

Patterns for Documenting Frameworks – Customization
Ademar Aguiar

INESC Porto, FEUP

Universidade do Porto

+351 22 508 2134

ademar.aguiar@fe.up.pt

Gabriel David
INESC Porto, FEUP

Universidade do Porto

+351 22 508 2134

gtd@fe.up.pt

ABSTRACT
Good design and implementation are necessary but not sufficient
pre-requisites for the successful reuse of object-oriented
frameworks. Although not always recognized, good
documentation is crucial for effective framework reuse but comes
with many issues. Writing good quality documentation for a
framework is often hard, costly, and tiresome, especially when
not aware of its key problems and the best ways to address them.
This document presents two of a set of related patterns that
describe proven solutions to help non-experts on solving recurrent
problems of documenting object-oriented frameworks. The
patterns here presented address the problems of describing the
customization points of the framework and how such
customization is supported, respectively the patterns
“CUSTOMIZATION POINTS” and “DESIGN INTERNALS”.

General Terms
Documentation, Design

Keywords
Patterns, object-oriented frameworks, documentation

1. Introduction
Object-oriented frameworks are a powerful technique for large-
scale reuse capable of delivering high levels of design and code
reuse. As software systems evolve in complexity, object-oriented
frameworks are increasingly becoming more important in many
kinds of applications, new domains, and different contexts:
industry, academia, and single organizations.
Although frameworks promise higher development productivity,
shorter time-to-market, and higher quality, these benefits are
gained only over time and require up-front investments. Before
being able to use a framework successfully, users usually need to
spend a lot of effort on understanding its underlying architecture
and design principles, and on learning how to customize it, which
together imply a steep learning curve. This effort can be
significantly reduced with good documentation and training
material.

This paper contributes two patterns to a pattern language that
focuses on problems of documenting frameworks [1][2][3], some
of the several technical, organizational, and managerial issues that
must be managed in order to employ frameworks effectively. In
addition to complex software systems, frameworks are designed
to be easy to reuse and this adds extra needs from the point of
view of documentation.

2. Pattern language
The pattern language comprises a set of interdependent patterns
that aim to help developers and technical writers become aware of
the problems that they will typically face when documenting
object-oriented frameworks. The patterns were mined from
existing literature, lessons learned, and expertise on documenting
frameworks, based on a previous compilation of the authors on
the topic [4].
The pattern language describes a path commonly followed when
documenting a framework, although not necessarily from start to
end. In fact, many frameworks are not documented as completely
as suggested by the patterns, due to different kinds of usage
(white-box or black-box) and different balancing of tradeoffs
between cost, quality, detail, and complexity. One of the goals of
these patterns is to expose such tradeoffs, and to provide practical
guidelines on how to balance them to find the best combination of
documents for each specific context.
According to the nature of the problems addressed, the patterns
are organized in:

• artefact patterns (which kinds of documents to produce?
what should they include? how to relate them?) to which
belong the patterns here documented, and

• process patterns strictly related with the process of cost-
effectively documenting frameworks (how to do it? which
activities, roles and tools are needed?), which are included
as an appendix.

2.1 Artefact patterns
Artefact patterns address problems related to the documentation
itself, here seen as an autonomous and tangible product
independent of the process used to create it. They provide
guidance on choosing the kinds of documents to produce, how to
relate them, and what to include there.
Similarly to other technical documentation, the overall quality of
framework documentation is complex to determine and assess,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PLoP ’06, October 21-23, 2006, Portland, OR, U.S.A.
ACM 978-1-60558-372-3/06/10 ...$ 5.00.

and this is perhaps the first issue. Documentation must have
quality, that is, it must be easy to find, easy to understand, and
easy to use [6]. Task-orientation, organization, accuracy, and
visual effectiveness are among all documentation quality
attributes, the most difficult ones to achieve on framework
documentation [4].
From the reader’s point of view, the most important issues are
providing accurate task-oriented information, well-organized,
understandable, and easy to retrieve with search and query
facilities. From the writer’s point of view, the key issues are
selecting the contents, choosing the best representation for the
contents, and organizing the contents adequately, so that the
documentation results of good quality, while easy to produce and
maintain.

