
Where to go and what to show
More patterns for a pattern language
of interactive information graphics

Christian Kohls

Knowledge Media Research Center
Konrad-Adenauer-Str. 40

72072 Tuebingen, Germany
+49/7071/979-103

c.kohls@iwm-kmrc.de

Tobias Windbrake
University of Applied Sciences Wedel

Feldstrasse 143
22880 Wedel, Germany

wb@fh-wedel.de

ABSTRACT

Interactive graphics is a useful communication tool, and new
software tools make it easier than ever. However, few people
know how to use interactive graphics properly, and the new tools
just allow them to build bad programs more quickly. This paper
describes the start of a pattern language for using interactive
graphics to communicate complex topics. It is based on our
experience in education, but should also be helpful for modelling
news sites, or museum kiosks. The paper describes the structure
of the pattern language, lists the 99 patterns that have been found
so far, gives brief descriptions of 16 patterns and detailed
descriptions of 3.

Categories and Subject Descriptors
K.3 [Computers and Education]

General Terms
Design, Human Factors

Keywords
Design patterns, interactive graphic, educational patterns, e-
learning

1. INTRODUCTION
(Interactive) visualization helps people to analyze, understand and
communicate models, concepts and data [1]. It is used for
exploration, monitoring, confirmation and presentation of
information. There are many applications for such interactive
graphics to present information, including news websites,
edutainment kiosks in museums, self-paced learning courses and

interactive whiteboards. According to the Multimedia Principle
[2] there is evidence that the use of multimedia (that is words and
pictures) can improve learning. Dynamic and interactive pictures
can be even more effective. Causal relationships can be directly
and unequivocally perceived. Sequences of object or data
movements can be captured. Processes of restructuring or
rearrangements can be made explicit. Complex spatial actions can
be shown. Cognitive load can be reduced by animations, too,
because the changes over time are directly shown.
We have mined (but not all written down) about 100 patterns by
analyzing illustrations and multimedia applications, derived
patterns from scientific research in information visualization,
instructional design and cognitive theory, and have written down
our own experience in the design of interactive presentations. We
became aware of the first patterns when we created demos with
ActiveSlide, an authoring tool we developed for interactive
presentations. In the first version of ActiveSlide one had to write
small scripts for each interactive feature. We ended up writing the
same scripts again and again, just replacing element names and
property values. Tired of that, we isolated the reoccurring patterns
of basic interaction. We integrated the patterns in form of a visual
programming language. It is now possible to assign patterns such
as SWITCH BETWEEN OBJECT STATES, SYNCHRNONIZE
OBJECT MOVEMENTS, DRAG RESTRICTION, TRANSPORT
OBJECTS, PUSH OBJECTS, and CONTEXT SENSITIVE
INFORMATION directly to visual elements. This saved a lot of
scripting work and made the concepts easier to understand for end
users.

Figure 1. Interaction patterns in presentation tools.

A preliminary version of this paper was workshopped at Pattern
Languages of Programming (PLoP) ’06 October 21–23, 2006, Portland,
OR, USA. Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page. To
copy otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission. Copyright is held by the authors.

In figure 1, the dinosaur and the enlarged dinosaur head are two
images. A red box is put over the dinosaur and should trigger a
property switch, i.e. change the visibility of the dinosaur head.
The SWITCH BETWEEN OBJECT STATES pattern can be
directly assigned to the elements.
However, in training sessions with teachers and pupils we found
out that many users understood the patterns of basic interaction
but did not know in which context to use them. For example
everybody understood what a SWITCH BETWEEN OBJECT
STATES is and how it works. But using this pattern for
DYNAMIC LABELS or to HIGHLIGHT INFORMATION was a
more challenging task and required our assistance. Either the
visualization techniques were not known or the users had
difficulties to map them to the patterns included in the visual
language. To capture our knowledge about visualization methods
we created a new class of patterns, including patterns such as
ADJUST MOVEMENT SPEED, CHANGE LEVEL OF
DETAIL, DETAILS ON DEMAND, MOVE OBJECTS TO
COMPARE, and SELECTION-BY-THUMBNAILS. By linking
these patterns to the basic interaction patterns we made the
mapping from visualization methods to interaction primitives
explicit. The first step towards a pattern language was done.

2. Patterns in Human Computer Interaction

In the process of pattern mining we were especially looking for
patterns that were not available in ActiveSlide. One reason was to
use the patterns as a specification which new functions should be
engineered into the tool. The other reason was to generalize the
patterns, so that they can be of value whenever an interactive
information graphic is designed – regardless which (software)
tools are in charge.

The resulting pattern language for interactive information
graphics relates or overlaps with languages for human computer
interaction [3], [4], [5], [6], [7], the design of websites [8], [9],
[10], [11] and patterns for (e-)learning. The first patterns on
education have been collected in the Pedagogical Patterns Project
[12]. That kind of patterns include, among others, the
organization of courses or lessons (Lay of the Land , Student
Design Spring, Mini Project, Ask your Neighbour) or assignments
(Questionnaire, Fill-In-The-Blank). A similar approach has been
done in the German research project “Virtualization in the field of
education” which documents five years of research in
instructional design as patterns [VW04]. The European research
project E-LEN has created an E-Learning Design Pattern
repository containing patterns in the categories “Learning
resources and LMS”, “Lifelong learning”, “Collaborative
learning”, “Adaptive learning” [ND05].

