
Patterns for Session-Based Access Control
Eduardo B. Fernandez

Dept. of Computer Science and Engineerging
Florida Atlantic University

Boca Raton, FL 33431, USA

ed@cse.fau.edu

Günther Pernul
Department of Information Systems

Universität Regensburg
Universitätsstraße 31, Regensburg, Germany

guenther.pernul@wiwi.uni-regensburg.de

ABSTRACT
The concept of session, the context under which a user accesses
resources is very important to apply access control. We present
first the Controlled Access Session pattern for describing how
sessions can limit the rights of a user. We then combine this
pattern with two existing access control patterns. First we
consider a pattern for Session-Based Role-Based Access Control,
intended for organizations in which job functions form the basis
for privilege assignments. Then, we present a Session-Based
Attribute-Based Access Control pattern for organizations in which
accesses are controlled based on values of user attributes and
object properties. Since the general properties of those patterns
have been described earlier we emphasize the additional effect of
using sessions. The Controlled Access Session pattern can also be
combined with other models of access control or used on its own.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Contructs and
Features – patterns.
D.2.11 [Software Engineering]: Software Architectures –
patterns.

General Terms
Security, Documentation, Algorithms, Management

Keywords
Access session, access control, attribute-based access control,
session-based access control, security patterns

1. INTRODUCTION
It is important to develop systems where security has been
considered at all stages of design, which not only satisfy their
functional specifications but also satisfy security requirements. To
do this we need to start with high-level models that represent the
security policies of the institution. There are three models
currently used by most systems: the access matrix, the Role-
Based Access Control (RBAC) model, and the multilevel model.

One of the first security models was the access matrix. The basic

access matrix [13] included the tuple {s,o,t}, where s indicates a
subject or active entity, o is the protected object or resource, and t
indicates the type of access permitted. [Har76] proved security
properties of this model using the so-called HRU (Harrison-
Ruzzo-Ullman) model. In that model users are allowed to delegate
their rights (discretionary property, delegatable authorization),
implying a tuple {s,o,t,f}, where f is a Boolean copy flag
indicating if the right is allowed to be delegated or not. A
predicate was added to the basic rule to allow content-based
authorization [7], becoming {s,o,t,p,f}, where p is the predicate
(the predicate could also include environment variables). Patterns
for the basic rule and for the tuple {s,o,t,p,f} were given in
[9][23]. The rule could also include the concept of Authorizer (a),
becoming {a,s,o,t,p,f} [8] (Explicitly Granted Authorization).
RBAC [22] can be considered a special interpretation of the basic
authorization model, where subjects are roles instead of individual
users. We presented two varieties of RBAC patterns in [9] and
[23]. Subsequently, several variations and extensions of these
models have appeared. We presented a variation called Metadata-
Based Access Control, which later we renamed Attribute-Based
Access Control (ABAC) [19][20].

ABAC can be seen in two ways:

• A specialization of the model {s,o,t,p}, where p is a
predicate which depends on attribute values.

• A variant where s and o are defined by descriptors
which depend on attribute values.

In this paper we present a general pattern for a Controlled Access
Session as a building block and two patterns combining this
pattern with specific access control models. The concept of
session, the context under which a user accesses resources is very
important to apply access control. We present first the Controlled
Access Session pattern for describing how sessions can limit the
rights of a user. We then combine this pattern with a pattern for
Session-Based Role-Based Access Control, intended for
organizations in which job functions form the basis for privilege
assignments. Then, we present a Session-Based Attribute-Based
Access Control pattern for organizations in which accesses are
controlled based on values of user attributes and object properties.
Since the general properties of those patterns have been described
earlier we emphasize the additional effect of using sessions. The
Controlled Access Session pattern can also be combined with
other models of access control or used on its own. The pattern
diagram of Figure 1 shows the relationships between these
patterns. For example, adding a condition to Basic Authorization
results in Content-Based Authorization, using the concept of
session results in session-based models, and so on. Note that
RBAC is, in general, not delegatable. All these patterns define
authorization rules and they need a reference monitor for their

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. PLoP '06, October 21–23,
2006, Portland, OR, USA. Copyright 2006 ACM 978-1-60558-151-
4/06/10…$5.00.

enforcement; we don’t show it in this diagram for simplicity (see
[23] for the corresponding pattern). The double-lined patterns are
the ones presented here. We assume the reader to know basic
security concepts and these patterns are intended for system
designers trying to add security to their designs.