Figure 1. - Documentation artefact patterns and their
relationships.

2.2 Patterns overview
To describe the patterns, we have adopted Christopher
Alexander's pattern form: Name-Context-Problem-Solution-
Example [7]. Before going to the details of each pattern, we will
overview the pattern language by summarizing each pattern’s
intent. Figure 1. shows the relationships between the patterns and
highlights the two patterns described in this paper.

Documentation Roadmap helps on deciding what to include in a
first global view of the documentation that can provide readers of
different audiences with useful and effective hints on what to read
to acquire the knowledge they are looking for [1].

Framework Overview suggests providing introductory
information, in the form of a framework overview, briefly
describing the domain, the scope of the framework, and the
flexibility offered, because contextual information about the
framework is the first kind of information that a framework user
needs [1].

Cookbook & Recipes describes how to provide readers with
information that explains how-to-use the framework to solve
specific problems of application development, and how to
combine this prescriptive information with small amounts of

descriptive information to help users on minimally understanding
what they are doing [2].

Graded Examples describes how to provide and organize
example applications constructed with the framework and how to
cross-reference them with the other kinds of artefacts (cookbooks,
patterns, and source code) [2].

Customization Points describes how to provide readers with
task-oriented information with more precision and design detail
than cookbooks and recipes, so that readers can quickly identify
the points of the framework (hot-spots) they need to customize
and get a quick understanding about how they are supported
(hooks).

Design Internals explains how to provide detailed design
information about what can be adapted and how the adaptation is
supported, by referring the patterns that are used in its
implementation and where they are instantiated.

Reference Guide suggests what to include as reference
information and how to structure the documentation to make it as
complete and detailed as possible. The purpose of the reference
guide is to assist advanced users when looking for descriptive
information about the artefacts and constructs of the framework.

Traversable Code provides hints on how to organize and present
source code, both of the examples and the framework itself, when
desired, to make it easy to browse and navigate, from, and to,
other software artefacts included in the overall documentation,
namely models and documents.

Error Recovery Guide explains how to help users on
understanding and fixing the errors they encountered when using
the framework.

3. Pattern CUSTOMIZATION POINTS
You are documenting a framework to provide application
developers with prescriptive and descriptive information capable
of helping them customize the framework.

3.1 Problem
To help application developers customize a framework
effectively, the documentation should be organized in a way that
can help readers obtain detailed information quickly, both
prescriptive and descriptive, about the framework parts strictly
required to customize, and how to customize them, in order to
implement the specific features of the application at hands.
Although examples, cookbooks and recipes are good at providing
prescriptive information, they might not be sufficient to allow
customization of specific parts or in specific situations not
predicted in other forms of documentation.
How to help readers know which framework parts are
customizable?
How to help readers learn in detail how to customize a specific
part of a framework?

3.2 Forces
Task-orientation. Readers want to learn in detail how to use a
certain customizable part of the framework, so the documentation
must focus on customization tasks imposed by the framework,

Framework
Overview

Spiral
Cookbook

Customization
Points

Design
Internals

Error Recovery
Guide

Graded
Examples

Documentation
Roadmap

Traversable
Code

Reference
Guide

is-related-to
patterns
is-related-to
patterns
is-related-tois-related-to
patternspatterns

where to start?

first recipe

how-to’s

errors

uses

illustrate

how it works?

code

index

which users really need to perform, as perceived in the recipes of
the framework’s cookbook.

Balancing Prescriptive and Descriptive information. To be
effective, the documentation about how to customize a specific
part of a framework must achieve a good balance between the
level of detail of the instructions provided to guide the usage of
that framework’s part, and the level of detail and focus used to
communicate how it works, i.e. its design internals.

Different Audiences. An application developer is a software
engineer who is responsible for customizing a framework to
produce the application at hands. Application developers want to
identify which customizations are needed to produce the desired
application, and to know how to implement them, instead of
understanding why it must be done that way. The application
developer thus needs prescriptive information capable of guiding
her on finding out which hot spots must be used, which set of
classes to subclass, which methods to override, and which objects
to interconnect. It must be expected that the application developer
possibly is not knowledgeable on the application domain and not
an experienced software developer.

