pooling mechanism more secure. Normally a system architect uses
this pattern.

A simple example of such a multitasking handler is a master server process acting as a gatekeeper to the
system. It waits for a connection request and when the request arrives, it creates the connection and forks
itself to create a child process. The child server process handles the request and runs in parallel to the master
server that returns to listening for incoming requests.

Web servers handle a lot of incoming requests; hence performance is the key issue. If process forking takes
a significant amount of time, the lazy forking by the master server means that it cannot accept incoming
requests during this period. This lack of availiability if the main reason why on-demand forking architecture
cannot be used for network servers.

The forces that need to be considered when choosing to use this pattern are as follows.

e PerformanceReleased resources should be reused. This reduces the overhead associated with repititive
acquisition and release.

e Latency.The latency for serving an incoming request should be minimal.

e Security. The impact of a security breach should be minimal so that the compromise of one process is
limited and cannot be used for further perpetration.

o Lifetime of ProcessesProcesses should not be reused infinitely. They should be released after some
time. Long running processes have the same vulnerability. Such processes have to be monitored to find
if they are compromised or not.

¢ Availability. The clients expect the server to be available and they expect that their service requests will
not be refused.

e Simplicity and Loose Couplinglhe implementation should not introduce more bugs into the system.
The monitoring logic should be separated from the main functionality of the system.

e Overhead of process monitoringhe execution overhead for running the secure pre-forking mechanism
should be minimal. Process monitoring should not take up the CPU cycles saved by resource pooling.
The cost for releasing resources during execution time and forking new processes in their place should
be minimal.

The resource pooling pattern resolves the performance and latency aspects. Without the limitation of process
lifetime the system remains vulnerable to a security breakdown attempt.

Structure
Here the structure of the pattern illustrates the key components of the pattern.

End of Lifetime,
1~ ald_C;i E 71 Process evicted from

1 Resource Pool
| Process L 798¢
[

Master Server - j (Evicted) —
1. Listens to incoming | — 77777 Resource Pool
requests
2. Keeps scorecard for Child Server Child Server Child Server
processes i (Process in t(]:l maan C:' (Process in
3. Performs cleanup of Queve) Cueus)
Resource Pool)j}
q B
Process)
from Regource Pool \\;\
Child Server
Tg (Process Serving Request)
=
&
=
o
E Child Server End|of service,
(=} (Process Serving Request) Process returns
'g to Resource Pool
]
w
=
E
=

Child Server
(Process Serving Raquest)

" Memory i

Participants

Master Server Process
The master server process listens to incoming requests. It keeps usage statistics of pre-forked processes
and sends cleanup commands.

Child Server Process

The child server processes are pre-forked. They serve the incoming requests. Upon creation, the child
server processes reside in the resource pool. When needed, they are transferred to main memory. When
the task is finished, the processes are returned to the resource pool where they wait to serve future
requests. After a limited lifetime, the child server processes are evicted.

Resource Pool
The pre-forked child-server processes wait in the resource pool.

Memory
The child server processes run in the main memory when they are handed incoming requests. The
processes return to resource pool after the service completion.

Collaborations

Initially, the master server pre-forks a number of child processes and puts them in the resource pool. This
pre-forking stage usually happens before the master server starts listening for client requests. The number of
pre-forked processes is configured by parameters set by the system administrator. This number can change
during runtime based on the number of requests coming from the client. Clients submit their connection
requests to the master server. The request is assigned to one child process from the resource pool. After
finishing, the child process returns to the resource pool. The master server keeps track of information about
child processes.gthe length of time they are serving, the number of requests seretcdthese parameters

4

are configured through some external configuration file.

Consequences
The pattern has the following benefits.

1. Increased securityln a process based system architecture, the key principle for a secure architecture is
the insulation of processes. An example is the architecture of gmail. gmail is a secure mail transfer agent.
The primary tasks of a mail transfer agent are receiving mail from local and remote hosts, storing the mail,
and delivering the mail to local and remote recipients. In the gmail architecture, the processes are partitioned
according to their functionalities. There are separate processes for local and remote mail recipients, the
gueue manager and local and remote mail senders. These processes do not trust each other and validate
the communication payload between them. Hence even if some process is compromised, other parts of the
system remain unharmed because they run in a separate address space. In gmail, most of the processes
are not daemon processes, and so even if some process is compromised, after a brief period it dies and is
garbage collected. The attacker cannot use this process to try to compromise other processes. Even if some
attacker does not try to infect other processes, he can send a garbage payload to other processes and create
an internal Denial of Service (DoS) scenario. Secure pre-forking adds to the security of the overall system
by limiting the lifetime of the daemon processes so that the effect of a process compromise becomes transient.