2. Controlled Access Session
Provide a context in which a subject (user, system) can access
resources with different rights and without need to reauthenticate
every time he accesses a new resource.

2.1 Example
Lisa is a secretary in a medical organization but sometimes she
helps in the laboratory to perform patient tests. As a secretary she
has access to patients’ information such as name, address, SSN,
etc. This is necessary so she can bill them and their insurance
companies. In the lab she has access to anonymized patient test
results. Combining the accesses provided by her two jobs in one
window she can associate test results to names, which violates
patient privacy.

2.2 Context
Any environment where we need to control access to computing
resources and where users can be classified according to their
jobs, groups, departments, assignments, or tasks.

2.3 Problem
A given user may be authorized to access a system because she
needs to perform several functional activities. However, for a
particular access only those privileges should be active which are
necessary to perform the intended task. This is an application of
the principle of least-privilege and necessary to prevent the user
from misusing the system (intentionally, accidentally by
performing an error, or without knowledge and tricked to do so,
for example through a Trojan Horse attack). Additionally this
would potentially restrict damage in case of session hijacking. A
successfully attacking process would not have all privileges of a
user available but only the active subset.

The following forces will affect the solution:

• Subjects may have many rights directly or indirectly through
the execution contexts that they need for their tasks. Using all
of them at one time may result in conflicts of interest and

security violations. We need to restrict the use of those rights
depending on the application or task the subject is performing.

• In the context of an interaction we can make the access to
some functions implicit, thus facilitating the use of the system
and preventing errors that may result in vulnerabilities. For
example, some editors or other tools could be implicitly
available in some sessions.

• It is not convenient to make subjects reauthenticate every time
they request a new resource. Once the subject is
authenticated, this condition should remain valid during the
whole session.

2.4 Solution
Define a unit of interaction, a session, which has a limited
lifetime, e.g. between login and logoff of a user or between the
beginning and the end of a transaction. When a user logs on and
after authentication, the session activates some execution contexts
with only a subset of the authorizations she possesses. It should
be the minimal subset which is needed for the user or transaction
to perform the intended task. Only those rights are available
within the session. A subject can be in several sessions at the
same time; however, in every session only the necessary rights
are active.

Structure
Figure 2 shows the class model of the Access Session pattern.
Classes Subject and Session have the obvious meaning. The class
ExecutionContext contains the set of active rights that the user
may use within the session.

Dynamics
Figure 3 shows the use case Open (Activate) a session. A subject
logs on and the logon interface authenticates it. The box with a
double arrow indicates some authentication dialog or protocol.
After the subject is authenticated, the interface creates a session
object and returns a handle to the subject.

2.5 Implementation
Based on institution and application policies define which
contexts (implying specific rights) should be used in each task
and grant them to the corresponding subject. The rights should be
selected using the least privilege principle and there should be no
contexts with excessive rights, e.g. the administrator rights should
be divided into smaller sets.

2.6 Example resolved
Lisa can log on a secretary or as a lab assistant but she cannot
combine these activities in one session. Now she cannot relate
results to patient names.

Figure 1. Relationships between access and control patterns

Figure 2. Class model for Access Session pattern

2.7 Known uses
• Session Access is part of the RBAC standard proposal

by NIST which later has been adopted by the American
National Standards Institute, International Committee
for Information Technology Standards (ANSI/INCITS)
as ANSI INCITS 359-2004 [10].

• Multics [Sum97] used execution contexts (based on
projects) to limit access rights. Session Access is
implemented in the security module CSAP [Dri03] of
the Webocrat System in conjunction with an RBAC
policy.