3. Structure of the pattern language
The pattern language for interactive graphics consists of three
levels:
1. Content-related visualization methods

2. Content-independent visualization methods that can support all
types of content-related methods
3. Visualization and interaction primitives to serve visualization
methods

The designer can choose from a set of content types. There are
patterns to represent quantitative data, movements, processes,
changes over time, structures, relations or the representation of
objects. So, level one asks: “What does the graphic show?”

The second level provides visualization methods that are
independent of the content, including strategies for comparing
objects or data, presentation of small multiplies, context-sensitive
information, reduction of complexity, focussing data, dynamic
labelling, animation sequences and interaction sequences. Level
two is about “How to show the graphic?”.

To implement the methods, the designer will use primitive visual
and interactive components which are clustered according to their
degree of interactivity. Patterns for static image components (e.g.
use of shape and colors) are included here because the rules apply
for dynamic and interactive images as well. Patterns for
interaction are divided into patterns that navigate through the
system (replace images, switch visual elements on/off) or actually
change the system (change properties of visual elements, create
new elements). On level three the designer learns “Which
primitive visual and interaction components to use?”.

4. Example Patterns

We have discovered 99 patterns so far, though most of them have
not been described in detail. Even so, there is too much
information for a short paper. Therefore, for each level, we will
describe one pattern in detail, briefly describe another five or six
patterns, and give a complete list of all the patterns in that level.

4.1 Detailed Example of a Content-Related
Pattern

Let us assume the designer intends to create an interactive
information graphic with the instructional intention to present
information. He knows already that he wants to present
information about some objects of the real world. So he starts at
level one where he finds the pattern OPTIMIZE OBJECT
PERCEPTION.

Name: Optimize Object Perception

Problem overview:
In visual representations you can both reduce or increase the
amount of available information for objects and choose between
many visualisation alternatives, e.g. level of detail and level of
abstraction.

Use when: Represent objects of the real world
Forces:
- The image should share a physical resemblance with the object
it represents.
- Realistic images differ from abstract drawings in means of
object recognition.
- People need sufficient time to scan and interpret visuals with
many details.
- The performance to recognize an object depends on the
viewpoint.
- Objects are 3D, screens are 2D.
- The interior of objects is not visible but may be important to
understand the internal structure of an object.
- Related text (e.g. labels) should be close to the object itself to
avoid cognitive overload, but too many labels produce noise and
thereby may increase the cognitive load, too.
- If the graphic accompanies text then it should be congruent and
relevant to the information in the text.

Solution summary:
Reduce the object to relevant details or allow variations of details,
eliminate all distracting information, use an optimal viewpoint for
the object and integrate explanatory text. Use DYNAMIC
LABELING if there is too much text you want to add.

Diagram: -- see examples --

Solution details:
Use pictures that clearly represent the object(s) of investigation
and nothing else. Too much information can lead to poorer
learning performance. This is especially the case if learners fail to
extract the relevant information from complex graphic. Avoid
decorative image elements in pictures that have representational
purpose. The decoration may be disruptive. Nice and attractive
graphics may distract the learner’s attention from the important
information. Also the learner could misinterpret the decoration as
part of the important information which could even lead to
misconceptions or at least to more cognitive work to figure out
what is relevant and what is not.
If only some details of the real object are of interest, use
schematic drawing rather than photographs. However a good
approach may be to first show a photograph (providing the
context) and then transit the photo into a line drawing that
overlays the photo which finally fades out completely. This way
you can provide the context of a realistic image and then point out
the important information and which details are of interest.
Instead of ANIMATION you can use an interactive information
graphic where the user can CHANGE THE LEVEL OF DETAIL
for himself. You can also increase the details by ZOOMING into
parts of a picture.
Most objects have canonical silhouettes that are easily
recognizable, e.g. a cup of tea, a horse, a tree and so on. Whether
you take a photograph or a line drawing, try to show the object
from a viewpoint where a canonical silhouette is perceived. If not

all important aspects are shown from that viewpoint, you can use
SMALL MULTIPLIES to show the object from different
viewpoints at the same time. In an interactive information graphic
you can let the user CHANGE THE VIEWPOINT. Providing
more than one viewpoint of the object can help to overcome the
challenge of representing 3D objects in 2D space. However there
are many more techniques that PROVIDE DEPTH
INFORMATION, for example perspective clues, texture and size
gradients, occlusion, depth of focus, cast shadows, shape-from-
shading and structure from motion.
If you not only want to represent the object from the outside but
also from the inside you may want to offer exploration techniques
to VIEW INSIDE OBJECTS. In a CUTAWAY you take some
parts from the object away, thus revealing the interior. If you take
away the car body you can see what it looks like inside the car.
An alternative would be a GHOSTING where some object parts
are set to semi-transparent rather then cutting them away
completely. An EXPLOSION DRAWING also takes parts of the
object away but places them in distance around the centre, hence
you can learn about the inside and the structure of the object is
made more explicit.
For complex objects it is important to integrate explanatory text
or short descriptions into the image. Printed word should be near
corresponding graphics. To separate text from images can cause
cognitive overload. However, adding too much text to the image
can increase the complexity and makes it more difficult to scan
for information. Also the resolution capabilities of computer
screens are limited, thus there may not be enough space to
provide text for each detail of the object. You can provide text to
one component at a time by using DYNAMIC LABELING.