2. Improved PerformanceSecure pre-forking improves performance because processes do not have to be
spawned for each incoming request. If the pre-forked processes run as daemons, it should have even better
performance because the cost of process creation is entirely eliminated. However, in this scenario security
is an equally important requirement along with performance. The limited lifetime of processes adds some
overhead of forking more processes, but this limit adds a lot to the entire system being secure.

3. Availability. The main problem with a server that forks processes on demand is the process creation
overhead incurred every time a request comes in. When the master server is forking some child server
process, the requests that come at that moment are not served. Normally this happens only if the delay for
forking a process is not negligible. However if the load is high the delay for forking cannot be avoided.

It is inconvenient for the communicating entity to find their requests refused by the server. This is not

a serious problem in mail transfer agent architecture as processes communicate with the server and they
can start again. However, for web server architecture, the communicating entity is a human user and it is

a major disturbance for the client to see his web page access request denied because the server was unavailable.

4. Defense in DepthWhen the processes run under an owner with a low privilege level, an attacker after
compromising a process cannot do a lot of harm. In that case it can be argued that running daemon processes
may not be harmful. The counter argument is that daemon processes can still be vulnerable and it might still
contain a hole that comes from bad programming. Running the processes as daemon even at a low privilege
level is dangerous. The secure pre-forking pattern follows the defense in depth principle [12] by limiting the
vulnerability associated with processes with long lifetime.

The pattern has the following liabilities.
1. Complexity of pre-forking architectureThe major problem with secure pre-forking architecture is the

complexity. This means more faults, less portability, and a larger binary. The performance improvement of
pre-forking only becomes evident in the case of heavy load. In the case of light load, the pre-forked processes

occupy memory and become a bottleneck instead.

2. Negative impact on availabilityThis pattern can lead to limited availability. Let us suppose that a batch

of pre-forked processes have reached their threshold and should be killed. However, at that moment the
server is experiencing heavy load. If the master server begins pre-forking new processes, some incoming
requests may go unserved. Two things can be done to counter this scenario, a) killing the processes but
not forking new processes in the resource pool or b) temporarily halting the killing of processes. If the
processes are killed but new processes are not spawned off then the processes remaining in the resource
pool may be insufficient to handle the incoming load. In that case, after some time the server may have
to lazily fork new processes. Halting the killing of processes is another option. However, this solution is
temporary and after a short delay the marked-down processes are killed. If the stoppage is not temporary,
it leads to another vulnerability. An attacker, after the compromise of one process, may launch a DoS
attack to keep the master server in heavy load. A heavy load means the server cannot kill processes.
So the processes effectively become daemon processes. To avoid this, after some time the processes that
have passed their life limit are killed anyway. This is an example of trade-off between availability and security.

Implementation
Here are the issues of implementing the pattern.

1. Criteria for process killing. A key issue in pre-forking is to determine what parameters to consider
when replacing the pre-forked processes. An obvious parameter is the number of requests served by a
process or the duration of service. However, this parameter alone is insufficient as attackers are tempted to
launch their attacks during low-traffic or off-peak hours. Hence the idle time of processes should also be
considered. Another related parameter is the overall lifetime of processes. This parameter alone cannot be
used. Processes are pre-forked as a group and if the only parameter is the total lifetime then several of them
reach the threshold together. The key is to consider multiple parameters.

2. Setting up the pre-forking paramete’s.number of factors related to the pre-forking architecture have to

be configured. Separate parameters are maintained for controlling these issues externally. For example, the
number of pre-forked processes can be controlled with parameters. If the value is too high then the server
startup time is increased. If the value is too low then soon after startup the server will require more processes
to handle incoming requests and it will have to spawn new processes. The minimum and maximum value of
parameters are set according to some empirical values seen from trial runs of the software.