Completeness. Readers appreciate complete information, i.e. that
all possible customizations are mentioned with all the possible
detail, which is not always feasible as it largely depends on the
reader’s point of view and the tasks to support.

Easy-to-use. Independently of the level of completeness and
detail, the resulting documentation must be easy to use (clarity,
easy-to understand and navigate).

3.3 Solution
Provide a list of the framework’s customization points, also
known as hot-spots, i.e., the points of predefined refinement
where framework customization is supported, and, for each one,
describe in detail the hooks it provides and the hot-spot subsystem
that implements its flexibility.
To allow easy retrieval, provide lists of customization points
ideally organized by different criteria, being probably the
following the most important ones:

• by kind of framework functionality, to provide a black-box
reuse-oriented view; especially useful when looking for
possibilities of customization related with a set of features in
mind;

• by framework parts and modules, to provide a white-box
reuse-oriented view; especially useful when looking for
possibilities of customization related with a specific
framework part or module.

Hot-spot. Customization is supported at points of predefined
refinement, called hot-spots, using general techniques, such as,
abstract classes, polymorphism and dynamic binding. A hot spot
usually aggregates several hooks within it and is implemented by
a hot-spot subsystem that contains base classes, concrete derived
classes and possibly additional classes and relationships.

Hook. Hooks present knowledge about the usage of the
framework and provide an alternative view to design
documentation [5]. Hooks provide solutions to very well-defined
problems. They detail how and where a design can be changed:

what is required, the constraints to follow, and effects that the
hook will impose, such as configuration constraints.
A hook description usually consists of a name, the problem the
hook is intended to solve, the type of adaptation used, the parts of
the framework affected by the hook, other hooks required to use
this hook, the participants in the hook, constraints, and comments.
Hooks can be organized by hot spot; as said before, a hot spot
tends to have several hooks within it. The usage of hooks can be
semi-automated with the help of wizards, for example.

Hot-spot subsystem. The hot-spot subsystem supports variability
either by inheritance or by composition. The variability is often
achieved by the dynamic binding of a template method t(), an
operation from a class T, that calls a hook method h(), an abstract
operation from a base class, via a polymorphic reference typed
with the class of the hook pointing to an operation h’(), from a
subclass of H, that overrides h(). With inheritance, the
polymorphic reference is attached to the hot-spot subsystem; with
composition the reference is contained in it. Figure 2. below
shows an example of both kinds of hot-spot subsystems.

Figure 2. - Two types of hot-spot subsystems.

H

h()

H’

h’()

H’’

h’’()

Client

call(

Composition-based hot-spot

T

t()

tR

Inheritance-based hot-spot subsystem

TH
t()

TH’

h’()

TH’’

h’’()

Client
call(

tR

{ …
 tRef.t();
}

3.4 Examples
Despite providing an organized list of customization points being
of great value in terms of documentation completeness, they are
not so frequently used as examples, cookbooks and recipes in the
documentation of the most popular frameworks, namely those we
have been referring so far in these patterns. We discuss below
how these customizations are documented in some well-known
frameworks.

JUnit. The major kind of reuse that JUnit was designed for is
very simple and consists only on writing and organizing tests, so
its documentation is mostly targeted to explain how to do these
tasks, which is simply and perfectly documented as cookbooks
and recipes in the document “JUnit Cookbook” document [14].
However, some more customizations can be done with JUnit,
such as test runners, and test decorators, but information about
these and other less used customization points is only briefly
mentioned in the “JUnit FAQ” document [15] and in the low-
level Javadoc documentation. Figure 3. shows an enumeration of
other possible customizations of JUnit (version 3.8.2) described in
its accompanying documentation. How such customizations are
implemented, i.e. their hot-spot subsystems, are not documented
and only identifiable by direct source code inspection.

