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Abstract

Since their introduction, hundreds of different design patterns have
been discovered and documented to address a variety of problems we
encounter in software design and construction. However, to use any one
of these design patterns effectively and quickly, one must have access to
a design pattern definition that unambiguously gives away its intended
purpose, and find an easy way to choose one design pattern from among
a family of related design patterns. Existing research is either lacking or
has not addressed these issues adequately.

We propose a new process by which we can organize design patterns
and allow for easy identification and differentiation among them. We rely
on and adapt some linguistic theories to analyze design patterns; use some
complex algebraic structures to structure hierarchical concepts that de-
scribe design patterns; and utilize some general and reliable classification
theories that were used successfully in compiling dictionaries and thesauri
of natural languages.

1 Introduction

Rising’s [21] Almanac adopts a classification scheme that uses categories derived
from domains in which the respective design patterns are used, e.g. Accounting,
Interactive Systems, GUI Development, Persistence, Security, Time, etc. Fur-
thermore, these categories are intermixed with designation suggested by origi-
nal authors of these design patterns, e.g. creational, behavioral, architectural,
structural, C++ idioms, Java idioms, etc. There are several problems with this
approach:
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1. This kind of classification scheme is inconsistent. For example, Accounting
and Health Care (domain category); Creational, behavioral, and Struc-
tural (author’s specific category); Design Process and Testing (method-
ology category); Smalltalk idioms, Java idioms, and C++ idioms (pro-
gramming language category); Event-Driven Systems and Fault-Tolerant
Systems (application category), etc.

2. Some of these categories overlap: Architectural and Client-Server; Air
Defense subsumes Event-Driven and Fault-Tolerant Systems; others may
be applicable to more than one category, e.g. Creational.

3. For a set of design patterns listed under one category, does that imply that
these patterns are not applicable to other categories? It’s true that some
may be specific to one particular domain, but it would be very hard to
imagine that all of these domains have unique problems that don’t apply
to other domains.

There must be a better way to organize design patterns such that we can
eliminate these problems. We will propose a new classification technique and
a process to apply it systematically to organize any collection of design pat-
terns. As a corollary of the classification scheme, we will be able to solve this
problem: given a set of related design patterns, how can we define them in
such a way that they are distinguished from each other precisely and unambigu-
ously? For example, Proxy [8], Remote Proxy, Protection Proxy, Cache Proxy,
Synchronization Proxy, Counting Proxy, Virtual Proxy, Firewall Proxy [22], or
Visitor [8], Default Visitor, Acyclic Visitor, Selective Visitor, Extrinsic Visitor,
Extension Object [17].

In the published literature on design patterns, relationship to other design
patterns is often described based on author’s knowledge of the existence of other
design patterns, even then it is based on author’s intuition (which most likely
is correct). Our proposed process will explicitly show the relationship between
patterns based on a mathematical device that we will define, discuss, and use
extensively with the aid of some examples.

This paper is organized as follows: in section 2, we survey some of the most
relevant work which addressed, to some degree, design pattern organization
problem. In section 3, we will introduce our approach and demonstrate it with
some examples. Section 4, will discuss our main contribution. In section 5, we
conclude our discussion, and finally, in section 6, we discuss our future work.
Additional materials are given in the Appendices that augment the concept
lattice presented in section 3, and we present a case study to demonstrate the
results of applying our approach to organize a small group of design patterns.



2 Related work on the classification techniques
of Design Patterns

The design patterns in Gamma et al. [8] are classified based on two criteria,
namely: the purpose and the scope. However, the granularity of the classification
scheme is very coarse-grained; no distinctions are explicitly made in a consistent
and unambiguous way between related patterns; and a classification scheme
based on relationships between single design patterns is too low-level and too
specific to be useful (cf. Figure 1.1 [8, p. 12]).

Coad [5] uses a classification scheme that organizes patterns into four major
subclasses: Transaction, Aggregate (structural), Plan (script), and Interaction
(communication) patterns, and within each there are a number of patterns.
While the approach is novel, it seems rather woefully incomplete, and the pat-
terns within each major category are really instances of the major category.
The only distinction is obtained via a role assignment to each participant in the
pattern.

Adamezyk [1] classifies design patterns based on the types of problems they
solve, such as: limited amount of memory, algorithmic dependency, complex
scheduling algorithms, etc. However, the same design pattern may be listed
under more than one category.