Implementation: Trivial. All presentation and authoring
environments allow the integration of image files. Most
environments allow transition effects to blend over from one
image to another which can be used to fade in/out details, realism
or labels. Changing the view or providing insights can be done by
using multiple graphics on different slides.

Example:

Figure 2. Example for Optimize Object Perception

Left: a photograph showing flowers in a realistic environment
Right: The illustration shows a flower reduced to less detail. Also
from this viewpoint the flower has a canonical silhouette.

Rationale:
Dwyer studied the learning effect of images that varied from
highly detailed color photos to simple line drawings. Richly
detailed visuals take time to scan and interpret. Learners may
even skip graphics that appear to be complex [13]. The disruptive
character of decorations in representational graphics is discussed
in a research review by Levin, Anglin and Carney [14]. Using
silhouettes as a guideline to find a good viewpoint for objects is
based on the theory that silhouette information might be used to
extract the structure of objects [15]. Information about
representing 3D objects in 2D space can be found in [16]. The use
of small multiplies for images that vary only in details is
suggested in [17]. The integration of corresponding words in
graphics is based on the contiguity principle by Clark and Mayer
[18].

Related patterns:
The following patterns can also be of help: ANIMATION,
CHANGE THE LEVEL OF DETAIL, CHANGE THE
VIEWPOINT, CUTAWAY, DYNAMIC LABELING,
EXPLOSION DRAWING, GHOSTING,
PROVIDE DEPTH INFORMATION, SMALL MULTIPLIES,
VIEW INSIDE OBJECTS, ZOOMING

4.2 Brief Descriptions of Content-Related
Patterns

LEAVE TRAILS:
Use when: Show typical movement paths for an object.
Problem: For a moving object you can only see where it is at the
very moment; the former and succeeding positions of the object
are volatile.

Solution: Draw a line along the path the object will move. Use
arrows to indicate the movement direction. Use different color or
thickness for the line to indicate speed variations. If only some
positions ahead/behind are of interest, showing multiple instances
of the object with varying opacity is an option.
Example: Showing the movement of a ship on a map.

USE MULTIPLE CAMERAS:
Use when: Parts of objects are themselves in motion and there
are dependencies between the moving parts.
Problem: If you see only one front of the object, you cannot see
all parts in motion at the same time. Hence relations between
parts in motion are difficult to discover.
Solution: Simultaneously use multiple cameras to show all
relevant views of the object. Avoid a single camera that flies
around the object, especially if many interrelated parts move at
the same time.
Example: Show the motion of a steam engine.

EXPLOSION DRAWING:
Use when: You want to show single components of an object
separately but keep relative positions to show their structure.
Problem: Showing an object as a whole makes it hard to identify
its single components. Also, some components may cover other
components. But if you show each component alone, you may
loose the context and cannot see how the components fit together.

Solution: Let the object explode – split its components and move
each component along the line that strokes through its own centre
and the centre of the complete object. Let each object move the
same distance, hence, the relative positions of the components are
kept.
Example: A photo camera is split up into its single components.
All components are moved away from the centre, so you can
recognize each single component while still seeing the shape of
the camera.

MULTIDIMENSIONAL TABLES:
Use when: You have multi-parameter data and want to categorize
each entity in a table.
Problem: Standard tables provide only one or two dimensions.
Solution: If you take a two dimensional table you can split each
cell into a table of its own, allowing up to 4 dimensions.
Example: A table showing the running results of a half-marathon.
The x-axis splits running times, the y-axis splits age classes. In
each cell on the left hand side there are names and exact results of
female runners; on the right hand side the names of male runners
appear.

SHOW PROCESSING STEPS:
Use when: Representing a linear process from start to finish.

Problem: Only showing the start and finish state of a process
does not show the process itself. Showing a complete process as
an animation makes it difficult to access the relevant information
for a certain state.
Solution: Provide a graphic for each relevant state of the process.
Arrange the graphics in time or provide a navigation which lets
the user walk through the process steps. Keep each single graphic
coherent with its successors in a way that the user can recognize
the differences. You can use animation to transit from one process
step to the next to clarify the change.
Example: Instruction manuals to build Ikea furniture or Lego
toys.

