Design Patterns: the Devils in the Detail

Mel O Cinnéide

School of Computer Science and Informatics

University College Dublin
Dublin, Ireland
mel.ocinneide@ucd.ie

Abstract

The application of a design pattern in an industrial context
is frequently a much more involved task than is described the
pattern description itself. In this experience paper we report
on a number of problems encountered in the application of
several common patterns in commercial software systems.
The problems we examine range in nature from details of
the runtime environment that hamper pattern implementa-
tion (Singleton), to the software upgrade process breaking a
pattern’s promise (Abstract Factory), to the consequences
of the tight source code coupling produced by pattern ap-
plication (Facade).

Our conclusion is that while design patterns are indeed
useful in industrial software development, there are more
potential pitfalls in this area than is generally realised. In
applying a design pattern, more must be taken into account
than just the design context into which the pattern fits; is-
sues to do with the low-level runtime environment as well as
the higher-level software architecture, software process and
social environment also play a role.

1. INTRODUCTION

Design Pattern texts invariably describe patterns in the
context of small, readily-understandable systems [10]. This
is entirely reasonable from a pedagogical perspective, as a
designer encountering a pattern for the first time needs to
comprehend the essence of the pattern, not every detail of
its implementation. However, in the application of patterns
in industrial systems, many issues arise that are not even
mentioned in the standard patterns texts. These issues may
appear minor in nature, but they can be the crucial factor
in determining whether or not a pattern is really applicable
in a given context.

In this paper we describe a number of industrial problems
that one of the authors (PF) has encountered that have mili-
tated against the use of a certain design pattern, in a context
where the pattern would have appeared eminently suitable.
The design patterns we examine, and a brief description of

Copyright (C) 2006, 2007 Paddy Fagan and Mel O Cinnéide. Permission
to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this no-
tice and the full citation on the first page. All other rights reserved.

Paddy Fagan
Curam Software
Dublin, Ireland
PFagan@curamsoftware.com

the problems discussed, are as follows:

e Singleton: The manner in which the Java Virtual Ma-
chine manages class loading makes the implementation
of a single-instance class problematic.

e Abstract Factory: A framework must usually be both
upgradeable and customisable, but these properties
make it hard for Abstract Factory to provide the flex-
ibility it should.

e [acade: The tight coupling that is implicit in this pat-
tern can lead to complex problems of source code con-
tention.

This paper is arranged as follows. In section 2 we de-
scribe related work on the limitations of design patterns. In
sections 3, 4 and 5 we describe issues with the Singleton,
Abstract Factory and Facade design patterns respectively.
Finally, the conclusions to be drawn from this work are pre-
sented in section 6.

2. BACKGROUND

In this section we describe the background to this work by
describing related work on the limitations of design patterns.

2.1 Development languages

Much of the original work in the application design pat-
terns was based on examples developed in the C++ lan-
guage [10]. With the passage of time other object-oriented
languages have become more popular and further work has
been done to implement design patterns in these other lan-
guages. In many cases the implementation language has no
impact on the design pattern being used, but there are key
places where technical limitations of the language limit the
applicability of certain design patterns.

Many books and papers have been written about the ap-
plicability of design patterns to certain programming lan-
guages [11, 19, 18]. Much less has been written about the
situations where technical limitations of the language limit
the applicability of certain design patterns; one such exam-
ple is Fox’s work on the Java language [8].

While the development language can play a major role
in the details of the implementation of a design pattern, in
general it does not affect the types of issues encountered in
their use.

2.2 Critiques of design patterns

The widespread adoption of design patterns for software
design also spawned a series of critiques of design patterns

which attempt to document the negative aspects of design
patterns. A number of texts in this area have focused on the
misapplication of design patterns, Kerievsky’s work which
comments on the overuse of the Singleton pattern is a recent
example of this [15].

Several of the publications in this area have directly in-
fluenced the work presented in this paper in particular [15]
and [7].

2.3 Industrial software development as a so-
cial process

The process of developing software involves people; large
projects can involve hundreds of people. How and when
these people interact have a key influence on the software
that will be produced. These facts are often disregarded
when the “nuts and bolts” of a software project (code, pat-
terns and architecture etc.) are discussed, but this can cause
certain key factors to be overlooked. DeMarco and Lister [5]
provide many essays on the topic of building cohesive and
productive teams in order to build good software and many
other books and papers have been produced in this area.