• Views in relational databases can be used to define sets
of rights. Controlling the use of views by users can
control their use of rights in sessions. This is done for
example in Oracle and DB2, where SQL can be used to
define restricted views [6].

2.8 Consequences
This pattern has the following advantages:

• We can give to each context only the needed rights
according to its function and we can invoke in a session
only those contexts that are needed for a given task.

• We can exclude combinations of contexts that might
result in possible access violations or conflicts of
interest.

• Any functions can be made implicit in a session.

• Once a subject starts a session it doesn’t have to be
reauthenticated. Its status is kept by the session.

Possible disadvantages:

• If we need to apply fine-grained access, it might be
inefficient to include many contexts to perform complex
activities.

• Using sessions may be confusing to the users.

2.9 Related patterns
The Access Session pattern is used in the Session-Based RBAC
and ABAC patterns, discussed later.

The Session pattern of [26] created a session object that defined a
namespace to hold all the variables that need to be referenced by
many objects. P. Sommerlad remade this pattern as a Security
Session [23], intended to prevent a user to be reauthenticated
every time he accesses a new object. A pattern with a similar
objective to the previous one is Abstract Session [21]: When an
object's services are invoked by clients, the server object may
have to maintain state for each client. The server creates a session
object that encapsulates state information for the client. The
server returns a pointer to the session object. However, none of
these patterns considers limitation of rights. Our pattern is an
extension of those patterns, concentrating all its security functions
and emphasizing the function of a session as a limiter of rights.

3. Session-Based Role-Based Access Control
Allow access to resources based on the role of the subject and
limit the rights that can be applied at a given time based on the
contexts (roles) defined by the access session.

3.1 Example
John is a developer in a project. He is also a project leader in
another project. As a project leader he can evaluate the
performance of the members of his project. He combines his two
roles and adds several flattering evaluations about himself in the
project where he is a developer. Later, his manager thinking that
they came from the project leader of that project, gives John a big
bonus.

3.2 Context
Any environment where we need to control access to computing
resources, where users can be classified according to their jobs or
their tasks, and where we assign rights to the roles needed to
perform those tasks.

We assume the existence of a Session pattern that can be used for
the solution.

3.3 Problem
In an organization a user may play several roles. However, for
each access the user must act only within the authorizations of a
single role (i.e. within the context of the role) or combinations of
roles that do not violate institution policies. How do we force
subjects to follow the policies of the institution when using their
roles?

In addition to the forces defined for the Access Session pattern,
the following forces apply to the solution:

• People in institutions have different needs for access to
information, according to their functions. They may
have several roles associated with specific functions or
tasks.

• We want to help the institution to define precise access
rights for its members so that the least privilege policy
can be applied when they perform specific tasks..

Figure 3. Sequence diagram for use case ‘Open a session’

• Users may have more than one role and we may want to
enforce policies such as separation of duty, where a user
cannot be in two or more specific roles in the same
session.

3.4 Solution
A subject may have several roles. Each role collects the rights that
a user can activate at a given moment (execution context), while a
session controls the way of using roles and can enforce role
exclusion at execution time.

Structure
The structure of the session-based RBAC is shown in the class
diagram given in Figure 4. The class Role is an intermediary
between subject and object holding all authorizations a user
possesses while playing the role and acts here as an execution
context. Within a Session, only a subset of the roles assigned to a
Subject may be activated, i.e. only those necessary to perform the
intended task. Roles may be composed according to a Composite
pattern [11], where higher-level roles acquire (inherit) rights from
the lower-level roles.

Dynamics

Figure 5 shows a sequence diagram to request access to an object.
A subject has already opened a session (See Figure 3) and he
requests access to an object in a specific way (access type). The
session uses the corresponding Reference Monitor, which in turn
checks if the rights of the session roles allow the access. If so, the
access is permitted.