Zimmer [23] examines the nature of relationships between the design patterns
to classify them. The classification is very similar to Alexander’s approach [2]
where one pattern can serve to pull in one or more related patterns. The ap-
proach was tried on the small list of patterns in Gamma [8] and it will take some
hard work to try to relate the hundreds of patterns listed, for example, in [21].
Furthermore, it is not clear how two related patterns are similar or different,
and in what way?

Jackson’s [14, 15| uses a generic classification scheme intended for general
software solution problems. His categories are very coarse-grained and general.
Each of these problem classes can be designated by a problem frame, e.g. Re-
quired behavior, Commanded behavior, Information display, Simple workpiece,
and Transformation. Most problems’ analyses must somehow fall into these gen-
eral problems. This scheme does not classify design patterns, per se, however,
it warrants further research to see its utility to design pattern classification.

3 Linguistics-based Approach to Software Design
Patterns Classification

We have evolved our approach to use techniques from linguistics and lattice
theory and have come up with an integrative approach that seems to have
worked for us. The result is a procedure that allows us to classify an arbitrary
number of design patterns. We will describe each step in detail, citing along the
way the relevant theory or technique that we used to develop this procedure.
We will illustrate each step with examples.



3.1 Process Steps

Step 1: Design Patterns Selection There is a considerable body of litera-
ture that contains much of the design patterns we examined. Rising’s al-
manac [21] lists a large number of them although no details are discussed.
Therefore, much of the details are consulted by referring the source of the
publication for much of these design patterns. Chief amongst them are:
Gamma et al. [8], Buschmann et al. [4], the series of pattern languages
books, four volumes in all, [6, 22, 17, 11]|. Others sources are consulted as
well.

Step 2: Attribute Identification Componential Analysis of meaning [18§]
is a technique that allows two or more words or related meaning to be
compared and contrasted through a minimal set of contrasting features.
The name of the feature or component is irrelevant as much as the type
of values they contain. Generally, it is intuitive to recognize, given a set
of related words, what makes them related and what makes them distinct
from each other. This analysis method just formalizes this procedure.

Each well-documented design pattern is described with at least one or
more general properties that essentially, when juxstaposed, makeup the
definition of the design pattern. Generally, these properties are derived
from the general behavior of one or more major components of each design
pattern. These behaviors are in turn packaged into what we refer to in this
proposal as a role. In doing so, these roles are well defined and have formal
definitions in terms of operations they perform, messages they react to,
and state, represented by attributes, they effect. In other words, these
properties are distributed over the participant components of the design
pattern. We also refer to these properties as features, cf. Overgaard [19].

In linguistics, the meaning of a lexical term is derived from different do-
mains each of which contributes one or more components. In a similar
manner for design patterns, the features constitute the components of each
pattern and these may be derived from different domains. Example do-
mains, which we will also refer to as semantic domains, in design patterns
are: creation domain, i.e. features or properties responsible for instantiat-
ing or creating objects, communication domain, i.e. features responsible
message travel, containment domains, i.e. features responsible for storing
objects, etc. Of course, our reference to domain is linguistics-based and
not software engineering- or business-centric such as telecommunication,
accounting, real-time system, data-base, etc. Our linguistics based do-
mains, for the purpose of design pattern semantics derivation, are more
general and they cut across different software engineering- or business do-
mains.

As an example, here is a brief description of the properties that we have
extracted from Proxy related patterns, i.e. Proxy [8], Remote Proxy, Pro-
tection Proxy, Cache Proxy, Synchronization Proxy, Counting Proxy, Vir-
tual Proxy, Firewall Proxy [22]:



Surrogate (s1) A general property of this category and it signifies sub-
stitution. More on this when we discuss predicate identification in
step 3.1 below.

Access (al) A general property of this category and it signifies an access
to something.

Interface (f1) A property that designates an interface involvement.

Multiple access (s2) A property that describes the scope of access:
multiple vs. non-multiple access.

Sharing (s3) This property designates access to a shared resource, e.g.
a cache, a server, a variable.

Reference counting (s4) A count can be associated with a shared re-
source.

Delayed loading (s5) Access to a resource may be fully available or
loaded partially on demand.

Relationship between real and surrogate (s6) The type of relation-
ship between the real object and its substitute object can be one-one,
one-many, or many-many.