4.3 Overview of Content-Related Patterns

Show Quantitative Data:
Respect Data Types, Show Correlations, Show Histograms, Show
Order, Use Adequate Charts for Quantitative Data

Show Structural Data:
Adequate Use of Arrows, Layering and Separation,
Multidimensional Tables, Optimize Tables, Use the Grammar of
Maps, Use the Grammar of Node-Link-Diagrams, Show
Compositions

Show Object Data:
Change the Viewpoint, Cutaway, Explosion Drawing, Ghosting,
Optimize Object Representation, Provide Depth Information,
View Inside Objects

Show Processes:
Demonstration, Show Loops, Show Rhythm, Show Processing
Steps, Use Flowcharts, Use State Diagrams

Show Movements:
Leave Trails, Use Multiple Cameras

Quiz:
Arrangement, Drag&Drop Assignments, Fill-In-The-Blanks,
Puzzle, Single/Multiple Choice Test

4.4 Detailed Example of a Content-
Independent Pattern
The designer now has learned about how to represent objects. He
finds DYNAMIC LABELLING appropriate for his illustration
and moves on to the related pattern of level 2.

Name: Dynamic Labelling

Problem overview:
Physical space limits the number of possible labels. Too many
labels increase the complexity and make it harder to interpret the
graphic.

Use when:
- A lot of components of the graphic need to be labelled.
- Static labelling makes the graphic too complex or unreadable.
- Draw attention to only one or a limited number of components
at a time.
- Provide explanatory verbal information in local contexts.
- Reduce the complexity of a graphic.
- You want to suggest an optimal sequence in which to read the
graphic.

Forces:
- The user has to understand how to activate a dynamic label.

- The user may want to have more than one component to be
labelled at the same time.
- To see all labels the user has to activate each label manually.
- Labels can hide parts of the relevant information in the graphic.
- Readability of labels depends on it visual surrounding.

Solution summary: Dynamic labels appear on the screen only
when needed.
Diagram:

Figure 3: Diagram for Optimize Object Perception

Solution details:
The form of a dynamic label could be plain text that appears
above the image area that is subject to be named or explained.
You can also use a line or an arrow that links the image area of
interest to a popup text that is placed somewhere else. By doing
so you avoid that the relevant area is covered by the text and the
graphic does not interfere with the text. If text is placed besides
(and not over) the relevant area you can also put a box behind the
text to improve readability. A good combination of a textbox and
a pointing arrow is a text bubble.

Of course the dynamic label has not to be text. You can also show
dynamically sub graphics within the main graphic. For example
the popup graphic could show a different view, further visual
explanation or DETAILS ON DEMAND of the labelled area.
Labels can show an enlarged picture of a selected area, and are
one approach for pre-defined ZOOMING.

Activating the labels should be made easy for the user. First of all
the user has to know that dynamic labels are available. Second, he
needs instructions where to find and activate them. If you have a
single graphic using dynamic labels, you should write a hint that
dynamic labelling is available. If you have many graphics with
dynamic labelling, e.g. a web based training course, you should
give a short instruction at the beginning. The instruction could
include animated DEMONSTRATION.

The simplest way to activate a dynamic label is a ROLL-OVER
with the mouse. The user finds out very quickly where labels are
by moving the mouse over areas he is interested in. He may not
find all labels, but he finds all labels he is interested in. The
mouse pointer acts - as the name says – as a pointer. Thus,
connection lines between the relevant area and the label are not

required. The label could appear even outside the graphic. As
soon as the mouse exits, the dynamic label disappears, which is
useful to immediately reduce complexity again. However, if the
label needs to be shown for a longer time frame, keeping the
mouse pointer within the relevant area can be difficult. It also
prevents the user from doing other tasks without loosing the label.
Showing more than one label is not possible using mouse roll-
overs.

To keep a label permanently visible you can use a SWITCH
BETWEEN OBJECT STATES. If the user clicks at the relevant
area, the label appears. To let it disappear the user has to switch it
explicitly off. This could be done by clicking at the label or at the
relevant area. This way more than one label can be displayed at
the same time. Another option is to switch the label off as soon as
another label is selected. This allows only one label at a time.
Showing only one label can be useful in presentations to direct the
audience’s attention and HIGHLIGHT INFORMATION. If there
are many dynamic labels or each label is large in size then
multiple viewed labels would overlap. Automatically switching
off one label as soon as another is switched on reduces the mouse
clicks to move on from one label to another.

If activation of dynamic labels is done by clicking at HOT
AREAS, the user needs to know where these clickable areas are.
You can provide visual clues such as drawn bounds or small
circles to indicate where label activation is possible. Many
graphics, however, implicitly show areas, e.g. in a map the
bounds for different labelling are quite obvious. You can also use
ROLL-OVER and a SWITCH BETWEEN OBJECT STATES in
combination. Moving the mouse over an area can popup the label
temporarily and clicking the mouse will keep it permanently. The
roll-over label could actually differ from the “permanent” label: it
can act as a label preview (for large sized labels) or as an
indicator that a dynamic label is available (e.g. a “click here”
popup or highlighting the bounds of the HOT AREA).

Implementation:
Most authoring environments allow you to dynamically show or
hide components and you can implement the solution using a
SWITCH BETWEEN OBJECT STATES. On the contrary,
presentation software usually does not provide features to switch
on and off parts of a graphic. However, most presentation tools
allow navigation and hyperlinking. If you run through a
predefined sequence of dynamic labelling, you can just multiply
the same graphic on a sequence of slides and use only one label
per slide. The standard functions to step forward/back will guide
the user from one label to the next. If each label should be
accessible at any time you must provide hyperlinks on all slides
showing the graphic. For the hyperlinks, use invisible objects
(with transparent opacity) and place them at the areas where a
mouse click should pop up the label. This method, of course, is
only practicable if the number of labels is small.

