Patterns for a Designing a Generic Device Drivenriterrupt Driven I/O

Patternsfor Designing a Generic Device
Driver for Interrupt Driven 1/O

Sachin Bammi
Senior Software Engineer
shammi@slb.com
Schlumber ger Technology Cor poration

Abstract:
This paper presents a few design patterns on dagigand developing
generic device drivers for interrupt driven 1/O,ielhnbalance the opposing
forces of data encapsulation, system efficiency awashaging change in
software due to change in business and technicaliresnents over the
course of a project. It ends by providing a sanpiglementation showing
how to apply them to a serial communication protalciver.

Page 1 of 21
Copyright© 2006 by Sachin Bammi. All rights reserved.

Patterns for a Designing a Generic Device Drivenriterrupt Driven I/O

1.0 Introduction

Device drivers are all pervasive in the embedddivaoe/firmware world. Microsoft’s
Windows operating system alone supports thousaidisvices with more than 30,000
drivers already released and more being introddedlg [WDFO06]. They form a critical
part of the low-level code on which all the embetideal time applications are based
upon. Hence getting them done right is of paramoupbrtance.

Device driver development involves consideratiomainy different features, which
include synchronization, asynchronous 1/O, driegeking, plug and play, power
management, etc [WDFO06]. Each of these featurepatmtially have its own set of a
pattern language, which describes the best pradiiccenplement it. However there are
some generic patterns that can potentially actf@sences for writing drivers with any of
the aforementioned features.

The patterns presented in this paper aim at pnogideneral architecture specific
guidelines for developing device drivers for intgat driven I/O on proprietary hardware.
The patterns would eventually form a part of agrattanguage being developed by the
author for developing real time applications, whitlve drilling electronics in harsh
environmental conditions while taking several measient at the same time. While the
pattern language that develops due to this effdktoe rather specific in nature, it is the
author’s belief that these individual patterns vdolihve a more general appeal. The
following figure presents the most current visidriree author for the aforementioned
pattern language henceforth called “MeasurementaAthillling (MWD) Firmware
Pattern Language”.

Only the shaded design patterns i.e. “Multi-TieBezl/ice Driver”, “Synchronous
Managed Access”, “Asynchronous Managed Access™gndndship Zone” in Figure 1
are introduced in this paper. Others are work ogpgss and some more information
about them can be found in the pattern thumbnatiseaend of this paper. The paper also
presents a real life sample implementation in G3rsbme of them as applied to a serial
communication protocol driver.

2.0 Intended Audience and Scope

This paper is not intended to be a tutorial fortig device drivers. There are several
available on the web. It is also not intended tdrasls the area of device driver
development for common operating systems like Wivel(NT, 2000, XP), Sun Solaris,
Linux and Unix. There is considerable support imig of technical literature and
documentation available for developing device dsver aforementioned common
operating systems [WDDO05, WDTO05, VMO06, Cant99, Rajd.

The intended audience of this paper is engineesslai@ng custom device drivers for
interrupt driven I/O based embedded applicationproprietary hardware using either
homegrown or commercially available real time opegasystems (RTOS). The scope of
this work is limited to general design issues ealab device driver development for

Page 2 of 21
Copyright© 2006 by Sachin Bammi. All rights reserved.

Patterns for a Designing a Generic Device Drivenriterrupt Driven I/O

proprietary embedded applications that are resptanfr data acquisition, data
processing, data transmission and data loggingahtime.

Figure 1. Measurement While Drilling Firmware Pattern Language version 1.0

Legend:
—» “Uses” relationship

RT Data Acquisition

A 4

Data Frame Builder MUI,t"T'qu MUX ADC Driver
Device Driver
Synchronous M anaged Asynchronous M anaged
Access Access

Friendship Zone

It presents some key concepts to keep in mind vad@tegning a generic device driver for
interrupt driven I/O. The patterns presented heeeby themselves not enough for a good
design since a good design requires deep knowlefdihe device under consideration
and the specific hardware and RTOS on which thé&dedriver will run. What this paper
tries to provide are some generic characterisfiesgmod device driver design, which the
author believes are independent of more specifidvire and RTOS issues.