Security (s7) A feature that denotes whether a security aspect is re-
quired or not for accessing real objects via their proxies.

It is to be noted that there are no rules on how to extract these properties,
nor from what section of the documentation this information is gathered.
Generally, key properties are clear from the text and with experience they
can be extracted with relative ease.

sl |al | f1 | s2 s3 | s4 sb | s6 s7
PROXY (207) X X one-one (s61)
REMOTE PROXY X one-many (s62)
PROTECTION PROXY X | X no (s20) X
CACHE PROXY X x | no (s40)
SYNCHRONIZATION PROXY | x | x yes (s21)
COUNTING PROXY X X | yes (s41) X
VIRTUAL PROXY X X
FIREWALL PROXY X | x X many-many (s63) | x

Table 1: Properties of Proxy related Design Patterns. Legend: sl surrogate, al
access, fl interface, s2 multiple access, s3 sharing, s4 reference counting, s5 delayed

loading, s7 security, s6 relationship between real and surrogate.

Step 3: Relationships Construction We construct a cross-table to repre-
sent relationships between objects and their attributes. The intersection
of an object and an attribute constitutes a relationship if one exists. Re-
lationships can be as simple as certain objects have a specific property,




in this case we cross-check it; or yes/no to emphasize the presence or
absence of the relationship; or a multi-valued relationship. There are sev-
eral methods by which we can convert a multi-valued relationship into
a single-valued relationship, cf. discussion in [9]. The purpose of this
object-attribute cross-table will become an input to a software tool that
will present the same information in graphical format that is more useful
for further analysis as we will demonstrate in step 5 below. As an ex-
ample, see Table 1 for Proxy related design patterns. Although not very
apparent, this cross-table represents concept hierarchies which are critical
in the proposed classification scheme. We will define and illustrate these
concepts again in step 5 bellow.

Step 4: Predicate Identification Generally, one main concept seems to un-
derlie the meaning of each design pattern. We assign a verbal predicate
that best describes this concept. We then add this predicate as another
property or attribute to our tables. Adding this concept as an attribute
serves two purposes:

1. other design patterns that don’t belong in the same category may
also share this group with this attribute. This is the basic idea of the
semantics of a design pattern is derived from from different domains,
and,

2. a concept associated with a verbal predicate is the first level coarse-
grained classification scheme.

Step 5: Concept Lattice Generation Looking at separate tables each with
many objects and attributes may not be the best way to make conclusions
about our analysis. Concept hierarchies are easier to extract from concept
diagrams than from their tabular presentation. To formalize the analysis
technique and be able to use software tools to automate the process quickly
and easily, we use presentation and analysis tools based on the theory of
ordered sets and lattice theory, namely Formal Concept Analysis (FCA)
used as a formal model for analysis of hierarchies of concepts. Much of
theoretical and formal theorems and definitions are treated in details in [9].
We will briefly introduce the main concepts here and use the results of
the fundamental theorem of concept lattices directly since the application
as a presentation format and analysis tool is much more interesting and
software tools exist to construct concept lattices.

The model for conceptual hierarchies formalizes the traditional philosoph-
ical definition of a concept as a unit of thought determined by its extent,
the set of all objects belonging to the concept, and its intent, the set of all
attributes (features) shared by the objects. FCA investigates how objects
can be hierarchically grouped together according to common attributes.
The following three definitions, taken from [9], are the necessary back-
ground to understand the concept lattice, its construction, and how to
read it:



Definition 1 A Formal Context is a triple (G, M, I) where G is a set of
objects, M is set of attributes, and a binary relation I CGx M. If g € G
and m € M are in relation I, we write (g,m) € I and say ’the object g
has the attribute m’.

One way of writing a formal context is by means of a cross-table, see
Table 1, in which the objects, i.e. design patterns, are listed in row-
headings, and the attributes, i.e. design pattern properties, are listed in
column-headings. The intersection constitutes the ordered pair (g, m) and
is cross-marked iff (g,m) € I, e.g. (Protection Proxy, al).