Examples:
Dynamic labelling is used to show details of the flower. If the
mouse enters one on the small red boxes on the flower, then one

of the larger boxes showing the details pops up. The enlarged
views are linked to the area they show by a line.

Figure 4. Example for Dynamic Labelling

Rationale:
There are psychological reasons to use dynamic labelling. The
working memory is limited and too much irrelevant information
can cause cognitive overload. Dynamic labelling can provide all
needed information just when needed. Also you can place each
label closer to the related area of the graphic, and thereby you
follow the contiguity principle [18].
Selectivity of attention is another reason to use dynamic labelling.
Using only some instead of many labels gives hints to the learner
to which areas he should pay attention. This is especially useful in
presentations. The appearance of a new object in the visual field
attracts attention itself [19].

Related patterns:
This pattern can be used by: DETAILS ON DEMAND,
HIGHLIGHT INFORMATION, OBJECT REPRESENTATION,
ZOOMING
This pattern can use: DEMONSTRATION, HOT AREAS,
ROLL-OVER, SWITCH BETWEEN OBJECT STATES

4.5 Brief Descriptions of Content-
Independent Patterns:

MOVE OBJECTS TO COMPARE:
Use when: You have small visual entities and observers are
supposed to detect similarities, differences or relations.
Problem: Large spatial distances distract the comparison because
the viewer cannot focus at both entities at the same time.
Solution: Make each entity moveable. Provide a blank area on the
screen as a container for two or three entities chosen by the user.
If dragged into that area, the entities should be close enough to be

focussed at the same time. To support comparison you can
provide moveable rulers or structured backgrounds, e.g. grids.

Example: Small images of butterflies. Users want to compare the
colors and patterns of the wings. By placing two butterflies side
by side it is easy to compare the differences or similarities.

POSITION-DEPENDENT PROPERTIES:
Use when: You want to visualize dependent and independent
values.
Problem: Find a mapping between the spatial position of an
element and its visual representation.

Solution: For the independent values - e.g. maps, coordinate
systems, timelines - use a background graphic. For the dependent
values use small moveable graphics that overlay the background.
Define HOT AREAS in which the moveable graphics change
their visual appearances according to the independent value(s) of
that area. To define the different visual appearances you can
SNAPSHOT PROPERTIES.
Example: A map of the United Kingdom represents independent
spatial data. An image showing a flag of the United Kingdom
represents the dependent data. If the image is dragged over
Scotland it shows the Scottish flag. Dragged over England it
shows the English flag.

SEQUENCED GRAPHICS:
Use when: You want to show changes step-by-step; you want to
add new components step-by step.

Problem: Putting relevant states of a system or object in one
single graphic makes reading and interpreting hard. Representing
relevant states in multiple graphics consumes a lot of space and
requires the user to detect the actual changes by himself.
Solution: Use only one graphic that changes in a predefined
sequence. You can replace the complete graphic, parts of it or
change some of its visual properties. Provide at least navigation
buttons to move forward or backwards to the next/previous step of
the sequence. You can also provide one button for each step in the
sequence, letting the user jump to each state at any time. To label
the buttons you can use numbers, names of the represented states
or thumbnails.

Example: Constructing a complex finite automat or an
organization chart step by step.

ADJUST MOVEMENT SPEED:
Use when: Objects are moving very fast or slow; the movements
are very complex.
Problem: The cognitive visual processing system of humans is
limited in the number of frames it can process per second, in the
number of entities it can consider at a time and in the (position)
differences it can detect.
Solution: Allow the user to control the animation speed so that he
can slow down fast or complex movements and speed up slow
motions according to his needs. Be aware that adjusting the
animation speed costs cognitive resources, too. Therefore, offer
optimized default speeds (do some runs with test users) that fit for

most users. To let the user find the best speed, offer a simple way
to repeat parts of the animation, e.g. use a TIMELINE SLIDER.

Example: Slow motion of sport activities, e.g. which way the ball
actually moved into the goal.

HIGLIGHT CLASS MEMBERS:
Use when: You want to show which entities or visual areas are
related.
Problem: Entities are perceived as part of a class by visual
similarity. If entities of different classes look very similar it is
impossible to identify the classes visually (e.g. in a list of
numbers how do you visually distinguish between prime and non-
prime numbers?). Also, if entities of the same class look very
different or are separated by large distances you will not relate
them easily.

Solution: Whenever the user clicks (or rollover) on an entity,
visually highlight all entities of the same class. To highlight the
entities, you can draw a shape around each entity. The shapes
should popup strongly, so that the user can locate all of them. If
the entities are connected to each other you can also highlight the
types of connections.

Example: A map of a city showing bus lines and stops. If the user
clicks on any bus stop, then all other bus stop symbols of the
same line are highlighted using a brighter color. Also, the street
sections that connect the bus stops are overlaid with a semi-
transparent stroke.