Some of the patterns in MWD Firmware patterns lagguprovide the most benefit when
they are applied together. This is because somedaa more specific refinement to the
others in the language but still have enough isicimerit in author’s judgment to stand
on their own as a pattern. For example the “Muiéré&d Device Driver” and the
“Friendship Zone” patterns can be applied togetiheng with the “synchronous
Managed Access” pattern to write a serial commuitioalriver as described later in this
paper in section 7.0.

Page 3 of 21
Copyright© 2006 by Sachin Bammi. All rights reserved.

Patterns for a Designing a Generic Device Drivenriterrupt Driven I/O

3.0 Pattern: Multi Tiered Device Driver

3.1 Context

Device driver code has several parts. A generiedmvould have code that works

directly with the real time operating system andesses the hardware registers, code that
provides an interface to the rest of the embedg@etication to use the device driver and
code that provides for other utility and house legmeeds of the device driver.
Organizing this code into meaningful blocks can entile design flexible and the code
easy to maintain.

3.2 Problem

An significant challenge in developing device drives to keep the design flexible. This
helps in making any future changes/upgrades inven@l or the business logic in the
real-time application, which uses the driver, eagthout affecting too much the other
components of the code. However this flexibilityras at the price of code bloat and
performance efficiency. Hence the problem is td time right trade-off.

3.3 Forces

During the development phase of a project theadways a chance of requirements
getting changed on the business logic side andebd to make the code generic enough
so that it can be ported to other future hardwaggades. This presents a challenge for
the software/firmware engineer to accommodatelfesa possibilities in the design on
one hand by grouping things that could change tegethile avoiding code complexity,
code bloat and system inefficiency on the other.dgfeater flexibility in design one has
to group things that typically change together tBating different layers of abstraction,
but this in turn can slow down the system beca@isgcceased number of function calls
through different layers. Hence an optimum numbestractions need to be provided
so that a balance is reached between design fliéxidond system efficiency in real time
systems.

3.4 Solution

Design a multi tiered architecture that dividesdlegice driver code into the three
abstractions or groups: Application level, Systexel and Low level. If the hardware
changes then the code should be modified onlyeaLtlw level or conversely if the
business requirements change then only the applicabde changes. The system level
code provides access functions to the low levekdodthe application level code. The
application level code cannot directly call the I@wvel code. This way we can achieve
the aim of grouping code that typically changestbgr. This architectural pattern is
shown in the Figure 2.

3.5 Resulting Context

The code is divided into three layers so that tn&riess logic is separated from the low
level hardware specific code and with System IgveViding the necessary bridge in
between. There should be only one object that seite the driver for a particular device
and as such should provide a synchronized waydpliGation level objects to access the
device.

Page 4 of 21
Copyright© 2006 by Sachin Bammi. All rights reserved.

Patterns for a Designing a Generic Device Drivenriterrupt Driven I/O

Figure 2: Multi Tiered Architectural pattern for device driver design

Application
Level Code

Application Level

System Level
Code

Low Level

Code Low Level

3.6 Related Patterns

The device driver code uses the Singleton pat®kh94] to guarantee that that there
is only one instance of it. The system level coale use the Adapter or the Facade
patterns [GHJV94] to hide the low level detaildlué driver from the application level
objects. The adapter/facade for the device driverislevel code is also a singleton.

3.7 Known Uses
Barry Rubel [Rubel95] discusses the use of layareHitecture in decomposing system
requirements for mechanical control systems.

Some device drivers developed in Schlumbergerdalrtrme applications have used a
layer approach to organizing and architecting ttied code [SLB].

Page 5 of 21
Copyright© 2006 by Sachin Bammi. All rights reserved.

Patterns for a Designing a Generic Device Drivenriterrupt Driven I/O

4.0 Managing Device Access

Access to hardware device that is being used irtirea needs to be managed. If let
alone it can be made to do more than one thinigeasame time by application level
objects which in turn can lead to undesirable fiomthg of the device. An example of
this is if a printer is made to print two documeattshe same time without proper access
management then the result is undesirable. Acogbetdevice can be managed in two
ways: synchronously or asynchronouSynchronous managed access can be used for
interrupt driven I/O between various slave subeayst and the master system where a
response/acknowledgment is necessary for datasattgmicommunication in real time.
Asynchronous managed access could be used for apgemmunication where either a
response/acknowledgement is not necessary omgdysioo inefficient to wait for
response/acknowledgement. Common examples ofréhisemding a broadcast message,
or sending a command to a printer etc. The nextaatterns present an implementation
for these two approaches to having a managed dauasss.