Definition 2 (A, B) is a formal concept of (G, M,I) iff ACG, BC M,
A’ = B, and B’ = A, where:

A={meM]| (Vge A) gIm}

B'={ge G| (Ym e B) gIm}

A’ is the set of attributes common to all objects in A, B’ is the set of
objects having the attributes in B. The set A is called the extent of the
formal concept (A, B), and the set B is called its intent. The set of all
formal concepts of (G, M, I) is denoted by B(G, M, I)

Definition 3 Let (A1, B1) and (Az, Bs) be formal concepts in B(G, M, I).
We say that (A1, B1) is a subconcept of (As, Bo) iff A1 C Ay. Equiva-
lently, we say that (A2, Ba) is a superconcept of (A1,B1) iff B C Bj.
Using < to express this relationship, we therefore have:

(A17Bl) < (AQ,BQ) — A; C A2 <— By C Bj.

The set of all formal concepts of (G, M, I), partially-ordered by this rela-
tion, is denoted B(G, M,I) and is known as as the concept lattice of the
formal context of (G, M,I).

Figure 1 illustrate a Proxy related design patterns using concept lattice.
The actual attributes and their meaning are illustrated in Table 1. Each
node in the diagram represents a formal concept. Each attribute name
(lower-case letters) is attached to exactly one node and drawn above the
node; while each object (upper-case letters) is also attached exactly to
one node and drawn below the node. Nodes connected by edges express
concept order. Here is how to read the extents and intents of each concept
from the diagram: Consider the diagram in Figure 1. For any object in
the diagram, say CACHE PROXY, we can find out all of its attributes
by following the ascending paths originating from itself and any time we
encounter a node with attribute attached to it, it is part of that object.
In this case it is the set {s40, s1, s7, s31}. Similarly, to find out all the
objects that have a specific attribute, say s31, we follow all the descending
paths originating from itself and recording any object we encounter in the
path. In this its the set {COUNTING PROXY, CACHE PROXY}.



[PROTECTION PROXY|

CACHE PROXY .
FIREWALL PROXY

[SYNCHRNIZATION PROXY|

Figure 1: A sub-lattice diagram depicting Proxy related design patterns.
Nodes annotated with upper-case letters denote design patterns; nodes
annotated with lower-case letters denote attributes. Multi-valued attributes
are converted into single-valued attributes, e.g. s30, s31 where s3 is the same
attribute from Table 1, and the next digits are the results of multi-value into
single-value conversion.



Step 6: Classification We will illustrate how concept lattice diagrams help
us in classifying a group of related objects with common attributes. We
showed in step 5 above how to read concepts off the concept lattice dia-
gram. For example the lattice diagram in Figure 1 classifies the following
concepts in the following format: {{design patterns set}, {attributes set}}

1. {{VIRTUAL PROXY, FIREWALL PROXY, COUNTING PROXY,
PROXY, REMOTE PROXY, CACHE PROXY, PROTECTION PROXY,
SYNCHRONIZATION PROXY}, {s1}}

2. {{FIREWALL PROXY, PROTECTION PROXY, SYNCHRONIZA-
TION PROXY}, {al, s1}}

3. {{FIREWALL PROXY, PROTECTION PROXY?}, {al, s, s7}}
4. {{FIREWALL PROXY}, {s5, s63, al, s7, s1}}
5. {{PROTECTION PROXY}, {s20, al, s7, s1}}

It is worth noting that the higher-up in the concept hierarchy (upper nodes
in the lattice structure), the more general the concepts are and the less
distinctions are made between design patterns. For example, concept (1)
has only one attribute that all of the design patterns share, viz. sl. As
we descend in the hierarchy, we pick more attributes, become more spe-
cific, and drop more objects. Fewer objects have attributes in common,
e.g. concepts (2,3). Only if we pick more attributes, therefore becoming
more specific, are we able to distinguish between individual patterns, e.g.
concepts (4,5).

In 1852 Roget published his Thesaurus of English Words and Phrases,
Classified and Arranged so as to Facilitate the Ezxpression of Ideas. The
Thesaurus presents ideas arranged in certain way to reveal the list of
words that can be used to express them [7, p. 266]. In this way, he
was able to classify the ideas expressible by language in order to permit
quick access to them [3]. Using some of Roget’s ideas in classification,
Figure 2 is the first level classification diagram for some design patterns
based on verbal predicates. We intend to augment this figure, in future
work, with additional conceptual hierarchies discussed in this section from
formal concept diagrams.