4.6 Overview of Content-Independent
Patterns

Comparison Strategies:
Move Objects to Compare, Selection-By-Thumbnails, Selection-
By-Timeline, Small Multiplies,
Use Brushing, Use Multiple Zooms

Context-sensitive information:
Development Along Paths, Dynamic Labeling, Position-
Dependent Properties, Provide Orientation Information, Timeline
Slider, Visit Stations

Reduce complexity:
Adjust Movement Speed, Change Level of Detail, Details On
Demand, Filter Data or Objects,
Integrate Micro-/Macroviews, Sequenced Graphics, Zooming

Direct attention
Highlight Areas, Highlight Changes, Highlight Class Members,
Highlight Objects, Use Data Pointer, Use Speech Bubbles

4.7 Detailed Example of an Interaction
Primitives Pattern

Now the designer has an idea what dynamic labelling can do for
his illustration. To implement the labelling in his interactive
graphic, he decides to use a SWITCH BETWEEN OBJECT
STATES.

Name: Switch Between Object States
Problem overview:
Change parts of the graphic without replacing the complete
graphic.

Use when:
- You want to hide or show parts of the graphic only temporarily
- You want to change visual properties such as color or opacity
for some visual components to highlight them (or blur them out).
- You want to use the same area of the screen for changing
graphical representations while the rest of the screen does not
change.
- You want to visually represent On/Off states.

Forces:
- The complete information graphic must be aggregated from
smaller graphical components in a way that each component can
be altered independently.
- There must be a clear trigger that changes visual components.
- Two different visual states are required for each visual
component that can change.
- The initial visual state must be defined.

Solution summary: Use one visual component as a trigger to
change properties of itself or other components.

Diagram:

Figure 5. The circle switches the color of the rectangle if the

user clicks on it.

Solution details:
USE SMALL GRAPHICS to construct larger graphics. Each
graphical component of the information graphic can then be
manipulated independently from all other graphical components.
If you have a graphic in one image file you will need to use an
image processing tool to split it into smaller components. For

each changeable area of the information graphic you need at least
one separate image. Each of the graphical components can now be
changed. Mouse clicks (and other events) on a graphical
component can work as a trigger to switch between two states of
another component. The most common operation is to show or to
hide a graphic component, that is to switch between the states
visible and invisible. Because we always switch between two
states we can call these On and Off state. The On state would be
the visible graphic component, the Off state would be the hidden
graphical one. Visibility is only one property you can change.
Depending on the authoring environment you use, you can change
opacity, size, color, orientation and other properties of the
graphical component. For each property you have to define two
values, one representing the On state, the other representing the
Off state. You can use different colors or sizes of a graphic
component to HIGHLIGHT INFORMATION: The Off state is a
small scale of the graphic component. If you switch the
component to On, then the larger scale is used and the component
is more outstanding.
Another interesting property to be changed is opacity. You can
use a low opacity as the Off state. The graphical component can
be perceived but does not distract attention. The user is aware of
the graphic component and can switch it On to full opacity the
moment he wants to investigate it. The opacity can also work the
other way around: If the Off state is full opacity, the graphic
component hides everything that lays behind it. Switching the
component On would actually reduce the opacity to semi-
transparent so that the user can see both the graphic component
and what is behind it. You can use this for GHOSTING.
Graphic components can also switch their own properties. For
example if you want a graphical component to display differently
when you click at it, then the component switches itself from one
state to another. It is also possible that you use one component as
a trigger to switch the states of many other components in one
single operation. You have to decide which mouse events actually
trigger the switch and whether the resulting state is On, Off, or the
reverse of the current state. A mouse click could switch another
element always to On or reverse its current state. You can use
mouse enter events to switch to the On state and mouse exit
events to switch to the Off state, in this case your switcher
behaves as a ROLL-OVER component. Similar you can use
mouse down and mouse up as On and Off switches. In this case
the state is only On as long as the mouse is pressed on the trigger
component. This is an interesting option to use switches for
DYNAMIC LABELS.

Implementation:
Presentation tools usually do not support switching between
states. Authoring environments usually provide a simple way to
set properties. In Macromedia Flash you can use sub-movies and
define different states in each frame of a movie clip. In
ActiveSlide you can use the visual language to link two (or more)
visual elements. The first linked element triggers the switch, all
other elements are switching their states.

Examples:

Figure 6. Example for Switch Between Object States

Moving the mouse over the image replaces it by another image.
The image component switches itself between visual states.

Rationale:
Buttons are standard components in user interface design.
Switches are similar to buttons but provide some additional
features useful for interactive information graphics. First,
switches always provide a very specific operation: changing
properties to represent one of only two states. Second, switches
know the current states of all components they can switch. A
switch is more like a light switch that can turn on and off the
lights in your room. The light stays on until you switch it off
again.

Related patterns:
The pattern can be used by: CHANGE VIEWPOINT, COMPARE
ITEMS, CUTAWAY, DETAILS ON DEMAND, DYNAMIC
LABEL, GHOSTING, HIGHLIGHT INFORMATION,
LAYERING AND SEPERATION, LEVEL OF DETAIL,
REDUCE COMPLEXITY

4.8 Brief Descriptions of Interaction
Primitives Pattern

DISTINGUISHABLE COLORS:
Use when: Use color for labelling; exploring multidimensional
discrete data.