Swing. When compared with JUnit, Swing is a very large
framework providing a huge number of possible customization
points, which are organized in its documentation in a simple and
easy to browse manner that uses different levels of depth and
detail. The most intuitive list is probably the one provided by the
“Visual Index to the Swing Components” (see Figure 4.). A good
and more complete alternative to the visual index to learn what
can be customized in the Swing framework is the list that
enumerates how-to use each of the key components (Figure 6.),
which gives access to more detailed lists of possible
customizations of each component (Figure 6.). Even more
detailed information about how the flexibility is supported in each
customization point although not explicit in the documentation, is
left to the reader to explore by herself, probably using the Javadoc
comments and source code inspection.

Figure 3. JUnit: hot-spots implicitly mentioned in the FAQ.

Figure 4. “A Visual Index to the Swing Components.”

Figure 5. List of the most frequently used customizations

possible with Swing.

Figure 6. List of the most frequently used customizations

possible with Swing Tables.

3.5 Consequences
By providing framework users with an organized and exhaustive
list of all the predefined customization points, or at least, the most
important and frequently used, readers can evaluate if the
framework is applicable to the problems at hands, and therefore to
decide with more confidence whether or not to reuse it.
After knowing the points to customize, whether the knowledge
was gathered from own experience, others’ knowledge, or
documentation (e.g. CUSTOMIZATION POINTS, GRADED EXAMPLES,
or COOKBOOKS AND RECIPES), framework users can then start
learning which tasks must be carried on to customize them
properly, possibly supported by the prescriptive information
provided by the COOKBOOKS AND RECIPES related with those
customization points. In addition, they can use the descriptive
information provided for each CUSTOMIZATION POINT to learn
more about how its flexibility is supported, and the information
about its DESIGN INTERNALS to know in detail how the framework
is designed.
Although adding some possible redundancy, lists of
CUSTOMIZATION POINTS are easy to use and browse and provide a
good balance between prescriptive and descriptive information
thus being a good complement to the prescriptive information of
COOKBOOKS AND RECIPES and the descriptive information of
DESIGN INTERNALS.

4. Pattern DESIGN INTERNALS
Information explaining in detail how a framework was designed
and implemented can be of great value for potential users willing
to get a better understanding in order to reuse it in more advanced
ways.

4.1 Problem
Framework instantiation for a particular application often requires
customizing hot spots in a way planned by framework designers.
Typical instantiations can be often achieved simply by plugging
in concrete classes selected from an existing library that
customize the hot spots to the needs of the application at hands,
also known as black-box reuse. Other instantiations can be
achieved by extending framework abstract classes in a way
planned by framework designers. The instantiation requires
matching of interfaces and behaviors, and the writing of code to
implement new behaviors, also known as white-box reuse.
Not all instantiations of a framework are simple to achieve, but
they can’t be all documented exhaustively and in enough detail,
especially those more advanced customizations, or those not
initially planned by framework developers.
To cover these advanced instantiations, and also other kinds of
reuse, such as flexing, composing, evolving or mining a
framework, it is thus important to provide framework users with
detailed information about how a framework and its flexibility
was designed and implemented.
How to help framework users on quickly grasping the design and
implementation of a framework to support them on achieving
customizations not typical, advanced, or not specifically
documented?

4.2 Forces
Different Purposes. In addition to the framework purpose and
usage instructions, the framework documentation must also
provide information to help framework users on understanding
the underlying principles and the basic architecture of the
framework so that they can develop not only trivial and planned
but also advanced applications that are conformant to the
framework.

Balancing Prescriptive and Descriptive information. Although
programmers can use a framework without completely
understanding how it works, such as when following a set of
instructions, a framework is much more useful for those who
understand it in detail. To be effective, the documentation must
achieve a perfect balance between the level of detail of the
instructions provided to guide the usage of the framework, and
the level of detail and focus used to communicate how the
framework works, i.e. its design internals.
Minimizing design information complexity. To communicate
complex software designs is challenging. Frameworks derive their
flexibility and reusability from the use (and abuse) of interfaces
and abstract classes, which, together with polymorphic methods,
significantly complicate the understanding of the run-time
architecture. The design information to communicate can include
not only the different classes of the framework, but also the
strategic roles and collaborations of their instances, and rules and
constraints, such as cardinality of framework objects, creation and

destruction of static and dynamic framework objects, instantiation
order, synchronization and performance issues.