Step 7: Definition Since the features or attributes are components of each
design pattern, and these, in linguistics-based definitions, constitute a
uniform way of describing each and every design pattern, we derive a
definition for the design pattern from its components. The definition is
simply the systematic description of the diagnostic features by listing all
the values of the intent in our concept structure. Since the definition is
generated from a sound analysis method, one can, in practice, develop a
design pattern dictionary not unlike linguistic dictionaries. A good def-
inition should be concise, precise, atomic, explicit, and unambiguous. A
user of a design pattern dictionary does not have to go through pages and
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Figure 2: Linguistics-based concepts as the basis for Design Patterns

classification.
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pages of documentation to figure out the meaning of a design pattern. As
an example, consider the definitions of the Connector and Acceptor design
patterns [17], and contrast our proposed definition to Rising’s [20]:

Proposed definition: CONNECTOR is a design pattern that decouples ser-
vice initialization from services provided, used for synchronous and asyn-
chronous connection, and it uses active initialization.

Rising’s definition [20, p. 40]: "CONNECTOR decouples service initial-
ization from services provided. This is a pattern for active initialization.
ACCEPTOR is for passive initialization" [implicit reference that these two
are somehow related].

"This pattern is similar to CLIENT-DISPATCHER-SERVER (CDS)."
[again an implicit reference to relatedness| "This pattern addresses both
synchronous and asynchronous service initialization, while CDS focuses
on synchronous connection." [An important property not included in the
definition].

Of course, Rising does not define design patterns in the same sense we do,
but the intent and related patterns sections in her documentation is all
the user has to go on. Our process will consistently produce a definition
in the manner shown above.

4 Contribution

Bushcmann et al. [4, p. 423] states the need for an appropriate method to orga-
nize patterns as more design patterns are discovered. Almost all the published
literature on design patterns does not address this important area of research.
The common practice widely accepted today is to adopt Gamma’s [8] classifi-
cation method (which is quite coarse-grained and inadequate) with additional
categories to fit the new patterns. For example, in addition to Creational, Struc-
tural, and Behavioral, we find categories like: Concurrency, Partitioning pat-
terns [10], Integration patterns [13], etc. Rising [21] was the first who attempted
to collect and catalog most of the publicly available or published design patterns
in the literature in one place. However, a careful examination of the catalog re-
veals several shortcomings: the classification scheme adopted by Rising was not
based on any known classification system thus creating the problem for finding
the right design pattern amongst several hundreds quickly and methodically;
there are several design patterns that are related but their differences were not
easy to discern thus creating a problem in selecting one over another similar
pattern; the general classification and cataloging framework, or lack thereof,
does not allow us to extend the catalog easily.

Our contribution is the creation of an attribute-based, fine-grained classifica-
tion process that more or less subsumes all other pattern organization schemes.
It does this by normalizing all categories, others have used as classifiers, into a
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Figure 3: Design Patterns are sorted by a predicate(verb) property.

set of attributes or features. For example, all Concurrency patterns would have
‘concurrency’ as one attribute. In this way, the category itself becomes part
of a self-contained, attribute-based pattern definition. Relationships between
patterns are based on feature set which can be determined precisely rather than
implicitly. Moreover, we may discover relationships that are not quite obvious
if one considers hundreds of design patterns. The process can be applied to any
arbitrary set of patterns to produce pattern catalog. It does, however, depend
on a consensus of how pattern attributes are determined.

5 Conclusion

Since the first catalog of design patterns published by Gamma et al. [8], hun-
dreds of design patterns were published by the researchers and practitioners.
Unfortunately, while most of these patterns are highly useful, designers and
other users could not practically nor realistically browse through them and nar-
row their searches quickly.

We proposed a systematic classification scheme and a process for doing it
based on the theory of Componential Analysis of Meaning and Peter Mark
Roget’s classification scheme adopted in his thesaurus when it was first published
in 1852. We enhanced these techniques and integrated them with formal concept
analysis to give us a more formal way to do the analysis. In this scheme, we
examined several design patterns and identified the one essential concept that
seems to underly the problem it intends to address. Then, we associated a
verbal predicate to this concept. This step allows us to achieve the first level
coarse-grained patterns organizations. This point can be precisely expressed
mathematically as follows: Given two sets, say D that contains design patterns,
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and a set P that contains concepts represented by predicates (verbs); then the
process of attributing (assigning) a design pattern to each concept is the map
D - P. In this case the domain is the set D, and the co-domain is the set
P. Lawvere [16] refers to this map as P-valued property and has the net effect
of producing a structure in the domain D. In plain language, we say that the
map v gives rise to a sorting of the set of design patterns, D, into P sorts.
Graphically, this mapping is illustrated in Figure 3. It is clear from this figure
how the sorting is achieved and hence the desired classification. Additional
steps allowed us to identify design patterns’ attributes that became diagnostic
features to distinguish one pattern from another. We also demonstrated how to
define design patterns consistently.