A further facet of the social process of software devel-
opment centres on the behavioural patterns of the people
involved in the process as they respond to events. This is an
area that has received relatively little study to date, and is
usually mentioned only as an aside in works on the software
development process [4, 13, 14]. However, these behavioural
patterns are key to some of the arguments presented in this
paper. Particularly how the application of certain design
patterns gives rise to a particular code structure, which in
turn influences how people will approach updating this code.
In section 5 on the Facade pattern we will see an example
of this.

2.4 Balance of market and technical forces

Striking a balance between financial and technical pres-
sures is one of the key features of successful commercial
software projects. This balance changes over the lifetime
of a project, as the market, and the product’s place in the
market, evolve. A failure to get this balance right can clearly
be disastrous for both the project and the company involved
[13].

Given these factors one can expect the level of use of de-
sign patterns, and indeed the applicability of design pat-
terns, to vary from project to project. For example, in a
situation where time-to-market dominates all other factors,
it may make commercial sense to eschew completely the use
of design patterns in the initial release.

However, many projects have attempted to use design
patterns in a consistent and well-defined way, with strong
training and other support efforts to help the development
teams. Beck et al [2], examined the experiences of a num-
ber of projects, and found in general the feedback from the
development teams to be overwhelmingly positive.

It is vital to realise that in a commercial environment,
a positive experience for the development team is not itself
sufficient to justify the cost of such an approach, so some ad-
ditional justification for the use of design patterns is needed.
Hohmann [13], examines many of the trade-offs of develop-
ing software in a commercial environments in detail.

There is the well-documented belief that the use of design
patterns can lead to lower maintenance costs [3]. It should
also make it easier for new developers, or developers who

have not seen a section of the code before, to familiarise
themselves with the code, but there are times when neither
of these arguments is as important as the timing of the initial
deliveries.

In order for a commercial product to survive and prosper
it must always create for itself a viable position in the market
place. This drive to produce a successful product influences
the use of design patterns and the changes that take place as
a product matures. A robust design will always form part of
those products that survive and prosper in the market place
in the long term, and for these products the design patterns
form part of that, even if they are not used extensively in
the initial versions of the product.

In the following sections we describe a number of design
pattern implementation issues that arise in industrial con-
texts. The patterns we are concerned with are Singleton,
Abstract Factory and Facade.

3. SINGLETON

The Singleton pattern [10] is applicable when there should
be only a single, globally-accessible instance of a class. Work
by Hahsler [12] has shown the Singleton pattern to be very
heavily used in industrial software!. In the authors’ opinion
there is a number of reasons for this popularity:

1. It is one of the easiest patterns from the GoF text [10]
to understand and use.

2. Applying it to systems where needless object creation
causes problems can lead to very significant perfor-
mance gains.

3. Global variables occur widely in industrial software,
even though they are generally considered to be poor
style. Refactoring to the Singleton pattern to resolve
this issue is one possible solution.

In spite of the popularity of Singleton, and the popularity
of the Java language, there is a little-known property of the
Java Virtual Machine that leads to fundamental problems
with the implementation of the Singleton pattern in Java.
We consider this problem in detail in the following section.

3.1 Singleton and the JVM

3.1.1 Introduction

The Singleton pattern relies on it being possible to code
a class so that only one instance of that class can exist in
the system. With certain Java Virtual Machines (JVMs),
those that support multiple class loaders, this is no longer
guaranteed and hence the Singleton pattern will no longer
operate as the developer intended. A short description of
this problem is given by Joshua Fox [8], but without any

Hahsler’s work involved searching software projects for pat-
tern names. Singleton was in fact the third most common
pattern name found in the projects analysed. However, the
two most common pattern names found, “Command” and
“State” are likely to appear in source code for reasons other
than the implementation of those patterns. Since the term
“Singleton” is not generally used outside the context of the
Singleton pattern, it is probably the most popular of the
design patterns considered by Hahsler.

analysis of the behavioural problems this may cause?. To
explain how and why this happens, we will first give some
background on how the Java language represents classes at
runtime and how the runtime environment accesses them.