3.5 Implementation
See Section 5 for an example of a real implementation.

• Determine the roles the system should contain (role
catalog), according to the user functions or tasks.

• Collect lists of incompatible roles and use these lists
when a session is started (static constraints). These
constraints can be defined using OCL or some other
formal language as additions to the class diagram of the
pattern.

• Determine the number of roles which may be active
within a session (dynamic constraints).

• When a user opens a session she must declare what
roles she intends to use and the system will open the
corresponding session or refuse to do so in case of
conflicts.

3.6 Example resolved
When John logs on the project where he is a developer he only
gets the rights for a developer and cannot add evaluations. When
he logs on in the project where he is a project leader he can only
evaluate the members of his group. He cannot combine his role
rights in the same session and now he only gets legitimate
evaluations.

3.7 Known uses
The structure and dynamics of a session-based RBAC are
implemented in the security module CSAP [5] of the Webocrat
system. Webocrat is a portal supporting E-Democracy which was
developed within the European Webocracy project (FP5-IST-
1999-20364) between 2000-2003.

Views in relational databases can be used to define sets of rights.
Controlling the use of views by roles can control the use of rights
in sessions. In both Oracle and DB2 SQL can be used to define
restricted views based on roles [6].

3.8 Consequences
In addition to the advantages mentioned for the Access Session
pattern, other advantages of this pattern are:

• Sessions may include all needed roles for those subjects
authorized for some task.

Figure 4. Class model for the Session-Based RBAC

Figure 5. Sequence diagram to access an object

• Users can activate more than one session at a time for
functional flexibility (some tasks may require multiple
roles).

• Fine-grained rights can be assigned to roles to enforce a
need-to-know policy.

• When a session is open, we can exclude roles that
violate institution policies.

Possible disadvantages include:

• Additional conceptual complexity to define which roles
can be used together and which should be mutually
exclusive.

• User confusion if they have to use several roles to
perform their work.

3.9 Related Patterns
This pattern is a combination of the Session pattern described
earlier and the RBAC pattern [23]. As indicated earlier,
structuring of roles can be represented by a Composite pattern. A
Reference Monitor pattern is needed to enforce the use of rights
during execution.

4. Session-Based Attribute-Based
Authorization
Allow access to resources based on the attributes of the subjects
and the properties of the objects but limit the rights that can be
applied at a given time based on the context defined by the access
session.

4.1 Example
Meili is a teenager who likes movies and subscribes to several
movie services through the Internet. She logs in a central portal
where she can reach a variety of movies. Sometimes she gets
movies that she finds offensive or inappropriate (pornographic,
racist, plain stupid). She doesn’t have much time to read details
about the movies in advance and some of them don’t even have
good descriptions so reading about the movies is not a good
approach. She would like some kind of filter according to her
characteristics and her preferences. Also the portal may be
breaking the law in making available to her some of these movies.

4.2 Context
Dynamic systems supporting a large set of objects and subjects in
which the structure of the subjects changes rapidly, such as web-
based information systems, e-government and e-business portals.
In this environment there is the need to control access to
computing resources and the subjects may not be preregistered.
We want to give access to resources based on characteristics of
the subjects such as groups to which they belong, company for
which they work, biological characteristics such as age or sex, or
on characteristics of the objects, such as type of object, filtering
rules, or payment requirements.

4.3 Problem
As indicated access may depend on the age or other attributes of a
user. In this case, privilege assignments to the user cannot be done
statically by a security administrator but automatically by the

system based on the value of some of the attributes, e.g.
“DateOfBirth” . As the user gets older or changes functions his
authorization state changes automatically. Access rights might
even depend on an external attribute, such as “physical location”
of a user in a mobile environment. In this case the authorization
state changes automatically when the user moves around. At the
object’s side, metadata such as the scope of a document, or the
MPAA rating of a movie are examples of properties. All these
constraints can be applied through predicates in the rules [8], but
it is difficult to have a variety of prepackaged rules for the typical
cases.