4.3 Solution
Provide concise but detailed information about the design
internals of the framework by describing the framework hot-spots
at a meta-level using meta-patterns, and by describing the roles of
framework participants using design patterns and design pattern
instantiations.

Design pattern instances. Searching, selecting and applying
design patterns are the necessary steps of the cognitive process
for assigning the roles defined in a pattern, to concrete classes,
responsibilities, methods and attributes of the concrete design.
This process is generally called pattern instantiation [22].
Documenting pattern instances is important because it will help
other developers on better understanding the resulting concrete
classes, attributes and methods, and the underneath design
decisions. This provides a level of abstraction higher than the
class level, highlighting the commonalities of the system and thus
promoting the understandability, conciseness and consistency of
the documentation. At the same time, the documentation of
pattern instances will help the designer instantiating a pattern, to
certify that she is taking the right decision. In general, this results
in better communication within the development team and
consequently on less bugs.
To more formally document a pattern instance we must describe
the design context, justify the selection of the pattern, explain
how the pattern’s roles, operations and associations are mapped to
the concrete design classes, and to state the benefits and liabilities
of instantiating the pattern, eventually in comparison with other
alternatives.

Design patterns. A pattern names, abstracts, and identifies the
key aspects of a design structure commonly used to solve a
recurrent problem. Succinctly, a pattern is a generic solution to a
recurring problem in a given context [7]. The description of a
pattern explains the problem and its context, suggests a generic
solution, and discusses the consequences of adopting that
solution. The solution describes the objects and classes that
participate in the design, their responsibilities and collaborations.
The concepts of pattern and pattern language were introduced in
the software community by the influence of the Christopher
Alexander's work, an architect who wrote extensively on patterns
found in the architecture of houses, buildings and communities
[7]. Patterns help to abstract the design process and to reduce the
complexity of software because patterns specify abstractions at a
higher level than single classes and objects. This higher-level is
usually referred as the pattern level.
A design pattern is thus a specialization of the pattern concept for
the domain of software design. Design patterns capture expert
solutions to recurring design problems. As design patterns
provide an abstraction above the level of classes and objects, they
are suggested as a natural way for documenting frameworks [10]:
to describe the purpose of the framework, the rationale behind
design decisions, and to teach them to their potential users.
Design patterns are particularly good for documenting
frameworks because they capture design experience at the micro-
architecture level and capture meta-knowledge about how to
incorporate flexibility [16][21]. In fact, design patterns are

capable of illuminating and motivating architectures, preserve
design decisions made by original designers and communicate to
future users, and provide a common vocabulary that improves
design communication, and to help on the understanding of the
dynamics of control flow.
The concepts of frameworks and patterns are closely related, but
neither subordinate to the other. Frameworks are usually
composed of many design patterns, but are much more complex
than a single design pattern. In relation to design patterns, a
framework is sometimes defined as an implementation of a
collection of design patterns.
To document the design internals of a framework in relation with
the patterns it implements we must first know, or recognize, the
patterns in the framework design, and to match them against the
many popular design patterns already documented, such as the
catalogues known as GoF patterns [16] and POSA patterns [18].
However, more contextualized design patterns are very likely to
not being yet published or documented, due to its specificity,
either in terms of applicability or organization dependency. In
these situations, it is required to spend the effort to mine and write
the patterns considered important to explain the underlying
framework design. A good source of knowledge for those willing
to learn how to write patterns is [19], itself documented under the
form of a pattern language.

Meta-patterns. Frameworks are designed to provide their
flexibility at hot spots using two essential constructs: templates
and hooks. The possible ways of composing template and hook
classes in the hot spots of a framework were catalogued and
presented under the form of a set of design patterns, which were
called meta-patterns. Although meta-patterns can be used to
document the roles of framework participants, the level of detail
is too fine to be useful, but extremely useful to document the roles
of the participants involved in a design pattern [9].