Problem: For rapid identification of similar and different colors,
the colors must be well distinguishable. The perception of colors
depends on their environment: other colors around, hues, contrast
with background, images that have been seen before.
Solution: Use color with maximum distances in color space. Do
not use different saturations of the same color unless you want to
represent different values for one class of entities. Here is a list of
12 colors recommended by Colin Ware for use in coding: Red,
Green, Yellow, Blue, Black, White, Pink, Cyan, Gray, Orange,
Brown, Purple.
Example: Showing on a map which political party has won in
which electoral district.

RESPOND TO INTERSECTION EVENTS:
Use when: Collision detection; dynamic grouping of elements;
object intersection has a meaning.
Problem: Intersecting elements should trigger an action.

Solution: Define a geometrical intersection event. The event
includes visual elements that can intersect and raise the event and
an action that is executed when the event is fired. Make some of
the elements moveable. Whenever one of the elements has moved
(e.g. the user drags it to some place), check if the conditions for
the intersection event are satisfied. If so: execute the action. The
action can be any sort of code. You can use SNAPSHOT
PROPERTIES to immediately respond visually to an intersection
event.
Example: In a quiz the user is asked to put a substance in the
corresponding pot. If intersected with the correct pot, an action is
triggered which shows some text with positive user feedback.

SNAPSHOT PROPERTIES:
Use when: You want to apply preset property values to an
element, e.g. set a new position.
Problem: Manually entering property values into a script or
property field is time consuming and a source for errors. Mapping
alphanumerical values to visual appearance is difficult.
Solution: Manipulate visual elements “on stage” in a
WYSISWYG editor and record property values for later use. The
recorded snapshot can be applied unlimited times when the
interactive graphic is in use. The recorded property values can be
set directly to an element or an element can animate smoothly
from its current property values towards the snapshot values.
Snapshot properties can be used as an action for geometrical
events such as RESPOND TO INTERSECTION EVENTS.

Example: The user places a picture of a plane at the left top of
the screen and makes a snapshot. He assigns the snapshot to a
button. When using the graphic, end userscan click the button and
the plane moves to the recorded position.

TELEPORT OBJECTS:
Use when: Automatically teleport an object from A to B.
Problem: A moving object enters an area where it has to
disappear because of the background’s visual semantic. An
example is a moving car that is dragged over a tunnel entry. After
a while the element is supposed to reappear at a different place
(e.g. the tunnel exit).
Solution: Use one visual element that is moveable. For this
element define two HOTSPOT AREAs, each defining both entry
and exit point. If the visual element is dragged, check whether it
intersects with one of the areas. In that case, let the visual element
disappear and, after a preset delay, let it reappear in the opposite
area.
Example: A person is dragged over a door of a house. The person
disappears and reappears at a balcony.

TRANSPORT OBJECTS:
Use when: You want to represent the process of transportation;
you want to dynamically group elements in a container.
Problem: Show explicit which objects can transport other
objects, at which times objects are loaded or unloaded, and at
which time transportation starts and stops.
Solution: Define one visual element as a transport container and
one or more elements as transportable objects. All elements must
be moveable independently. However, if a transportable object is
completely inside the transport container it moves along with it.
The transportable objects are temporarily synchronized with the
transport container but remain moveable. Thus, they can be
dragged out of the container again.
Example: A blood cell transporting particles. The particles move
along with the cell only if they are inside the cell.

SYNCHRONIZE OBJECT MOVEMENTS:
Use when: Movements of an object cause movements of other
objects, too.

Problem: The movement relations between objects need to be
defined.
Solution: Link two objects and observe the movements of each.
Whenever one object moves, synchronize the other object by let it
perform the exact same movement. Alternatively, you can apply a
transformation to the original movement vector, including rotation
and speed. For example a rotation of 180 degrees would let object
A move to the right when object B moves to the left.
Example: Demonstration of a lifting block. The user pulls a
person horizontally and the block moves vertically in
synchronisation.

4.9 Overview of Interaction Primitives
Patterns

Visual primitives:
Distinguishable Colors, Organize Working Space, Pop-out
Information, Respect Cultural Differences, Use Gestalt Laws, Use
Light Colors for Grids, Understandable Symbols

Primitive manipulation:
Change Properties, Create Objects, Direct Manipulation, Drag
Restrictions, Group Objects, Hot Areas, Indirect Manipulation
with GUI Elements, Push Objects, Remove Objects, Roll-Over,
Switch Between Object States

Geometrical Events
Respond to Containment Events, Respond to Drop Events,
Respond to Intersection Events, Respond to Movement Events,
Respond to Pattern Identification Events

Navigation between images
Bookmark positions, Flip Through Pages, Show Current Position,
Use Standard Navigation

Animation
Keyframe Animation, Path Animation, Predefined Effects, Rule
Based Animation, Snapshot Properties

Visual dynamics
Bumper, Define Constraints, Define Movement rules, Flow fields,
Physical forces, Relative Changes, Restricted Areas, Synchronize
Object Movements, Teleport Objects, Transport Objects

5. Outlook
For the pattern language we are currently working on a website
that gives straight forward access to all patterns and which mirrors
the structure of the language, too. For the diagrams we produce
interactive explanations; for the example sections we produce
small Flash movies and try to collect web links of pages that use
the patterns. Each pattern can be commented and rated by online
users. Rating scales include dimensions such as readability,
appropriateness and usefulness.