3.1.2 Background to the Singleton/JVM Problem

We first examine what happens when the Java runtime
environment attempts to access a class. Full details of this
aspect of the Java Virtual Machine are provided by Liang
and Bracha [17]; here we provide only a summary of the in-
formation relevant to our work. Consider a simple Singleton
class, MySingleton, as presented in Figure 1. After compila-
tion, the resulting Java class file can be loaded by any JVM
so that an instance of MySingleton can be created.

public class MySingleton {
public static MySingleton getInstance() {
if (instance == null) {
instance = new MySingleton();
¥
return instance;
}
private static MySingleton instance = null;
private MySingleton() {}
}

Figure 1: Simple Singleton Implementation in Java

The JVM loads the class using a component known as a
class loader. The class loader creates an instance of the inter-
nal Java class Class, to represent the class just loaded. All
classes loaded by a class loader are held in a namespace as-
sociated with the class loader. This situation is represented
in Figure 2.

ClassInstance
ClassLoader. My Singlefon

Class loader Index
ClassLoadar

JIVM

'

Jawva Class File
My Snglefon

Figure 2: JVM with single class loader

20ther authors, such as Steven Metsker [9], note other prob-
lems with Singleton in multithreaded environments in Java,
with similar behavioural issues, but with a differing under-
lying cause.

When there is only a single class loader instance inside
the JVM everything works as might be expected. However
it is not uncommon for a JVM to use multiple class load-
ers. For example, commercial Application Servers require
the use of JVMs with multiple class loaders in order to offer
advanced features such as the online upgrading of software
components. This feature requires the reloading of a subset
of classes already loaded in the running JVM. In order to
reload an already loaded class it must be loaded by a differ-
ent class loader, which means that multiple class loaders are
required to support this feature.

When there are multiple class loaders in the JVM, any
class can be loaded by a number of different class loaders.
A client class will see only one version of a multiply-loaded
class, namely the version that was loaded by the same class
loader that loaded the client. Since no class can specify the
class loader that loads it, this is entirely under the control
of the virtual machine. This is represented in Figure 3.

Class Instance Class Instance
Class Loader I My Singleton| |ClassLoader 2 My Singleton

Class loader Index
Class Loader?

Class loader Index
Class Loader2

“ad

Jawa Class File
MySingleton

IVM

Figure 3: JVM with multiple class loaders

If this happens with a Singleton class, two or more in-
stances of the Singleton will exist in the system, breaking
the fundamental constraint of the pattern. This leads us to
a discussion of the consequences of this problem.

3.1.3 Consequences of the Singleton/JVM Problem

Given that under certain situations multiple instances of
a Singleton can be concurrently present in a system, what
are the likely runtime issues? If the Singleton in question is
a mutable object, then changes made by one client will not
be seen by other clients, and run-time errors are likely to
occur.

It is not uncommon for a Singleton to be immutable, but
here also problems are also likely to occur. In the author’s
experience several distinct problems can manifest themselves
in this situation. These include:

1. Locking If the Singleton class writes to an output stream
that does not support multiple concurrent writers, only
one instance can have the lock and hence some clients

will report errors using the Singleton where others will
work correctly.

Of course, this pre-supposes that the error handling in
the client/Singleton interaction is sufficient. However,
because Singletons are seen as classes which will either
work or fail in totality, error checking around them is
often sub-standard.

2. Owerwriting If the Singleton writes to an output stream
that does support multiple concurrent writers, all in-
stances can write simultaneously, in this case one writer
will overwrite the others or the writes from the differ-
ent writers may be interleaved or all the written data
is corrupted.

The implications of this issue can vary from the an-
noying, log files are incomplete or hard to read, to the
fatal, where critical business information is lost or cor-
rupted.

3. Deadlocking If the Singleton writes to a data store that
supports multiple concurrent writers with some form of
object locking within the data store (e.g., a relational
database) it is possible that the different Singleton in-
stances will deadlock with each other. This will occur
when one Singleton instance obtains a lock on an ob-
ject that a second instance wants to write to, while the
second instance holds a lock on another object that the
first instance wants to write to.

Most modern databases include deadlock detection fea-
tures, so that one of the transactions will be designated
the “deadlock victim” and be rolled back with an error,
while the other transaction will be allowed to complete.
Even this is likely to be problematic however, as the
developer is unlikely to have considered the possibility
of the Singleton’s operation failing due to a deadlock
condition.

An even more insidious problem occurs when the multiple-
instance problem exists, but the program operates correctly.
This cannot be guaranteed to continue to be the case as the
system is evolved and updated, and is likely to lead to errors
at a later date.