The solution is constrained by the following forces:

• We need to limit the rights of subjects that are in a
variety of groups or roles, or have special
characteristics. Unrestricted access might allow policy
or law violations.

• This control should not imply an extra burden for the
security administrator or security vulnerabilities may
appear through administration errors.

• This control should not imply a significant performance
overhead, or the system may not be practical to use. .

• The environment is very dynamic and changes should
be easy to make. Otherwise, the users will get annoyed
and leave the system.

4.4 Solution
Access rights are based on the comparison of values of selected
attributes of subjects and properties of objects (so called subject
and object descriptors). In this pattern descriptors are a construct
to somehow “group” objects and subjects dynamically, not
explicitly by an administrator but implicitly by their attribute or
property values. This grouping may result in unpredictable sets of
rights that may violate security policies. A session delimits the
rights that can be applied at a given moment; that is, the subject
attributes define a context for access rights.

Structure
Figure 6 shows the class diagram for the solution. A Subject
Descriptor is formed by applying Qualifiers (>, +,…) to
Attribute Values to define constraints such as ‘age > 15’ . A
Session selects some specific attribute values as execution context
that defines the Subject descriptor at this moment. Similarly,
objects are defined based on the values of selected attributes.

4.5 Implementation
See Section 5 for an example of a real implementation.

1) Select an appropriate package to convey the subject’s
credentials including attributes. Examples would be attribute
certificates [15][17] or Kerberos tickets.

2) Select an implementation to express the object’s attributes.
Candidates could be standards on meta-data resource discovery,
such as the Dublin Core Metadata Initiative [DCM].

3) Define an enforcement mechanism for the rights defined in
contexts. See for example [2].

Figure 6. Class model for the Session-Based ABAC pattern

4.6 Example resolved
The portal implemented an ABAC model. Now when Meili opens
a session she is given access to contexts with sets of preselected
movies according to her preferences and restricted according to
legal aspects and to the services she has paid for.

4.7 Known uses
Session-based ABAC is implemented as an alternative to RBAC
in the security module CSAP [5] of the Webocrat system. A
similar pattern is also used in the authorization system of the
.NET component framework [14] and in AAIs (authentication and
authorization infrastructures), such as Permis [1] and Shibboleth
[24].

The XML standard XACML [4][16] uses attributes of subjects
and objects for the specification of access control policies. As
shown in the UCONABC [18], ABAC may also have potential for
digital rights management.

4.8 Consequences
The advantages of this pattern include:

• The rights of subjects that belong to a variety of groups,
roles, or have special attributes can be limited by
restricting them to use specific contexts selected by
sessions.

• This control does not imply an extra burden for the
security administrator because the contexts can be
defined by application designers according to
application policies.

• This control does not imply a significant performance
overhead because changing from one context to another
just means changing a set of rights.

• Changes in access restrictions can be easily
accommodated by defining new contexts or deleting
existing contexts.

Possible disadvantages are:

• Higher complexity. Although the contexts are defined
by others, it is hard for administrators to know who has
access to what.

• There might still be some performance overhead if we
need to switch often between contexts.

4.9 Related Patterns
Figure 1 shows the relationship of this pattern to other access
control patterns. As indicated credentials such as certificates are
frequently used to request access [15].

5. Using session-based access control as a
service
In this section we show by means of two sequence diagrams how
the patterns described above can be embedded into a general
authentication, authorization and access control service. Such a
service can be called by any application or process having the
need to authenticate the users and to provide session-based access
control. In the following it is assumed that the service provides

both session-based RBAC and session-based ABAC and the client
application requesting the service must chose between the two.

Figure 7 shows a sequence diagram for the interaction of a
requesting client process and the session-based access control
service. In order to hide the complexity of the subsystems, in the
sequence diagram we use the Facade pattern [11] as a uniform
interface for calling applications.