6 Future Work

We have examined about 76 design patterns from Gamma et al. [8], Buschmann
et al. [4], Coad et al. [5], the four PLoP books [6, 22, 17, 11], Hay et al. [12],
Rising [21], and have applied our proposed technique to classify and organize
these design patterns as a proof of concept. We intend to examine several more
and produce a new design pattern catalog, or a dictionary, based on these ideas.

Much like what Roget did in his classification scheme for the thesaurus,
the verb that we associate with each design pattern becomes an index into a
sub-group of related patterns because this property is easier to identify fairly
quickly. Continuing our search in the design pattern hierarchy, as we go to the
next level, using the lattice as a classifier tool, we are not sure what to look for,
but the lattice will help to differentiate the key properties in each pattern. In
this way, it will become a forcing function to ask appropriate questions and get
answers. We see this process leading us to develop a pattern locator technique.
This technique will help us to conceptualize what we are looking for because
this is how humans organize ideas.

We realize that many experts on design patterns may disagree on the defi-
nitions that we have created for each pattern, but we believe that a standards
group within the pattern community could be formed that uses this process and
gives us better definitions.
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APPENDICES

A Concept Lattice as a classifier tool

We will illustrate the use of concept lattice with a more familiar example that
demonstrates how a concept lattice diagram classifies an animal set based on
some of their attributes. We will also go through some details that make the
concept lattice as a classifier tool more comprehensible.

mammal | fly | land | sea | lay-eggs | carnivorous | herbivorous
LION X X X
MONKEY X X
SNAKE X X X
PIGEON X X X X
EAGLE X X X X
ALLIGATOR X X X X
FISH X X
FROG X X X X
TURTLE X X X X
CHICKEN X X X
Table 2: A table representation of some animals and some of their
features.

Table 2 is the cross-table representation and Figure 4 is its concept lattice di-
agram. Both table format and its corresponding concept lattice diagram convey
the same information, but, as we will demonstrate with the help of a software
tool, the concept lattice diagram is much superior in discovering related con-
cepts and showing precisely how those concepts are related. In section 3 step 5,
we have discussed how to interpret and read concepts from the diagram. There
are several observations to notice in the diagram and we will go through some
of them. The top most and the bottom most nodes are special concepts: the
top most node represents the concept that corresponds answering the following
question: what attributes do all animals in the set have in common? there
are none. Therefore, using the textual concept representation first discussed in
section 3 step 6, we have this concept:

{{FISH, , CHICKEN, EAGLE, MONKEY, ALLIGATOR, FROG, TURTLE,
SNAKE, LION, PIGEON}, {}}

Similarly, the bottom most node represents the concept that corresponds an-
swering the following question: which animal does have all the attributes in the
set? there are none. This concept can be represented textually as:

{{}, {fly, sea, carnivorous, herbivorous, land, mammal, lay-eggs}}

Intuitively, we know that some animals share some attributes but not all at-
tributes. And this is precisely the role of the intermediate nodes between the
top most and bottom most nodes. Every node represents a concept. Nodes con-
nected by edges express concept order. Intuition tells us that abstract objects
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tend to represent general concepts, e.g. the concept land animals, represented
formally as:

{{CHICKEN, EAGLE, MONKEY, ALLIGATOR, FROG, TURTLE, SNAKE,
LION, PIGEON}, {land}},

says that all the animals listed can live on land. It does not tell us how the
different land animals differ from each other. To do this, we must descend the
concept hierarchy by adding more contrastive features. To show this, from the
land’ node, let us descend along the path connecting this node to the node
labelled ’carnivorous’. This concept is represented as:

{{ALLIGATOR, FROG, SNAKE, LION, EAGLE}, {carnivorous, land}}

This clearly shows that as we add more attributes, fewer animals will share these
(this relationship was formalized by Definition 3 in section 3). At this point,
we are still incapable of differentiating between this smaller set of animals. To
do this, we continue the previous exercise and follow the edges connecting this
node to the next adjacent nodes in the downward direction. Here we have two
options: 1) we can descend to the node labelled 'LION’; the concept we en-
counter is this:

{{LION}, {mammal, carnivorous, land}}

This concept added another feature, mammal, that was enough to separate the
LION from the other animals in the previous group. Formally, the reason we
picked up the 'mammal’ feature is because the node 'LION’ was connected to
another node, in the upward direction, hence it must have that feature (starting
with an object node and traversing all the ascending paths from itself to the
next node, and if that node is labelled with an attribute, it means this object
node has that attribute). 2) we can descend to the node labelled 'SSNAKE’, and
we have this concept:

{{SNAKE, EAGLE, ALLIGATOR, FROG}, {lay-eggs, land, carnivorous}}
By adding a new feature, ’lay-eggs’, it reduced the number of animals that have
this feature and it also eliminated the 'LION’ from this concept. The two edges
leaving ’carnivorous’ node clearly shows this division. However, at this point,
i.e. at 'SNAKE’ node, the concept is still more general because we still don’t
know how to differentiate each individual animal in this new concept. But we
can continue the process and come up with these concepts:

{{EAGLE}, {lay-eggs,land,carnivorous,fly}}

{{ALLIGATOR, FROGY}, {lay-eggs, sea, carnivorous, land}}

Note that this last concept will not be able to differentiate between an ’ALLI-
GATOR’ and a 'FROG’ because we have no more features that set them apart.
This was made deliberate just to show that in order in uniquely identify (by
features) each object, we better go back and revise our feature list such that
each object-labeled node has only one object attached to it. If for example, we
add a new feature say, eating insects vs. subsisting or feeding on animal tissues
(carnivore), we would have been able to set them apart.
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{{FISH, , CHICKEN, EAGLE, MONKEY,
ALLIGATOR, FROG, TUR-
TLE, SNAKE, LION, PIGEON}, {}}

ALLIGATOR|
FROG

TURTLE

{{}, {fly, sea, carnivorous, herbivorous,
land, mammal, lay-eggs}}

Figure 4: Animal classification using concept lattice diagram
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__s__ __h__
{{ALLIGATOR, FROG},{lay-eggs, sea,carnivorous,land}}


B Case Study: classifying a small set of design
patterns

In this appendix, we will demonstrate our process on a small set of design
patterns. We will not show all the detailed steps in the process but one has
to go through them in order to arrive at the final results. We will examine
these 13 design patterns: STATE OBJECT, PROXY, TEMPLATE METHOD,
STATE MEMBER, SINGLE ACCESS POINT, REMOTE PROXY, STATE,
ADAPTER, FIREWALL PROXY, CHECK POINT, LIMITED VIEW, FA-
CADE, STRATEGY. All of these design patterns are cataloged in Rising’s
Pattern Almanac [21]. Figure 5 is the concept lattice representation of the
cross-table format, which we left out. The following attributes and a brief de-
scription for each were identified for each pattern:

Access (al) A general property of this category and it signifies an access to
something.

User Information (a2) Access to user information is encapsulated in an ob-
ject that handles all user verification and security privileges.

An Object or Application (a3) Control the number of access points to an
object or an application for security reasons.

Data (a4) Control the how much of data to expose subject to user privileges.

Change (c1) A general property of this category and it signifies changing some
aspect.

Behavior change dependent on state change (c3) The state of the ob-
ject determines object behavior.

Uses delegation to change behavior (c4) The behavior change of an ob-
ject is delegated to another object.

Uses inheritance to change behavior (c5) Different subclasses implement
different behavior.

State encapsulated in an object (c7) This feature has to do with how the
state of an object is implemented: either the object state is part of the
object itself, or the state is encapsulated in a separate object (state object)
and this object becomes an attribute of the containing state object.

Switch between (c12) This feature determines the types of switched entities.
In this case, it switches between states. Other switchers switch between
operations.

Convert (vl) A general property of this category and it signifies conversion
of something.
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{{PROXY, REMOTE PROXY,
FIREWALL PROXY},
{substitute}}

{{STATE, STATE OBJECT,
STATE MEMBER,
TEMPLATE METHOD,

) STRATEGY}, {change}}
substitute

{{ADAPTER, LIMITI
FACADE, CHEC!
SINGLE ACCES,

FIREWALL PROXY

CHECK POINT

Figure 5: Lattice diagram for access, change, surrogate, conversion, and
interface-type design patterns. For attribute names (small letters) and their
meaning, please refer to the discussion in Appendix B.
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Interface conversion (v2) Interface conversion type can be one-one, or one-
many, meaning several interfaces are invoked to match one method or
procedure call.