Figure 3: Multi Tiered Architectural pattern with Managed Access

Application
Level Code | Application Level

Managed Access

System Level
Code

System Level

Low Level
Code

Low Level

Page 6 of 21
Copyright© 2006 by Sachin Bammi. All rights reserved.

Patterns for a Designing a Generic Device Drivenriterrupt Driven I/O

4.0 Pattern: Synchronous Managed Access

4.1 Context

Application level objects need to access the deiageerform their functions and receive
a response/acknowledgment back. They use the Driass that encapsulates the device
to access it. The device cannot handle multipleests at the same time. The device
should be able to carry out the work for one agpion object without any interruptions
from other application objects as this can leadridesirable effects/results. The
application object waits for the response.

4.2 Problem
Different application level objects may try to asse¢he device at the same time and
hence can adversely affect the function of the akevi

4.3 Forces

Synchronization adds latency into the system byinggthe other application objects
wait for a chance to get access to the deviceotlfmplemented right it can lead high
priority tasks to starve due to priority inversi@RL90, KB02, Kalinsky03, Kalinsky06].
Improperly chosen synchronization techniques cad te severe problems as
exemplified by the software glitch that was disaageduring NASA’s Mars mission
[Jones06, Reeves98]. On the other hand a synchsynmanaged access is very easy
and straightforward to implement.

4.4 Solution

Use synchronization but judiciously. If the apptioa objects can wait for a response
then using a synchronously managed access appidciver resources is a way to go.
One has to choose carefully between the variowsstgp synchronization mechanisms
available like semaphores, mutexs, critical sestietc and decide on what fits best for
their implementation. If there are multiple devitleat need access to them being
synchronized then using semaphore is good, budrferdevice it is better to use a mutex
of type - priority inheritance [Kalinsky03, KalingB6]. Using re-entrant function calls
can help reduce the need to add synchronizatiggriohronously managed access the
application level object waits for the responsa tequest and after getting it or timing
out releases the hardware resource.

Figure 4 shows synchronously managed access fawthde a mutex is used to provide
for task synchronization since there are multipkks but only one device driver to share.

4.5 Resulting Context

As shown in the following figure, implementing thpattern guarantees that the device
driver will handle only one request at a time amat tvarious application objects will not
stomp over each other in trying to get accesseaal#vice driver. This approach is very
straight forward to implement as long as the dgw@deeps in mind the various pitfalls
possible in implementing a synchronously managedsscas described above.

Page 7 of 21
Copyright© 2006 by Sachin Bammi. All rights reserved.

Patterns for a Designing a Generic Device Drivenriterrupt Driven I/O

4.6 Related Patterns

Schmidt and Cranor in their a pattern called “Hgyiac/Half-Async” propose to simplify
concurrent programming effort by decoupling syndas /O form asynchronous 1/O
without compromising on execution efficiency [VCK$BSRBO00]. They propose
synchronous managed access for application lesks t@m a queue of messages, which is
being filled up asynchronously.

4.7 Know Uses

Kalisky has talked about the uses of synchronooslgaged access pattern in his course
titled “Architectural design of device drivers “thie Embedded systems conference in
2006 [Kalinsky06].

In Schlumberger drivers for proprietary serial conmication protocols in the MWD
firmware implement this pattern [SLB].

Schmidt and Cranor in their a pattern called “H&yfac/Half-Async” present examples
from BSD Unix [LMKQ84], the original System V UNISTREAMS communication
framework [Ritchie84], Multi threaded version oftid 1.3 [Horn93], Motorola Iridium
system [Schmidt96] and the Conduit communicatiamiwork [Zweig90] from the
Choices OS project [CIRM93] as examples of placksere/ synchronous managed access
pattern is applied in conjunction with asynchronmanaged access pattern [VCK96,
SSRBO00].

5.0 Pattern: Asynchronous Managed Access

5.1 Context

Application level objects need to access the deiagqeerform their functions but either
do not expect to receive a response/acknowledgbeaht or it is very inefficient if they
wait while blocking the hardware resource. They lsamotified or can check the status
of the I/O by themselves at a later stage. Thecgez@nnot handle multiple requests at
the same time. The device should be able to carryhe work for one application object
without any interruptions from other applicationjeis as this can lead to undesirable
results.