4.4 Examples
Design patterns are commonly used to document the global
architecture of the framework. We will illustrate here with
examples of how design patterns are used to document popular
frameworks, such as JUnit, Swing, J2EE and .NET, and also the
classical HotDraw framework.

HotDraw. The first paper that mentions the advantages of using
patterns to document a framework is authored by Ralph Johnson
[10], which presents a pattern language to document the HotDraw
framework, comprising a set of patterns, one for each recurrent
problem of using the framework. In that work, patterns are not
only used to document the design of the framework, but also as a
way of organizing the documentation, similarly as a cookbook
does with the recipes (pattern COOKBOOK AND RECIPES), where
each pattern provides a format for each recipe.
JUnit. The document “A Cook’s Tour” [28], devoted to explain
how JUnit was designed, includes a pattern-by-pattern tour to the
design internals of JUnit. Figure 7. presents an extract from this
document that shows the design patterns used in the architecture
of JUnit, which describe in more detail JUnit’s internal design. In
concrete, it informally enumerates the design patterns instantiated
by the major abstractions of JUnit.
Figure 9. presents another extract from this document informally
explaining, using natural language, models, and fragments of

source code, how the class TestCase instantiates the Template
Method design pattern. Figure 9. on the right presents an extract
from the documentation relative to the Template Method pattern
[17] that shows the structure of the solution proposed by the
pattern, the participants involved and their roles, and the
consequences of instantiating the pattern.

Figure 7. Example of using design patterns to document the

design of JUnit.

Figure 8. Template Method: instantiated by TestCase.

Figure 9. Template Method Pattern.

4.5 Known Uses
Swing. The much more complex Swing framework instantiates
many more patterns (e.g. Observer, Composite, Decorator,
Visitor, etc.) but its accompanying documentation doesn’t use
pattern instances as explicitly and exhaustively as we can observe
in JUnit, probably due to the cost of doing it.
Figure 10. shows an extract from an overview of the Swing
architecture, where we can learn about the foundational design
principles of Swing, concretely the model-view-controller
architectural pattern (MVC) and its instantiation in Swing classes.

Figure 10. An extract from “A Swing architecture

overview” showing MVC and its instantiation in Swing.
J2EE. The patterns underlying the design of the enterprise
version of Java is documented in the core J2EE patterns catalog
[20], which serve as a valuable source of knowledge to learn more
about how J2EE is designed and how the applications based on
J2EE should be designed. Figure 11. shows the index of all the
core J2EE patterns.

.NET. Similarly to J2EE, there is a document that presents the
patterns underlying Microsoft’s .NET framework for enterprise

applications. Figure 12. shows the documentation of the MVC
pattern, which includes an example of its instantiation in .NET.

Figure 11. Core J2EE Patterns: patterns index.

Figure 12. .NET enterprise solution patterns” showing

MVC and its instantiation in .NET.

4.6 Consequences
By documenting the framework design internals, using patterns
and pattern instances, namely, we provide framework users with
additional knowledge that can help them better understand the
underlying architecture and design principles of the framework,
and therefore to enable more advanced customizations or simple
but not documented customizations elsewhere in another form of
documentation.
However, to document framework’s specific patterns, not
published, and to document pattern instances can be hard work, if
not done at the right moment by the right people.
As one of the most complex kinds of object-oriented software
systems, frameworks can be hard to understand and explain, but
definitely patterns are a excellent mean to do that, as they provide
a good balancing between simplicity of reading and richness of
the information provided.

5. Credits
The authors would like to thank our shepherd Rosana Teresinha
Vaccare Braga, and also Ralph Johnson, for the valuable
comments and feedback provided during the shepherding of these
patterns. We thank also Neil Harrison, Uwe Zdun, for
shepherding previous patterns from this same pattern language,
and Eduardo Fernandez, Kevlin Henney, Klaus Marquardt, Sergiy
Alpaev, Sami Lehtonen, Allan Kelly, Ian Graham, Alexander
Füllebornand, Martin Schmettow, Michalis Hadjisimouand, Ward
Cunningham, Sachin Bammi, Philipp Bachmann, Andrew Black,
Brian Foote, Maurice Rabb, Daniel Vainsencher, Anders, Mirko
Raner, Kanwardeep Ahluwalia, and all the other participants of
the writer’s workshops at VikingPLoP’2005, EuroPLoP’2006,
and PLoP’2006 for the motivation, comments and suggestions for
improvement provided.