Even worse the system may operate correctly most of the
time and only suffer intermittent errors. In this case it may
be extremely difficult for the developers to track down the
error because of the difficulties in reproducing it®.

3.1.4 Managing the Singleton/JVM Problem

At first, it may appear that current JVMs are flawed in
how they allow and handle multiple class loaders. In fact
this behaviour is essential to the correct operation of class
loading, so it is incumbent on the Java developer to be able
to deal with it.

The key to addressing this issue is understanding it. If
the developers are aware that more than one instance of a
Singleton can be present in the system concurrently there
are steps they can take to prevent errors from occurring.

3The author’s experience with this problem occurred when
the JUnit tests which he was using triggered multiple class
loader behaviour. The problem manifested itself when a
static member of a class was observed to be not equal to
itself! Tt took several days, and the insight of a colleague,
to track down the cause.

There are two approaches that may be taken to manage this
problem:

1. Avoid using the Singleton pattern This is the most
principled approach. If there is any possibility that
code will be used in a multiple class loader environ-
ment the developer should not apply the Singleton pat-
tern. In this context the “Inline Singleton” refactoring
described by Kerievsky [15] could be used to remove
existing Singletons.

2. Make the Singleton tolerant of multiple instancesIn this
approach the developer should code the Singleton so
that it can cope with more than one instance of itself
being present in the system concurrently. This is a
rather vague principle of course, and is contradictory
to what is normally understood by a Singleton.

It is also critical that the error handling in and around
Singletons be well thought-out and implemented. This
will ensure that the system will sensibly report any
errors that may occur should it be deployed in a JVM
with multiple class loaders.

4. ABSTRACT FACTORY

The Abstract Factory pattern [10] enables a developer to
defer the decision regarding which family of concrete classes
is to be used until the last possible moment, and makes it
possible to change this choice without requiring clients to be
updated.

This kind of flexibility is particularly useful for example
in creating a single code base that supports multiple oper-
ating systems and windowing systems, without littering the
code with selection statements enumerating each possible
configuration. Another key aspect of this pattern is that it
separates the interface of a class library from its implemen-
tation, so they can be changed independently.

Such flexibility is highly desirable in the domain of in-
dustrial software where changing requirements, or the re-
interpretation of existing requirements, can be a daily oc-
currence. However, in the context of Enterprise frameworks
achieving this desired flexibility using the Abstract Factory
pattern is not as straightforward as it initially appears. We
examine this problem in more detail in the subsection below.

4.1 Abstract Factory and the Framework Up-
grade Problem

Enterprise frameworks are becoming increasingly common
in industrial software. The key requirement is to provide a
cost effective pre-built solution for the vast majority of the
customer requirements in a particular domain, with contin-
uing upgrades, full support and proven performance. Fayad
and Schmidt list the advantages of such frameworks as mod-
ularity, reusability, extensibility and inversion of control [6].

However, in order to provide the advantages listed above,
enterprise frameworks have different development require-
ments from most software projects. In particular, the addi-
tional feature of upgradeability is also required, so that it is
easy for customers to take on new versions of the framework

without undue impact on their existing extensions/customisations.

These requirements combine to create unique pressures,
requiring unique and innovative solutions. Design patterns
can play a pivotal role in such solutions, but they cannot

PersonFactory

.

;

®createPerson()

W

DefaultPerson

O

Person

®gethlame()

Figure 4: Example Factory Implementation in a Framework

meet all of the requirements without other supporting ele-
ments of the solution. Here we consider how Abstract Fac-
tory can be used in such frameworks and the trade-offs this
implies.

4.1.1 Example Abstract Factory Implementation

Consider an Enterprise Framework in the Social Services
domain that uses Abstract Factory in the creation of the
products it uses (Person, Grant, etc.). To simplify the dis-
cussion, we’ll consider only the Person class in the subse-
quent discussion. The framework ships with a default con-

promise of this pattern, the separation of clients from prod-
uct classes, cannot be guaranteed.

4.1.2 Consequences of the Framework Upgrade Prob-
lem

The Framework Upgrade problem described above im-
poses a number of key limitations on customers using the
framework:

1. Customers need to examine their customisation if an
update to the framework changes a method they have
overridden.

crete factory PersonFactory that provides a method createPerson

that creates and returns an instance of the DefaultPerson
class. The framework uses an instance of the PersonFactory
to create Person objects, as does the client code written by
the developers who deploy the framework. This is shown in
Figure 4.