3. Smart pre-forkingln many systems, pre-forking is handled by parameters specified through configuration
files (see the example of parameters in Apache implementation example). A simple approach to pre-forking
uses the parameters directly. For example, if ‘X’ is the number of resources specified through some external
configuration, then ‘X’ resources are pre-forked. A smart pre-forking approach reduces the overhead of
pre-forking by creating processes based on load. The system can use an algorithm that incrementally
increases the number of processes spawned dynamically in response to increasing load. A pre-forking server
may spawn a fixed number of processes and then double this number when more requests come and so on.
An example is given in the Apache implementation section.

4. Process monitoringThe processes have to be monitored to do accounting on the creation time and use of
processes. A separate data structure has to be maintained in memory to do that. Careful monitoring has to be
done so that it does not become a performance overhead.

5. Pre-forking of resourcesThe idea of resource pooling can be extended to pre-fork instances of threads,
sockets etc. Windows implementation of resource pooling is primarily based on thread pooling.

6. Freeing of resourcesProcess eviction is an important aspect of the pre-forking architecture. The process
eviction task can be entrusted to a daemon process. The process is simple and does nothing else than freeing
of resources. This simplicity means that it can be thoroughly tested and made bug free.

7. Deadlock recovery in secure pre-forkingPre-forking works best with systems where the incoming
requests are for short-lived tasks. If the processes handle tasks that take a long time it also makes the system
vulnerable. The processes therefore go through an auditing phase and the processes that are blocked for a
long time are identified and killed. This has an additional advantage. The pre-emptive killing of a process
that is blocked for a long time provides a deadlock recovery mechanism. However, the most difficult issue is

to identify whether a process, that is handling a task that naturally takes a long time, is compromised or not.

If a process that was running under normal circumstances is killed, the task entrusted to the process is not
finished. This has severe reliability and availability issues.

Known Uses
We provide here two examples from Unix server domain. One of them is the Apache web server. The other
is the Postfix mail transfer agent.

1. Implementation in Apachdépache runs on Unix platforms as a pre-forking server. On startup, it creates a

pool of child processes ready to handle incoming client requests. As requests are processed, Apache tries to
make sure that there are at least a few spare servers running for subsequent requests. Apache provides three
directives to control the resource pool.

StartServers < number> (default5)
This determines the number of child processes Apache will create on startup.

MinSpareServers < number> (default5)

This determines the minimum number of Apache processes that must be available at any one time; if
processes become busy with client requests, Apache will start up new processes to keep the pool of available
servers at the minimum value.

MaxSpareServers < number> (default10)

This determines the maximum number of Apache processes that can be idle at one time; if many processes
are started to handle a peak in demand and then the demand tails off, this directive will ensure that excessive
numbers of processes will not remain running.

These directives used to be more significant than they are now. Since version 1.3 Apache has a very
responsive algorithm for handling incoming requests, starting from 1 to a maximum of 32 new processes
each second until all client requests are satisfied. The objective of this is to prevent Apache from starting up
excessive numbers of processes all at once unless it is actually necessary because of the performance cost.
The server starts with one, then doubles the number of new processes started each second, so only if Apache
is genuinely experiencing a sharp rise in demand will it start multiple new processes.

Apache’s smart and dynamic handling of the server pool makes it capable of handling large swings in
demand. Adjusting these directives has little actual effect on Apache’s performance except in extremely busy
sites.

Apache has another two directives related to the control of processes:

MaxClients < number> (default256)

Irrespective of how busy Apache gets, it will never create more processes than the limit\daxGiients,

either to maintain the pool of spare servers or to handle requests. Clients that try to connect when all
processes are busy will get ‘Server Unavailable’ error messages.

MaxRequestsPerChild < number> (default0)

This limits the maximum number of requests a given Apache process will handle before voluntarily termi-
nating. The objective of this is to prevent memory leaks causing Apache to consume increasing quantities of
memory; while Apache is well behaved in this respect the underlying platform might not be. Setting this to
zero means that processes will never terminate themselves, but this has security consequences.