5.2 Problem

Different application level objects may try to asse¢he device at the same time and
hence can adversely affect the function of theaevihe application objects do not need
to wait for a response/acknowledgement from thecgevHow can we implement
managed access which involves no waiting for respday application objects and no
multiple requests to handle at the same time fedtiver?

5.3 Forces

While the various application objects do not havevait for I/O the driver can still
handle only one I/O request at a time. Hence alsgmously managed access to the
driver as described in the previous pattern isnegessary. Asynchronous

Page 8 of 21
Copyright© 2006 by Sachin Bammi. All rights reserved.

Patterns for a Designing a Generic Device Drivenriterrupt Driven I/O

implementation can be used to improve efficiencydsuthe other hand can make the
programming logic very complex.

5.4 Solution

The solution is to apply asynchronously manageéssdiciously. The implementation
involves splitting I/O into two separate asynchramparts where the application objects
access the device synchronously and after submittie I/O request release access to the
driver. The driver implements a queue in whichkgeps the accumulated 1/O requests.
The application objects are informed or they cagckithemselves about the I/O status at
a later stage. Figure 5 presents a sequence diadrawing asynchronous managed
access for driver output.

The asynchronous input can be in turn implememntdéd/o ways. The first approach is to
let the device adapter periodically poll the drif@rnew messages. The driver would
have to maintain a message queue/buffer to hanveidlaw of incoming messages if the
polling frequency is not high enough. The secongt@gch is where the device driver
informs the device adapter of a new message ewseyit receives one. The first
approach is useful in cases where the interrugufacy is very high and hence the
device adapter tries to get the messages fromriber dn bulk at a frequency that it can
manage. Figure 6 presents a typical sequence ofsfa this scenario. The second
approach can be applied when the interrupt frequenerratic and not very high. In this
case the device adapter does not poll for messdgesne predefined interval but instead
gets a notification from the driver when a messagses in. Figure 7 presents a typical
sequence of events for this scenario.

5.5 Resulting Context

The application objects gets to access the drnivarway so that driver does not have to
handle multiple requests at the same time anddketo do so without having to wait for
a response to their I/O request.

5.6 Related Patterns

Schmidt and Cranor in their a pattern called “Hgyiac/Half-Async” propose to simplify
concurrent programming effort by decoupling syndas /O form asynchronous 1/O
without compromising on execution efficiency [VCKZBSRBO00]. For the low-level
threads they propose using asynchronously managedsawhere the driver creates a
notification on receiving a message which is thandbted by the system and the message
IS put in a queue.

5.7 Know Uses
D Kalisky talked about this in his course titledrthitectural design of device drivers “
at the Embedded systems conference in 2006 [Kala&k

Schmidt and Cranor in their a pattern called “Hayfac/Half-Async” present examples
from BSD Unix [LMKQ84], the original System V UNISTREAMS communication
framework [Ritchie84], Multi threaded version oflde 1.3 [Horn93], Motorola Iridium
system [Schmidt96] and the Conduit communicatiamiwork [Zweig90] from the

Page 9 of 21
Copyright© 2006 by Sachin Bammi. All rights reserved.

Patterns for a Designing a Generic Device Drivenriterrupt Driven I/O

Choices OS project [CIRM93] as examples of plackserey asynchronous managed
access pattern is applied in conjunction with syasbus managed access pattern
[VCK96, SSRBOO].

Figure 4. Synchronous Managed Access for |nput/Output

:t_Acquisition_3 :DeviceAdapter :DeviceDriver

‘ GetResource() ‘

|
o
| | |
| | |
|
|
|

tx_mutex_get(0)

sendCommand() ‘

/

WaitForResponseOrTimeout()

|

| |
| |
GetResponse()

response() ‘

/

res ponse K

$444444444

IeaseResource()
‘ tx_mutex_put()

|
—
| |

JR — R — 1

Page 10 of 21
Copyright© 2006 by Sachin Bammi. All rights reserved.

Patterns for a Designing a Generic Device Drivenriterrupt Driven I/O

Figure 5: Asynchronous Managed Access for Output

t_Acquisiton_1 1_Acaquisition_3 :DeviceAdapter

GetResource()

!