In tailoring the framework, the client developers will need
to create their own Person class, CustomPerson, which is
a subclass of DefaultPerson. This requires the creation
of a new CustomPersonFactory class, either by subclassing
or by code generation. In either case the client code must
install this CustomPersonFactory object so that both the
framework code and the developer code uses it. This is
shown in Figure 5.

The issue we are concerned with arises when a new ver-
sion of the framework is shipped. The developers of the
framework are of course unaware of changes in the client
code, and may have changed some of the classes that imple-
ment or use the Person class. As a result, the client code
may no longer work with the updated version of the frame-
work, either because of changes to the clients of the Person
class or because of changes to the Person class itself. With
the example above it is worth considering the impact of a
new version of Person class which implements a getAge()
method with a different return type to that specified in the
CustomPerson class.

The problem described here is, of course, not as a result
of applying the Abstract Factory pattern, but can occur
whenever clients customise a framework and later receive
an upgraded version of the framework. However, the frame-
work upgrade problem has an particularly negative impact
on the implementation of the Abstract Factory pattern. The

2. In alarge application a large amount of code is required
to support this approach, particularly given that a sin-
gle customer is unlikely to have overridden more than
a handful of methods.

Some of the traditional issues with the use of the Ab-
stract Factory pattern can present other limitations. For
example, if there is any direct instantiation of the Person
class, this approach will no longer work. Also, any changes
to the Person interface can cause problems, as the original
implementation class will no longer implement the interface.

4.1.3 Addressing the Framework Upgrade Problem

Using the Pluggable Factory pattern [20] in this situation
would remove the need to change the factory when tailoring
the framework, as the factory could simply be parameterised
with the new implementation class as the prototype. How-
ever, this approach is more susceptible to problems where
the appropriate prototype has not been passed to the Fac-
tory. Nor does this solution address the other consequences
noted above.

Probably the other key alternative in this situation is sim-
ply to not apply any design pattern at all on the grounds
that it can never be a total solution, and instead rely on
other approaches to meet the requirements. This would put
a very large focus on documentation and developer discipline
to ensure that the selected approach is followed.

4.1.4 Conclusions

If Abstract Factory is to be used in an enterprise frame-
work, which still provides the modularity, reusability, exten-

PersonFactory

CustomPersonFactonry

ScreatePerson()

|

DefaultPerson

O

®gethamel)

Person

CustomPerson

®createPerson()

SgetAge()

Figure 5: Example Factory Implementation in a Framework with extension

sibility, inversion of control and upgradeability required by
such frameworks, it requires:

1. A mechanism to prevent direct instantiation of imple-
mentation classes.

2. A mechanism to allow the customer extend the inter-
faces of the implementation classes.

3. A set of clear documentation on how the upgrade pro-
cess will operate.

The key issue with complex problems of this kind is that
any solution will be a compromise and will have to encom-
pass more than just the software itself. These problems can
be addressed in part by design patterns, but design patterns
alone cannot provide a complete and robust solution. Devel-
oper awareness of the problem and a disciplined approach to
managing it are as important as the features of the pattern
itself.

S. FACADE

The Facade pattern [10] is used to define a higher-level
interface to a subsystem that makes the subsystem easier
to use. This pattern is very useful where subsystems pro-
vide collections of related features that can be grouped to-
gether and presented in a unified way using a Facade class.
This kind of abstraction is highly desirable in the volatile
world of industrial software and can help insulate clients
from changes in the implementation of features they use.

The Facade pattern can also be used to ensure that only
those features of the subsystem that the developers intended
to publish are available to clients. Here the Facade acts as
the public interface to the subsystem, with all other subsys-
tem classes protected so that classes outside the subsystem
cannot access them. This is particularly useful where the
clients of the subsystem may be developed independently
from the subsystem itself, and as such the developers of the
subsystem may have limited control over the way the sub-
system is used.

In many development languages, such as Java, each class
is implemented in a single source file. This means that the
source files for a small number of facade classes can become
points of contention during the development process. It is
this aspect of the Facade pattern that we investigate in more
detail in the following section.