In order to be able to access a resource, a valid session object
must be requested by the calling application (or user process).
This starts with some sort of initialization process during which
the client application first requests from the authentication facade
of the security service an authentication service. In the example of
Figure 7, a password service is returned but also other services
may be available. Second is the request for an authorization
service. In the example, RBAC is returned, and the initialization
phase is finished. Next is the actual user authentication, role
selection and the session establishment. During user
authentication the client application provides to the password
service <user-id, pwd>. The password service interacts with a
userDM and in case of successful log-in a user object is created
and a reference to the object (aUser) is returned to the calling
client application.

A valid session can only be established in the case the user
application activates at least one role from the set of possible roles
for the user. This starts by calling the method getAssignedRoles
of the user object. In case of a valid userID all available roles for
a particular user are determined and returned by the role data
module (RoleDM) and for each role a transient role object is
created by the RBAC service. Next from the set of possible roles
the user selects a subset and the RBAC service calls the
corresponding method to activate the roles.

At this stage the user object is authenticated and has a set of
active roles assigned. These are the only prerequisites for
establishing a session. After receiving the request the session
service creates a valid session object for which the session-id is
returned as a reference for the calling client process. Under a
valid session-id the client may act under the context of the session
by using the privileges of the selected roles.

Figure 8 shows an attempt of a client process to access a resource
within a valid session. The process starts with calling the method
checkAccess with parameters session-id, object-id, operation, i.e.
a request of a user wishing to access a certain object by using a
predefined operation and this all within the context of an
established session. First, the validity of the session is checked,
then the session object is used by the RBACService in order to
get the user’s active roles within this session. Next, the user’s
permissions are determined by retrieving all the permissions
assigned to the active roles. Finally, the RBACService checks
whether there is a permission for the tuple <object, operation>. In
the case there is one, the access will be granted, otherwise denied.

Figure 7. Session establishment

6. Conclusion
We have shown patterns to describe the effect of sessions on
access control models. We presented first the Access Session,
which describes the basic concept of session as a limiter of rights.
We then combined this pattern with the patterns of two access
control models to show its effect on them. Finally we showed an
example of a system using the last two patterns as a way to
illustrate a real implementation.

Acknowledgements
We thank our shepherd Michael Weiss for his valuable comments
that contributed to improve this paper. The FAU Secure Systems
Research Group provided useful improvements and corrections.
The group at the PLoP 2006 Writers Workshop provided very
useful suggestions. The work of E. Fernandez was supported by a
Federal Earmark grant from DISA, administered by Pragmatics,
Inc. The work of G. Pernul was partly supported by the European
Commission DG INFSO under the IST program, Webocracy,
contract No. IST-20364.

References
[1] Chadwick, D. W., and Otenko, A. 2003. The PERMIS X.509

role based privilege management infrastructure. Future
Generation Computer Systems. 19, 2 (2003), 277-289.

[2] Corradi, A., Montanari, R., and Tibaldi, D. 2004. Context-
based access control management in ubiquitous
environments. In Proceedings of the third IEEE Int. Symp.
On Network Computing and Applics. NCA’04.

[3] The Dublin Core Metadata Initiative. DOI=
http://www.dublincore.org.

[4] Delessy, N., Fernandez, E. B., and Sorgente, T. 2005.
Patterns for the eXtensible Access Control Markup
Language. In Proceedings of the Pattern Languages of
Programs Conference (Allerton Park, IL, September 2005).
PLoP 2005.

[5] Dridi, F., Fischer, M., and Pernul, G. 2003. CSAP -- an
adaptable security module for the e-government system
Webocrat. In Proceedings of the 18th IFIP International
Information Security Conference (Athens, Greece, 26-28
May 2003). SEC 2003.

Figure 8. Permission approval

[6] Elmasri, R., and Navathe, S. 2003. Fundamentals of database
systems (4th Ed.), Addison-Wesley.

[7] Fernandez, E. B., Summers, R. C., and Coleman, C. B. 1975.
An authorization model for a shared data base. In
Proceedings of the 1975 SIGMOD International Conference
(New York, 23-31).