A low value for theMaxRequestsPerChild directive will cause performance problems as Apache will be
frequently terminating and restarting processes. A more reasonable value for platforms that have memory
leak problems is 1000 or 1000MaxRequestsPerChild 10000

The Unix version of Apache also runs in a multi-threaded mode, thereforentteadsPerChild directive is
also significant. This is used for secure resource pooling for threads.

Detailed documentation of Apache implementation can be found in [6] and [1].

2. Unix Implementation example in PostfiRostfix [2] uses this pattern to implement the remote mail
recipient. Detailed description of Postfix’s use of this pattern is described in [7].

gmail [3] was the first Mail Transfer Agent (MTA) with security as one of the primary requirements. Postfix
follows gmail architecture in many places [7, 8], but it has some clever performace hacks that contribute to
overall performance improvement. In gmail, processes are forked on demand and their lifetime is limited for
the duration of serving the request. Postfix improves this by resource pooling. The size of the resource pool is
specified by the system administrator. Postfix does not have sophisticated modules for resource pooling and
load balancing like Apache. Instead, the pre-forked processes serve a fixed number of requests and then die.
This number is also specified by the system administrator. After the process dies, the parent process forks off
a replacement. To limit the vulnerabilities associated with pre-forked processes, the pre-forking parameters
have to be set carefully.

The performance improvement in Postfix is evident from benchmark tests in comparison with other MTAs [4,
5].

Related Patterns

The Pooling [11] pattern focuses on the pre-forking and resource pool creation issues. The Resource
Lifecycle Manager [11] pattern decouples the management of lifecycle of resources from their use by
introducing a separate resource lifecycle manager, whose sole responsibility is to manage and maintain the
resources of an application. This can be applied for process monitoring. Another important aspect of the

secure pre-forking pattern is the release of resources. The Evictor [11] pattern describes how and when to
release resources to optimize resource management.

The interesting fact about security patterns is that there are analogous mechanisms in human immune systems.
The key thing about the secure pre-forking pattern is the killing of processes that are long lived. The Pro-
grammatic Cell Death (PCD) mechanism known as Apoptosis [10] is an analogous mechanism where healthy
cells are programmatically killed for some benefit. The cells that are killed are not degenerated. Similarly,

in secure pre-forking processes that are killed do not have any problem. This is done for security purpose only.

Acknowledgement

Amir Raveh helped me a lot as a shepherd and | thank him for his support. | also thank my PC member Paul
Adamczyk for his comments about the paper. The participants in PLoP 2005 writer's workshop came up with
a lot of suggestions that has made this paper better. Finally, | thank Professor Ralph Johnson who supervised
the research on security patterns.

References

[1] Apache HTTP server projechttp://httpd.apache.org/docs-project/

[2] Postfix home pageMaintained by Wietse Zweitze Venermtip://www.postfix.org

[3] gmail home pageMaintained by Daniel Julius Bernsteihttp://cr.yp.to/gmail.html

[4] M. Andree. MTA benchmarkhttp://www.dt.e-technik.uni-dortmund.de/ ~ma/postfix/bench2.html

[5] M. Andree. Postfix vs. gmail - performancettp://www.dt.e-technik.uni-dortmund.de/ ~ma/postfix/vsgmail.html

[6] B.Grone, A. Kropfel, R. Kugel, and O. Schmidt. The apache modeling profet://apache.hpi.uni-potsdam.de/document/
May 16 2003.

[7] M. Hafiz. Security architecture of mail transfer agents. Master’s thesis, University of Illinois at Urbana-Champaign, 2005.

[8] M. Hafiz. Security patterns and evolution of MTA architecture Q®PSLA '05: Companion to the 20th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applicapages 142-143, New York, NY, USA, 2005. ACM Press.

[9] M. Hafiz, R. Johnson, and R. Afandi. The security architecturgnodil. In PLoP 2004 Proceedings, 2004.

[10] J. F. Kerr, A. H. Wyllie, and A. R. Currie. Apoptosis: A basic biological phenomenon with ranging implications in tissue kirgritesh
journal of cancey 26(4):239-257, August 1972.

[11] M. Kircher and P. JainPattern-Oriented Software Architecture, Patterns for Resource Managedwmt Wiley and Sons, June 8, 2004.

[12] J.Viega and G. McGravBuilding Secure Software - How to Avoid Security Problems the Right Mdison-Wesley, 2001.