‘ tx_rmutex_get(0)

E

E;AddToTXQue ue()

sendConmand()

|

rdeaseResource()

!

IJ:tx_mnex _pu()

tx_rmutex_get(0)

\ P
momm | T

releas eResource()

GetResource() ‘ ‘
| | |

|J__AololToTXQue ue()

4_
|J:tx_rmtex_puo
SendvsgFromTXQueue()

:

\ ReturnAf terSendingVsg()

Page 11 of 21
Copyright© 2006 by Sachin Bammi. All rights reserved.

Patterns for a Designing a Generic Device Drivenriterrupt Driven I/O

Figure 6: Asynchronous Managed Access for Input: Polling version

:t_Acquisition_1 :t_Acquisition_3 :DeviceAdapter :DeviceDriver

CheckForNestg()‘

NewMSG () ‘
GetResource() T

tx_mutex _get(0)

Tjﬂ

getResponse()

|

RmFrmR XQueue()

th

releaseResource()

]

tx_mutex_put()

CheckForNewMsg()

NeWMSG(

1

‘ ‘tx mutex _get()

getResponse() ‘

ET

RmFrmR XQueue()
reIeaseResource() ‘

<
tx_mutex_put()

FCE:kForNestg()
I

R 1 _ 1 L

Page 12 of 21
Copyright© 2006 by Sachin Bammi. All rights reserved.

Patterns for a Designing a Generic Device Drivenriterrupt Driven I/O

Figure 7: Asynchronous Managed Access for Input: Push version

:t_Acquisition_1 :t_Acquisition_3 :DeviceAdapter :DeviceDriver
‘ ‘ NewMSG() ‘
‘ ddToQueue()
GetResource()

tx_mutex_get(0)

getResponse()

)

RmFrmRXQueue()

releaseResource()

]

ths

tx_mutex_put()

I8

|

NewMSG()

GetResource() AddToQueue()
tX_mutex_get()

W
RmFrmRXQue()

releaseResource() ‘

tx_mutex_put()

NewMSG()

Rl

|

¥

AddToQueue()

Page 13 of 21
Copyright© 2006 by Sachin Bammi. All rights reserved.

Patterns for a Designing a Generic Device Drivenriterrupt Driven I/O

6.0 Pattern: Friendship Zone

6.1 Context

Restricting access to the internal data buffethefdevice driver is critical to prevent any
malicious code from accidentally corrupting thend aonsequently degrading the
performance of the device. Encapsulating and haaisgparate abstraction layer for low-
level driver code is the first step in this directi However encapsulation and layering in
certain time-critical embedded systems can hawegative effect on system efficiency
due to the use of access member functions instedideat data access. This is especially
a concern for parts of the code that service inpgsras it can potentially lead to increase
in interrupt latency [Ganssle01]. Another drawbatkncapsulation is the additional
code bloat, which for some embedded systems malyenatceptable.

6.2 Problem
How to balance the need of data security with sys#ficiency especially in the low-
level code where interrupt latency can be a majocern.

6.3 Forces

From a truly data encapsulation and security pofiview each class/module should
protect its data by either keeping it private aviding the appropriate access control
functions. However for time-critical and space &tar real time embedded systems this
could be a concern because of additional time takemake a function call and the code
bloat due to additional data access functions.

Hence we need a pattern that addresses the alsones ifor it to be successfully applied
to the design of a device driver which has to lheieht, not take too much code space
and at the same time be modularized enough thatefghanges to the code in one
component of it can be made easily without affertire other parts.

6.4 Solution

Balance the opposing forces of data encapsulatidrsgstem efficiency. This can be
achieved by using the “Friend” feature in C++, whadlows one class to access the
private data of the other if the latter declaresftrmer to be its “Friend”. This removes
the need of having additional function calls anthatsame time keeps the data of the
class concerned hidden from all the other classespe its friends. In the pattern the
author prescribes a “Friendship Zone” between yiseesn level and Low level
abstractions of the driver code. It is up to thdividual firmware engineer to decide how
exactly the friendships have to be established éetvthe classes in these two levels to
find an effective balance between the various camgéorces mentioned in section 6.3.
This is because depending on the specific systgmireaments, proprietary hardware and
communication protocol details, the relationshipsaeen the objects in the friendship
zone can vary quite a bit. An example is presemtéde section 7.0 - “Sample
Implementation”. In C, one could use global vargsbih the Friendship Zone for faster
data access.