In the next school term we will ask groups of teachers, students
and pupils to design interactive information graphics for topics of
their own domain. One group will get access to the patterns to
perform the task. A control group without knowledge of the
pattern language has to design graphics for the same topics. At the
end of the term we can analyze whether the knowledge of our
design patterns led to a better output. Also, considering the
solutions of our experimental groups can uncover new patterns,
e.g. if many teachers or students come up with similar ideas to
interactively visualize a particular topic.

We will advance the implementation of patterns in our authoring
tool. As many patterns have solutions that require step-by-step
work procedures, we experiment with wizards that map to pattern
solutions. Wizards are very simple to use while covering a lot of
expert knowledge without letting the user recognize it. In
opposition to written manuals, wizards not only capture all
instructions but produce a working output, too. Each step allows
various configuration, so the user can learn about different
options to use a pattern. We are aware that the stringent flow of
wizards may limit the creativity of users. The balance between
flexibility and easiness of creation in general is an area of
conflict. Should designers implement the interaction patterns from
scratch, e.g. in Java, allowing most flexibility? Or are, at the other
end of the line, ready-to-use templates the better approach? Are
wizards for content creation a fair compromise? To answer these
questions, in the next years we will have to analyze the design
outputs from the different ways of implementation.

6. ACKNOWLEDGMENTS

We would like to thank our shepherd Ralph Johnson for the
detailed and very valuable feedback he gave to us. We would also
like to thank all participants of our Writer’s Workshop session at
PLoP 2006. Your discussion gave us important insights and
motivated us to carry on with our pattern collection.

7. REFERENCES
[1] Schumann, H.; Müller, W.: Visualisierung. Grundlagen und

allgemeine Methoden, Springer, Berlin, 2005
[2] Moreno, R.; Mayer, R.E.: Cognitive Principles of

Multimedia Learning: The Role of Modality and Contiguity,
Journal of Educational Psychology, 91, p. 358-368, 1999

[3] Bayle, Elisabeth et al. : Putting It All Together : Towards a
Pattern Language for Interaction Design, Summary Report of
the CHI’97 Workshop

[4] Borchers, Jan: A Pattern Approach to Interaction Design;
John Wiley & Sons, 2001

[5] Granlund, Asa; Lafrenière, Daniel ; Carr, Daniel A.: A
Pattern-Supported Approach to the User Interface Design
Process, Proceedings of HCI International 2001, 9th
International Conference on Human-Computer Interaction,
2001, New Orleans

[6] Mahemoff, M.; Jonston, L.: Principles for usability-oriented
pattern language, OZCHI ’98 Proceedings, Adelaide,
Australia, S. 132-139

[7] Tidwell, Jenifer: Designing Interfaces, O’Reilly, Sebastopol,
2005

[8] van Welie, M.; Veer, van der Gerrit, C.: Pattern Languages
in Interaction Design: Structure and Organization, Interact
2003

[9] Schmitt, Silke; Schreiner, Martin; Timmesfeld, Fel; Vucica,
Martina; Wallach, Dieter: PatternCube.com: Ein
webbasiertes Repository für User Interface Design Patterns.
In: Hassenzahl M.; Peissner, M. (Hrsg.): Usability
Professionals 2005

[10] Malone, E.; Leacock, M.; Wheeler, C.: Implementing a
Pattern Library in the Real World: Yahoo! Case Study.
http://www.leacock.com/patterns/ (accessed 01.04.06)

[11] Duynie, Douglas K. van; Landay, James A.; Hong, Jason I.:
The Design of Sites, Addison-Wesley, 2004

[12] The Pedagogical Patterns Project,
http://www.pedagogicalpatterns.org/

[13] Dwyer, F. M.: Strategies for improving visual learning. State
College, PA: Learning Services. 1978

[14] Levin, J., Anglin, G., & Carney, R.: On empirically
validating functions of pictures in prose. In D. Willows & H.
Houghton (Eds.), The psychology of illustration, volume 1:
Instructional issues (pp. 51-85). New York: Springer-Verlag.
1978

[15] Marr, D.: Vision. W.H. Freeman and Company, New York.
1982

[16] Ware, C: Information Visualization – Perception for Design.
Morgan Kaufmann Publishers, San Francisco., p.259, 2004

[17] Tufte, E.R.: Envisioning Information. Graphics Press,
Cheshire, CT. 1990

[18] Clark, R.C.; Mayer, R.E.: e-Learning and the Science of
Instruction, Pfeiffer, San Francisco., p67-81. 2003

[19] Hillstrom, A.P.; Yantis, S.: Visual attention and motion
capture. Perception and Psychophysics 55(4), p.399-411.
1994