5.1 Example Facade Implementation

Returning to the Enterprise Framework in the Social Ser-
vices domain, it uses facades to provide a high-level interface
to each of the subsystems which implement the products it
uses (Person, Grant, etc.). To simplify the discussion, we’ll
consider only the facade to the Person subsystem in the
subsequent discussion. The facade to the Person subsys-
tem contains 50 methods, these depend on 25 implementa-
tion classes, each implementation is in turn constructed by
a separate factory. Because the facade is exposed to clients
as an EJB, there are also two Transfer Objects (key and
result) for each method. The interface and EJB transfer
objects depend on 20 “basic type” classes which are used to
abstract basic domain values, social security number, money
etc. throughout the system. In total then the facade to the
Person subsystem depends on 170 other classes. See Figure
6.

It should be noted that much larger facades exist in this
system, with the largest depending on almost 1000 other
classes. It is clear that the use of the facade pattern leads
to large numbers of dependencies, which must be considered
when using this pattern.

5.2 Facade and Tight Coupling

The Facade pattern tends to generate classes that are
tightly coupled to a large number of other classes in the
system. In the example above it is clear that the facade
is tightly coupled with the interfaces to the implementation
classes in the subsystem and to the EJB transfer objects
that form part of its interface.

It is well-known that classes with a high level of coupling
are significantly more error-prone than classes that have less

Sub-System Implementation

Address Interface

Address Factory

Address
Implementation

[Employment Interface

i

| Employment Factory

Employment
Implementation

Claim Interface

Claim Factory |

Claim
Implementation

Transfer Objects Basic Types

Address Key I [Money]
: Date

Claim Details | -

All Implementation and

Transfer Object classes
depend on these classes

Figure 6: Facade to Person subsystem

coupling [1], and this may lead to increased maintenance
costs. Assuming that the Facade pattern has been applied
appropriately, it may be assumed that the flexibility pro-
vided by the pattern outweighs the associated maintenance
costs.

However, there are other factors associated with the tight
coupling that results from the use of Facade, namely the
deleterious effect on build time and the problem of con-
tention over source artifacts. We examine these in the fol-
lowing subsections.

5.2.1 Build time of the application

Build time can be a serious issue for industrial software
projects. A full build, even on high-powered machines, may
take many hours or even days. The work by Laros on
compile-time coupling and build time, exemplifies this kind
of issue [16]. He considered the case of a C file that included
multiple header files, each header file one hundred lines in
length. As the number of header files increased so did the
build time, until very quickly the build time became unac-
ceptable. See Figure 7.

Even with languages with runtime linking, like Java, sim-
ilar problems exist because the dependency checker has to
resolve the dependencies between classes. When determin-
ing which classes need to be recompiled for a given change,
the dependency checker has to navigate these complex de-
pendency trees. At best this will slow the build down, but

Cost of Compile-Time Coupling

100000 /.
10000 /
1000

100 4 _/ —s— CPU seconds to
/ parse
10 +
1

04 --/'/./

123 456 7 8 81011
number of headers

CPU seconds to parse

Figure 7: Cost of Compile-Time Coupling, based on
data from [16]

at worst it will cause the builder to do a full build, because
it becomes impossible for the dependency checker to resolve
the dependencies fully?. This can mean that a small in-

4On one project with which the author was involved, he was
puzzled by the seemingly unnecessary full builds that were
triggered by small updates to the program. An examination

crease in the level of interdependencies can cause a massive
increase in average build times.

This increase in build time causes a direct loss in pro-
ductivity and increases developer frustration. The impact is
even greater in the context of Agile Processes, where regular
builds are an inherent part of the development process.

5.2.2 Contention over source artifacts

In the authors’ experience, contention over source artifacts
can cause different problems depending on the source control
practices within the organisation. If no concurrent editing
of a single artifact is supported, a queue of changes builds
up waiting on access to change the key class, in this case
the facade. Other changes inside the subsystem cannot be
completed, because the facade class needs to be updated. It
is important to note that this most often occurs where the
interface to the facade class does not need to change, but
rather the implementation needs to be updated to match
changes to the implementation classes inside the subsystem.

Where concurrent editing of a single artifact is supported,
the integration of the changes often proves problematic. At
the same time, the sophistication of automated merging in-
cluded in the source control system can affect how these
problems present themselves. The important factor is that
any concurrent editing of a single artifact can result in one
or more sets of changes being returned to the developers
to be manually merged. It is also worth noting that social
issues also come into play here, where developers become re-
luctant to submit changes where they fear a merge conflict
may exist. This can mean that advantages of the more flexi-
ble source control approach can be lost because of developer
behaviour.