Page 14 of 21
Copyright© 2006 by Sachin Bammi. All rights reserved.

Patterns for a Designing a Generic Device Drivenriterrupt Driven I/O

Some other things that can be considered to spabtgs in the low level code are
using in-lining functions, no virtual member furais and using constant references in
parameter passing so that copy constructor doegatatalled.

6.5 Resulting Context
The inefficiencies that can happen due to datapsudation are addressed without
having to compromise on data security.

6.6 Related Patterns

Gamma et. al. in their landmark design patternklpwesent the Memento pattern in
which an object uses the “Friend” feature in C+-effectively have two interfaces —
‘narrow’ and ‘wide’ so that it could allow accessits private data while “Preserving
encapsulation boundaries” [GHJV94].

6.7 Known Uses
In Schlumberger drivers for proprietary serial commication protocols in the MWD
firmware implement this pattern [SLB].

Figure 8: Multi Tiered Architectural pattern with Friendship Zone

Application
Level Code

Application Level

System Level
Code

Friendship Zone

Low Level
Code

Low Level

Page 15 of 21
Copyright© 2006 by Sachin Bammi. All rights reserved.

Patterns for a Designing a Generic Device Drivenriterrupt Driven I/O

7.0 Sample Implementation: A Multi-Tiered, Synchronous Serial
Communication Driver using Friendship Zone Pattern

Figure 9 presents an object-oriented design farialscommunication Driver which
implements the “Multi-Tiered Device Driver”, “Synaimous Managed Access” and
“Friendship Zone” patterns. The DeviceDriver isiagieton class, which declares
DeviceAdapter to be its “Friend”. Since DeviceDrnwtass implements the Singleton
pattern, it guarantees that there will be one arig one instance of it. Hence for one
device there is only one driver and access todhegr is through the DeviceAdapter
class. The DeviceAdapter class controls all acteetise Device and implements both the
Adapter and Singleton pattern. Other applicati@sés like the t_Acquisition_1 class,
t _Acquisition_2 class and the t_Acquisition_3 class it to access the device. They do
not have direct access to the device driver. Allods of the DeviceDriver are private
and can only be accessed by its “Friend” the Dé\diegter. This guarantees that if by
any chance some piece of code maliciously triesatica function on the DeviceDriver, it
would cause a compile-time error, which is bett@nta run-time error. The
DeviceAdapter class uses a mutex to synchronizesado the shared device by all the
application threads. The device driver uses atytliass and a Data Buffer class to
perform its task.

CommBuffer class encapsulates the buffer used ltbdent and received messages.
Endian class encapsulates the various utility fonstto convert from Big Endian to
Little Endian format, compute checksum, and com@Re& etc. depending upon the
specific details of underlying communication praibc

As is evident from the UML sequence diagrams 9 Hhdhe low-level implementation
details of the serial communication protocol lilkemding and receiving messages with
predefined timeouts, retires, inter-character dekayd checks for the message quality are
completely transparent to the application levessts. Hence they do not know any more
than they need to without breaking encapsulatiamtaries. However, at the low-level
quick access to data is more important and hengerié?’ classes are used to save a time
taken to make function call to access another ‘slasda.

The sequence diagram in Figure 10 shows the sequémyvents that happen in a typical
function call made by the t_Acquisition_3 applicatithread on the DeviceAdapter.

A different approach to this issue could be to addther class called Protocol which has
all the communication protocol specific informatiencapsulated in it and making the
DeviceDriver more generic by changing it to jusidand receive bytes. Strictly from an
Object Oriented Analysis and Design (OOAD) pointi@w, that would be a better
approach. However from a more practical point efwthere were not going to be
several protocols supported by the system beingldpgd. There are only two protocols
being supported and there is a very slim probattiiat there are going to be several
more in future. Hence the otherwise valid concdroode duplication since each protocol
has its own driver is really not that critical mg case. Also at the end of the day by
adding another class to encapsulate the Serial Goneation Protocol definition is akin

Page 16 of 21
Copyright© 2006 by Sachin Bammi. All rights reserved.