Interface type (v3) This feature denotes whether the interface is adapted is
the same or different.

Interface (f1) This a general property to indicate that type of change has to
do with interface or something else.

Surrogate (s1) A general property of this category and it signifies substitu-
tion.

Relationship between real and surrogate (s6) The type of relationship be-
tween the real object and its substitute object can be one-one, one-many,
or many-many.

Security (s7) A feature that denotes whether a security aspect is required or
not for accessing real objects via their proxies.

A multi-valued attribute are converted into single-valued attribute (this was
discussed briefly in section 3 step 3). Nodes labeled like ’s63’, 'v30’, etc. denote
attributes ’s6’ and ’v3’, respectively, but with different values. We use abbrevi-
ations for attribute names because they are too long and they would clutter the
lattice diagram making it incomprehensible. Because of n-dimensional nature
of the lattice structure, which a 2-D plane does not do justice, we use a software
tool (Toscana is publicly available software tool) to generate and explore the
diagram.

The lattice diagram allows us to quickly identify the main properties, in the
way we define them, of each design pattern, and, most importantly, it allows
us to see its relationship with other patterns. Two design patterns are related
if they have at least one or more common features. By the same token, it also
allows us to see the differences between a seemingly similar pattern, e.g. the
Proxy patterns we discussed earlier in this paper. The attributes attached to
higher nodes are more general and hence they apply to more objects attached
to lower nodes. It is these higher attribute-nodes that give commonality to
design patterns. Higher nodes, therefore, partition the set of design patterns
into equivalence classes that, naturally, become the basis for classification as will
be discussed shortly. For example, the attribute ’s1’ is attached to the highest
node before the supermum (least upper bound) node as depicted in Figure 5.
Commonality and differences between design patterns can be illustrated by the
these two concepts:

{{PROXY}, {s61, v31, f1, sl }}

{{FACADE, ADAPTER}, {v1, v30, {1, al}}

What this means is this: the PROXY design pattern has common attributes
with FACADE and ADAPTER. These two concepts differ by these attributes:
’s1’, ’s6’, 'v1’, and ’al’. Their common attributes are: 'v3’, and ’f1’.
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So what is the implication of these ideas in practice? The common fea-
ture tell us that there are choices to pick among many design patterns. For
example, FACADE and ADAPTER share some attributes that, say, we are in-
terested in. However, if our problem requirements specify additional features,
e.g. conversion is between interfaces in a one to one manner, this forces us to
select ADAPTER over FACADE. In general, and in the context of using de-
sign patterns as design solutions, given a new requirement in terms of problem
statement, one of the first things you need to do is to evaluate a new design
based on an existing ones. If a match is found, i.e. it has properties or features
similar to it, you use it, or if you recognize that it has essentially some minor
variations to the existing one, the framework gives you the ability to traverse
the list of attributes (features) you may find desirable in solving your problem.

The complete definition of a design pattern is derived from its attributes.
A complete analysis and identification of relevant features may take some time
and experience. Generally, the original author of a design patterns is the best
authority in this regard. With our process, assigning a verbal predicate to a
design pattern which essentially captures its general nature does nothing more
than gives it a weighted attribute. This serves as a coarse-grained classifier.
Decomposing the pattern into its other features (attribute identification) will
permit us to place the pattern into its proper place in the classification hierar-
chy subject to attribute-names and their values in relation to other patterns.
Most widely accepted pattern classification schemes organize patterns based on
categories that are too coarse-grained and target-dependent, i.e. technology,
platform, programming language, etc. Referring to Figure 5, it would be very
hard, if impossible, to see that the {ADAPTER, FACADE} are related to each
other and to the set {FIREWALL PROXY, CHECK POINT, SINGLE AC-
CESS POINT, LIMITED VIEW}. This is because using our lattice diagram,
they constitute the same concept represented textually as:

{{FIREWALL PROXY, CHECK POINT, SINGLE ACCESS POINT, LIM-
ITED VIEW, ADAPTER, FACADE}, {access}}.
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