5.2.3 Facade Conclusions

The value of the Facade pattern is clear in terms of ab-
stracting access to a set of subsystems in a cohesive way.
However, the tight coupling of the Facade classes to the rest
of the system has to be borne in mind in applying this pat-
tern. Problems of increased maintenance costs, longer build
times, and potential problems with developer contention for
Facade source files are all factors that may weigh against
using Facade.

6. CONCLUSIONS

We have taken three sample design patterns from the stan-
dard GoF text [10] and considered some of the practical
problems encountered by the authors in applying these pat-
terns in an industrial context. The problems ranged in na-
ture from details of the runtime environment that hamper
pattern implementation (Singleton), to the software upgrade
process breaking a pattern’s promise (Abstract Factory), to
the consequences of the tight source code coupling produced
by pattern application (Facade). These problems are not
immediately obvious from the pattern description, and yet
they must be considered in applying the pattern in a real
system.

of the Eclipse Java Builder in use revealed that when the
dependency tree reached a certain depth, a full build was
automatically triggered. Each time a change was made to
a tightly coupled Facade class, like those mentioned in the
example above, this “high watermark” was reached and a
full build resulted.

The problems described are not insurmountable of course.
However, they demonstrate that in deciding to apply a de-
sign pattern a developer must take into account more than
just the design context into which the pattern fits; issues
concerning the low-level runtime environment and the higher-
level software architecture, software process and social envi-
ronment also play a role.

7. ACKNOWLEDGEMENTS

We would like to thank our PLoP shepherd Bob Hanmer,
and all our other reviewers, for their insightful comments
and suggestions.

8. REFERENCES

[1] V. Basili, L. Briand and W. L. Melo, A validation of
object-oriented design metrics as quality indicators,
IEEE Transactions on Software Engineering, 1996.

[2] Kent Beck et al. Industrial Experience with Design
Patterns, Proceedings of the 18th International
Conference on Software Engineering, 1996.

[3] L. Prechelt, B. Unger, W. F. Tichy, P. Brossler and L.
G. Votta, A Controlled Experiment in Maintenance
Comparing Design Patterns to Simpler Solutions, IEEE
Transactions on Software Engineering, 2001.

[4] James O. Coplien and Douglas C. Schmidt, Pattern
Languages of Program Design, Addison-Wesley, 1995.

[5] Tom DeMarco and Timothy Lister, Peopleware -
Productive Projects and Teams, Dorset House, 1999.

[6] Mohamed Fayad and Douglas C. Schmidt,
Object-Oriented Application Frameworks,
Communications of the ACM, Vol. 40, No. 10, October
1997.

[7] Brian Foote and Joseph Yoder, Big Ball of Mud, Fourth
Conference on Patterns Languages of Programs, 1997.

[8] Joshua Fox, When is a Singleton not a Singleton?,
JavaWorld, January 2001.

[9] Steven Metsker, Design Patterns Java Workbook,
Addison-Wesley, 2002.

[10] Erich Gamma et al, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley,
1995.

[11] Mark Grand, Patterns in Java vols I and II, Wiley,
1998.

[12] Michael Hahsler, A Quantitative Study of the
Application of Design Patterns in Java, Working
Papers on Information Processing and Information
Management Nr. 01/2003.

[13] Luke Hohmann, Beyond Software Architecture -
Creating and Sustaining Winning Solutions,
Addison-Wesley, 2003.

[14] Andrew Hunt and David Thomas. The Pragmatic
Programmer, Addison-Wesley, 2000.

[15] Joshua Kerievsky, Refactoring to Patterns,
Addison-Wesley, 2004.

[16] John Laros, Large-Scale C++ Software Design,
Addison-Wesley, 1996.

[17] Sheng Liang and Gilad Bracha, Dynamic Class
Loading in the JavaTM Virtual Machine, OOPSLA ’98.

[18] Steven Metsker, Design Patterns in C#,
Addison-Wesley, 2004.

[19] Bruno R. Preiss, Data Structures and Algorithms with
Object-Oriented Design Patterns in C++, Wiley, 1998.

[20] John Vlissides, Pluggable Factory, Part I, C++
Report, November-December 1998.