Patterns for a Designing a Generic Device Drivenriterrupt Driven I/O

to just adding another layer of abstraction betwteersystem and the low level code.
There is theoretically no limit to how abstract aygheric we may make our code and the
decision to stop at a particular level of abst@cis typically governed by practical
project related considerations. In this case hathinge layers of abstraction i.e.
Application level code, System level code and Lewel code was considered
appropriate by the author.

Figure 9: Class Diagram to show the design pattern for the Serial Communication Driver

«Singleton»
t_Acquisition_1

«Singleton»
t_Acquisition_2

&l dev_adap:DeviceA...

& dev_adap:DeviceA...

«Singleton, Adapter, Facade»
DeviceAdapter

& driver_resource: TX_ MUTEX=1

«Singleton»
t_Acquisition_3

&l dev_adap:DeviceAd...

& GetInstance(): DeviceAdapter

Friend4

«Singleton»

Utility

«Singleton»
Devic eDriver

1 & Itb_in_sem:TX_SEMAPHORE=0

Friend6

Application Level

System Level

«Singleton»

CommBuffer

&l Itb_out_sem:TX_SEMAPHORE=0

{5 readB yte():void
HwriteByte():void

& GetInstance():DeviceDriver

& GetInstance():void

Low Level

Page 17 of 21
Copyright© 2006 by Sachin Bammi. All rights reserved.

Patterns for a Designing a Generic Device Drivenriterrupt Driven I/O

FigurelO: Sequence Diagram to show the working for the Serial Communication

t_Acquisition_3 ‘DeviceAdapter :DeviceDriver :CommBuffer :Utility

GetResource()

tx_semaphore_get(0)

StartTX()

‘ write2 byte s ()

GetResponse() ‘

read2bytes() ‘

CheckMs gQu ality()

response() ﬁ ‘

ﬁ easeResource()
M tx_semaphore_put()

i
|
|
|

Page 18 of 21
Copyright© 2006 by Sachin Bammi. All rights reserved.

Patterns for a Designing a Generic Device Drivenriterrupt Driven I/O

8.0 Pattern Thumbnails

Pattern

I ntent

RT Data Acquisition

Divide the system into “Data providers”, “Data Cangers” and
“Data Brokers”

Multi Tiered Device
Driver

Divide the code into “Application Level Code”, “Sgsn Level
Code” and “Low Level Code”

Synchronous Manage,
Access

dProvide Application level code with synchronousesscto Low

level code.

Asynchronous
Managed Access

Provide Application level code with asynchronousess to
Low level code. It includes sub-patterns for Asguotput,
Async input (polling version) and Async input (Pugsion)

Friendship Zone

Form relationships — “friendships” between low leaed
system level classes that promote faster data seddsout
breaking data encapsulation boundaries.

Data Frame Builder

Modularize the Data frame building process so filiaire
changes in business logic can be incorporatedyeasil

MUX ADC Driver

A common approach to sample Analog to Digital Caotere
(ADC) data from a multiplexed data acquisition amgin

9.0 Acknowledgements

The author would first of all like to thank Lise Btwm for introducing him to the world
of Pattern Languages and PLoP and for providingggradvice on writing papers for
the same. It is safe to say that without her gudahis paper would not have been
written. The author would also like to expressdratitude for the help he received from
his shepherd, James O. Coplien and the membehg @ifriters workshop — “Intimacy
Gradient” at PLoP 2006, for providing specific agbvbn improving the presentation of
the material. That was very helpful in getting fager in its present form.

10.0 References

1. [WDFO06] Introduction to Windows Driver Foundati Link:
http://www.microsoft.com/whdc/driver/wdf/wdf-intnmspx (accessed or’lJune

2006)

w N

[WDDO05] Writing Device Drivers. Sun Microsystems, Inc., 2005.
[WDTO05] Device Driver Tutorial. Sun Microsystems, Inc., 2005. Link:

http://192.18.109.11/817-5789/817-5789.f@kcessed on ZNovember 2006)

4. [VMO06] Windows NT Device Driver Development (OSR ClassapRnts)by
Viscarola, P., G., and Mason, W., A., OSR Pres820
5. [Cant99Writing Windows WDM Device Driverdy Cant, C., CMP; Book & CD

Rom edition (January 7, 1999)

Page 19 of 21

Copyright© 2006 by Sachin Bammi. All rights reserved.