6. References
[1] Aguiar, A., and David, G. (2005). Patterns for Documenting

Frameworks – Part I. In Proceedings of VikingPLoP’2005,
Helsinki, Finland (to be published).

[2] Aguiar, A., and David, G. (2005). Patterns for Documenting
Frameworks – Part II. In Proceedings of EuroPLoP’2006,
Irsee, Germany (workshopped).

[3] FEUP, doc-it project web site, http://doc-it.fe.up.pt/.
[4] Aguiar, A. (2003). A minimalist approach to framework

documentation. PhD thesis, Faculdade de Engenharia da
Universidade do Porto.

[5] Froehlich, G., Hoover, H. J., Liu, L., and Sorenson, P. G.
(1997). Hooking into object-oriented application
frameworks. In International Conference on Software
Engineering, pages 491–501.

[6] Hargis, G. (2004). Developing quality technical
information. Prentice-Hall, 2nd edition.

[7] Alexander, C., Ishikawa, S., and Silverstein, M. (1977). A
Pattern Language. Oxford University Press.

[8] Krasner, G. E. and Pope, S. T. (1988). A cookbook for
using the model-view-controller user interface paradigm in

smalltalk-80. Journal of Object-Oriented Programming,
1(3):27–49.

[9] Pree, W. (1995). Design Patterns for Object-Oriented
Software Development. Addison-Wesley / ACM Press.

[10] Johnson, R. (1992). Documenting frameworks using
patterns. In Paepcke, A., editor, OOPSLA’92 Conference
Proceedings, pages 63–76. ACM Press.

[11] Lajoie, R. and Keller, R. K. (1995). Design and reuse in
object-oriented frameworks: Patterns, contracts and motifs
in concert, pages 295–312. World Scientific Publishing,
Singapore. World Scientific.

[12] Froehlich, G., Hoover, H. J., Liu, L., and Sorenson, P. G.
(1997). Hooking into object-oriented application
frameworks. In International Conference on Software
Engineering, pages 491–501.

[13] Apple Computer (1986). MacApp Programmer’s Guide.
Apple Computer.

[14] Beck, K. and Gamma, E. (2003b). JUnit: Cookbook.
Available from
http://junit.sourceforge.net/doc/cookbook/cookbook.htm.

[15] Clark, M. (2003). JUnit: FAQ - frequently asked questions.
Available from http://junit.sourceforge.net/doc/faq/faq.htm.

[16] Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1995b). Design Patterns — Elements of reusable object-
oriented software. Addison-Wesley.

[17] Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1995a). Design Patterns — Elements of reusable object-
oriented software. Addison-Wesley, CD version edition.

[18] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.,
and Stal, M. (1996). Pattern Oriented Software Architecture
— a System of Patterns. John Wiley & Sons.

[19] Meszaros, G., and Doble, J. (1996). Metapatterns: A
pattern language for pattern writing. In the 3rd Pattern
Languages of Programming conference, Monticello,
Illinois, September 1996.

[20] Alur D., Crupi, J., and Malks, D. (2001). Core J2EE
Patterns: Best Practices and Design Strategies, Publisher:
Prentice Hall / Sun Microsystems Press, ISBN:0130648841;
1st edition.

[21] Beck, K. and Johnson, R. (1994). Patterns generate
architectures, volume 821, pages 139–149. Springer-Verlag.
Berlin.

[22] Odenthal, G. and Quibeldey-Cirkel, K. (1997). Using
patterns for design and documentation. In Akcsit, M. and
Matsuoka, S., editors, ECOOP’97 — Object-Oriented
Programming, 11th European Conference Proceedings,
volume 1241 of Lecture Notes in Computer Science, pages
511–529. Springer-Verlag.

[23] Eckstein, R., Loy, M., and Wood, D. (1998). Java Swing.
O’Reilly & Associates, Inc.