[8] Fernandez, E. B., Summers, R. C., and Wood, C. 1981.
Database Security and Integrity. Addison-Wesley, Reading,
Massachusetts, Systems Programming Series.

[9] Fernandez, E. B., and Pan, R. 2001. A pattern language for
security models. In Proceedings of PLoP 2001.

[10] Ferraiolo, D., Sandhu, R., Gavrila, S., Kuhn, D.R. and
Chandramouli, R. 2001. Proposed NIST standard for Role-
Based Access Control. ACM Trans. on Information and
System Security. 4, 3 (August 2001), 224-274.

[11] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1994.
Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, Boston, Massachusetts.

[12] Harrison, M., Ruzzo, W., and Ullman, J. 1976. Protection in
Operating Systems. Comm. of the ACM. 19, 8 (August
1976).

[13] Lampson, B. W. 1971. Protection. In Proceedings of the 5th
Princeton Conference on Information Sciences and Systems.
(Princeton, 1971).

[14] LaMacchia, B.A., Lange, S., Lyons, M., Martin, R., and
Price, K.T. 2002. NET framework security. Addison-
Wesley.

[15] Morrison, P., and Fernandez, E.B. 2006. The Credential
Pattern. Pattern Languages of Programs conference
(Portland, Oregon, USA, 2006). PLoP 2006.

[16] eXtensible Access Control Markup Language (XACML),
Version 1.1. OASIS Community Specification, August 2003.
DOI= http://www.oasis-open.org/committees/xacml/

[17] Oppliger, R., Pernul, G., and Strauss, C. 2000. Using
Attribute Certificates to implement Role-Based
Authorization and Access Control. In Proceedings of the 4th
Conference on "Sicherheit in Informationssystemen"
(Zürich, Switzerland, October 5 - 6, 2000). SIS 2000. vdf
Hochschulverlag.

[18] Park, J., and Sandhu, R. 2004. The UCONABC usage
control model, ACM Transactions on Information Systems
Security. 7, 1 (February 2004), 128-174.

[19] Priebe, T., Fernandez, E. B., Mehlau, J. I., and Pernul,
G.2004. A pattern system for access control. In Research
Directions in Data and Applications Security XVIII, C.
Farkas, and P. Samarati, Eds. Proceedings of the 18th.
Annual IFIP WG 11.3 Working Conference on Data and
Applications Security (Sitges, Spain, July 25-28).

[20] Priebe, T., Dobmeier, W., Muschall, B., and Pernul, G. 2005.
ABAC – Ein Referenzmodell für attributbasierte
Zugriffskontrolle. In Proceedings Sicherheit 2005, 2.
Jahrestagung des Fachbereichs Sicherheit der Gesellschaft
für Informatik. (Regensburg, April 2005).

[21] Pryce, N. 1997. Abstract session: An object structural
pattern. In Proceedings of the 4th Conference of Pattern
Languages of Programs. PLoP’97. Also in chapter 7 in
Pattern Languages of Program Design, vol. 4, N. Harrison,
B. Foote, and H. Rohnert, Eds. Addison-Wesley.

[22] Sandhu, R., Coyne, E. J., Feinstein, H. L., and Youman, C.
E. 1996. Role-based access control models. IEEE Computer.
29, 2 (February 1996), 38-47.

[23] Schumacher, M., Fernandez, E.B., Hybertson, D.,
Buschmann, F., and Sommerlad, P. 2006. Security Patterns:
Integrating security and systems engineering. J. Wiley &
Sons.

[24] Shibboleth Project. DOI= http://shibboleth.internet2.edu
[25] Summers, R. C. 1997. Secure Computing: Threats and

Safeguards. McGraw-Hill.
[26] Yoder, J., and Barcalow, J. 2000. Architectural Patterns for

Enabling Application Security. In Proceedings of the 4th
Conference of Pattern Languages of Programs. PLoP’97.
Also in chapter 15 in Pattern Languages of Program Design,
vol. 4, N. Harrison, B. Foote, and H. Rohnert, Eds. Addison-
Wesley.