Patterns for a Designing a Generic Device Drivenriterrupt Driven I/O

6. [Pajari91]writing UNIX Device Driversby Pajari, G. Addison-Wesley
Professional; 1st edition (November 25, 1991)

7. [GHJV94] Gamma, E., Helm, R., Johnson, R. andsides, J., “Design Patterns:
Elements of Reusable Object-Oriented Software”,igalttWesley, Boston,
1994.

8. [Rubel95] Rubel, B., “Patterns for Generatinigagered Architecture”, Chapter 7,
Pattern Languages of Program Design, edited byi€gpl. and Schmidt, D.,
Addison-Wesley, 1995.

9. [VCK96] Vlissides, J., Coplien, J. and Kerth, Bds. Pattern Languages of
Program Design-2, Addison-Wesley, 1996.

10. [SSRBO00] Schmidt, D., Stal, M., Rohnert, H.sBlamann, F., Pattern-Oriented
Software Architecture, Volume 2, Patterns for Corent and Networked
Objects, John Wiley & Sons; 1 edition, 2000.

11. [SLB] Internal Schlumberger technical literatur

12. [Jones06] Jones, M. B. “What really happenetMars?” an email
communication sent by M. B. Jones. Link:
http://research.microsoft.com/~mbj/Mars_Pathfindex/#/1 Pathfinder.html
(accessed on 2INovember 2006)

13. [Reeves98] Reeves, G. "Re: What Really Happenddars?," Risks-Forum
Digest, Volume 19: Issue 58, January 1998. Link:
http://catless.ncl.ac.uk/Risks/19.54.html#suf@écessed on 2INovember 2006)

14. [SRL9I0] Sha L., Rajkumar, R., and Lehoczky, Jpiority Inheritance
Protocols: An Approach to Real-Time SynchronizatibEEE Transactions on
Computers, September 1990, p. 1175

15. [KB02] Introduction to Priority Inversion, Kalsky, D. and Barr, M., Embedded
Systems Programming, VOL. 15 NO. 4, April 2002.K:in
http://www.embedded.com/story/OEG20020321S0@28essed on #1
November 2006)

16. [Kalinsky03] Kalinsky, D., Introduction to Re@lme Operating Systems,
Introductory Course for Real-Time Software Develeptusing an RTOS,
Courseware Version 2.1, 3-05-03, D. Kalinsky Asaias, 2003.

17. [Kalinsky06] Kalinsky, D., Architectural Desigi Device Drivers, Tutorial #
ESC-505, Embedded Systems Conference 2006 Sar Bikeon Valley, D.
Kalinsky Associates, 2006.

18. [Ganssle01] Interrupt Latency, Ganssle, J.@b&ldded Systems Programming,
VOL. 14 NO.12, October 2001. Link:
http://www.embedded.com/story/OEG20010918S0@E2essed on #1
November 2006).

19. [LMKQ84] Leffler, S. J., M.McKusick, M., Karel$/. and Quarterman, Jhe
Design and Implementation of the 4.3BSD UNIX Operating System. Addison-
Wesley, 1989.

20. [Ritchie84] Ritchie, D. “A Stream Input—Outpgbystem,AT& TBell Labs
Technical Journal, vol. 63, pp. 311-324,0ct. 1984.

21. [Horn93] Horn, C. “The Orbix Architecture,” tecrep., IONA Technologies,
August 1993.

Page 20 of 21
Copyright© 2006 by Sachin Bammi. All rights reserved.

Patterns for a Designing a Generic Device Drivenriterrupt Driven I/O

22. [Schmidt96] Schmidt, D. C. “A Family of Desigratterns for Application level
Gateways, The Theory and Practice of Object Systems (Special Issue on Patterns
and Pattern Languages), vol. 2, no. 1, 1996.

23. [Zweig90] Zweig, J. M. “The Conduit: a Commeaiion Abstraction in C++,” in
Proceedings of the 2nd USENIX C++ Conference, pp. 191-203,USENIX
Association, April 1990.

24. [CIRM93] Campbell, R., Islam, N., Raila, D.,dakladany, P. “Designing and
Implementing Choices: an Object-Oriented Syste@-r,” Communications of
the ACM, vol. 36, pp. 117-126, Sept. 1993.

Page 21 of 21
Copyright© 2006 by Sachin Bammi. All rights reserved.