[24] Weinand, A., Gamma, E., and Marty, R. (1989). Design and
implementation of ET++, a seamless object-oriented
application framework. Structured Programming, 10(2).

[25] Gosling, J., Joy, B., and Steele, Jr., G. L. (1996). The Java
Language Specification. Addison-Wesley. Also available
online at URL http://java.sun.com/docs/books/jls/.

[26] Beck, K. and Gamma, E. (2003c). JUnit: Test infected:
Programmers love writing tests. Available from
http://junit.sourceforge.net/doc/testinfected/testing.htm.

[27] Schappert, A., Sommerlad, P., and Pree, W. (1995).
Automated support for software development with
frameworks. In ACM SIGSOFT Symposium on Software
Reusability, pages 123–127.

[28] Beck, K. and Gamma, E. (2003a). JUnit: A cook’s tour.
Available from
http://junit.sourceforge.net/doc/cookstour/cookstour.htm.

[29] Beck, K. and Gamma, E. (1997). JUnit homepage.
Available from http://www.junit.org.

[30] Hansen, T. (1997). Development of successful object-
oriented frameworks. In Addendum to the 1997 ACM
SIGPLAN conference on Object-oriented programming,
systems, languages, and applications (Addendum), pages
115–119. ACM Press.

7. Appendix – Process Patterns
This appendix briefly presents the process patterns that
complement the artefact patterns previously referred. They
address problems and solutions strictly related with the process of
cost-effectively documenting frameworks (how to do it? which
activities, roles and tools are needed?).
The patterns related with the process of cost-effectively
documenting object-oriented frameworks are overviewed below
and depicted in Figure 13. .

Targeting
Audiences

Creating Documents

Cross-Referencing
Contents

Preserving
Semantic Consistency

Organizing
Documents

Publishing and
Presenting Contents

Choosing
Supporting Tools

is-related-to
patterns

helps

provides focus

requires

requires

requires

supports

requires

implies

requires

Targeting
Audiences

Creating Documents

Cross-Referencing
Contents

Preserving
Semantic Consistency

Organizing
Documents

Publishing and
Presenting Contents

Choosing
Supporting Tools

is-related-to
patterns
is-related-to
patterns
is-related-tois-related-to
patternspatterns

helps

provides focus

requires

requires

requires

supports

requires

implies

requires

Figure 13. - Documentation process patterns and their
relationships.

Targeting Audiences describes one of the first activities in the
overall process of documenting a framework, which is to define
and prioritize the audiences intended to be addressed by the
documentation. Having defined the audiences on target, the
contents can be properly created and organized so that they can
be presented through the most appropriate views and formats for
those audiences.

Creating Documents provides hints on the main activity of
documentation. It explains how to streamline the creation of
documentation artefacts (documents, models, source code
fragments, etc.) both by developers and technical writers, to yield
a good quality and cost-effective documentation.

Cross-Referencing Contents addresses the problem of linking
and relating different documentation artefacts (e.g. examples,
patterns, source code), to provide good navigability between all
the contents involved, and therefore to minimize the obstacles to
learning strategies that readers spontaneously adopt.

Preserving Semantic Consistency suggests ways of coping with
the difficulties of preserving the semantic consistency between
related software artefacts (source code, models, and documents)
during development to enable their continual review and
modification throughout the lifecycle and thus to preserve its
accuracy and value for the readers.

Organizing Documents provides hints on how to keep all the
contents consistent, well structured, integrated, easy to browse,
and easy to maintain.

Publishing and Presenting Contents describes the ultimate
activity of documentation, the reason why it is produced and
organized. The pattern addresses issues on using documentation,
not only to read contents in a presentation format, but also to
browse, search, select, and navigate through the contents, what
sometimes requires processing of contents (transformations,
filtering, composition, etc.), to present them in a format
convenient for the user.

Choosing Tool Support addresses the problem of ensuring
quality and reducing the typically high costs associated with the
production and maintenance of framework documentation. The
pattern suggests automating the documentation process the best as
possible, while retaining the flexibility and adaptability to
different developers and environments.

