Adopting Agile Practices:
An Incipient Pattern Language

Amr Elssamadisy — Valtech
David West — Transcendence Corporation

Abstract: The increasing popularity of Agile approache to software development forces an
increasing number of organizations to deal with issues @fgile adoption (and adaptation).
This paper lays some groundwork for a pattern language thawill facilitate the transition to
agility. We introduce patterns that focus on the dynamic®f adoption rather than the
structure that results from adoption. To establishthe desired foundation it is necessary to
“push the pattern envelope” in terms of traditional pattern documentation format and
relationships among patterns that form a pattern language

Why This Topic and Why Now?

The first agile development processes, such as Scrdi{Rnhave roots extending back
to the mid-1990s. Agile achieved significant momentum andspigad adoption
beginning in the years 1999-2003. The Agile community contitaugsow but still
represents minority of software development orgamnati Effort has shifted from rote
adoption of a set of published practices (an attempt &b agglity as a method) to
attempts to understand the ideas, values and philosophy supjaaititygin order to
optimize the adoption process. One of the forces behiaghift in emphasis is a
perception that agility must be “adapted” to fit specificumstances before it can be
successfully adopted. Adaptations include the combinatiprectices from several
different “methods,” selecting (an even discarding) agnihe set of advocated practices,
and finding ways to incrementally introduce new practideseffect: learning how to be
agile about adopting agility.

A set of patterns, preferably a pattern language, thatdwamgist organizations adopting
agility is clearly needed and we believe that the bmfdgxperiences from which such a
language can be distilled is finally sufficient in simeassure some productive pattern
mining. Introducing some new patterns and relationshimsgrthem (necessary to
begin establishing a pattern language) is part of what wetbagmeomplish in this
paper.

Another goal for this paper is to make the patterns attdrpdanguage accessible to
those who will most benefit. The patterns commuipigy, se is not our target audience
in this regard. Individuals and organizations new to agilityf experienced practitioners
assisting in the transition comprise our primary intenaiedience. To serve their needs
we have deviated, in some ways, from the standardegatof patterns.

Sometimes simply in terms of vocabulary - e.g. wé spkak of “smells” more often
than “forces.” At other times we will follow thedd of Rising, and Manns by presenting
patterns that have “tangible but not necessarily straltconsequences and form.

A topic for considerable debate among pattern writers is whether or not a
solution that has worked well in a particular context to solve a particular
problem is really a pattern or whether it is just a general hewristi
guideline. The fallback response to this question has historically been:
What does the pattern “build?” The origin of this response is the wbrk
Christopher Alexander, an architect who builds structures. His patterns
describe concrete changes in the real world. Since our patternslokescri
organizational solutions the result is tangible but not usually structural.
Therefore we have taken extra care to include both an opening story to
provide an image for the intent of the pattern and also to include text that
describes what we feel the pattern “builds” — that is what the pesénd
negative results of applying this pattern will be.

Our patterns generally address dynamics more than s&uwtdrso we copy the format
introduced by Rising and Manns.

Another point of divergence is a conscious attemptrealuce a pattern language that
mirrors, in large part structurally, the domain, Agilitiyat is addressed by that pattern
language. It is our intent that the patterns we introdefbect the granularity of agile
practices. Each pattern, therefore, will address the ‘how?’ ‘autny?’ of adopting an
individual practice, or related cluster of practices. sTdantrasts significantly with most
treatments of agility which focus on describing ‘what® practices are and the
combination of practices into methods.

Based on our collective experience in teaching, leadinga@vent teams, and
participating in numerous patterns and agile forums (nezgntly at ChiliPlop 2006 and
XP2006) we believe that these patterns have significaphpakto help guide the next
generation of adopters — allowing them to learn from ogtakes and successes.

Foundations and Starting Points

Our patterns derive from the specific way we view theems, pattern, agility, and
adoption. It is useful, therefore, to make this undedstanexplicit.

Pattern — “a proven solution to a problem in context.” Patere a proven format for
sharing expert information about complex problems. Rwettancluding the ones
presented here, are validated by their successful aiphicn multiple instances.
Documentation of a pattern generally includes: name, idefincontext, problem —
including identification of relevant forces, solution sturet implementation, and
discussion of applicability and other usage issues.

Our presentation of patterns will diverge from these glyeaccepted definitions in
three ways:

First, we deviate slightly from the classical format usegattern
documentation. We will use the following:

Name

Sketch: A story/narrative that acts like a ‘sketch’ in despatterns.
(idea taken fronfrearless Change

Context: Who and in what circumstances this pattern is useful.

{Forces:} Used to elaborate context and give specific issuesatbat
problems (partially) resolved by this pattern.

Therefore: The pattern description.

{But:} Negative consequences that can occur from applying therpatt

{How:} Steps, ordering, guides to adopting this pattern. Somgtime
interleaved witifSmells: to indicate where the adoption can go
wrong.

{a.k.a.} Similar published patterns.

Secondwe introduce the concept of a, “smell,” to the pattern
community. The discovery of a pattern is driven byisléation of a
problem. But how was the problem itself discovered ortifiedi? The
agile community has come to use the idea of a “smel# mmeans for
identifying potential problems. Smells are not definedy tre
recognized. A smell reflects a relatively vague sensmeése or
discomfort. Reflection on a smell may result ia ttientification of a
resolvable problem.

A smell is a kind of inverse QWAN. QWAN is the Alexaiadr notion,
“Quality Without A Name;” something that is readily ogmized even
though it cannot be defined or explicated. A lot can imk‘about’

QWAN even though QWAN itself cannot be expressed. Tisane
algorithmic means for creating the property of QWAN bet¢hare
patterns that can be applied to increase the liketiltdohe emergence of
QWAN in a construct. Smells too are recognized. Smalisbe talked
about but not defined, and lack any kind of algorithmic resiuti

Third, we introduce the explicit use of “abstract patterrsiialogous to
an abstract class. An abstract pattern might alseée as a category of
patterns. An abstract pattern lacks an implementaidependent of
those of its concrete sub-patterns.

Agility — a state of being.

Like QWAN it is possible to discern the existence dfityg- in individuals and
organizations — but agility is not definable. Specificahadrs, or practices, are

consistent with agility and their presence or absé&nae indicator but not a measure of
agility. There is no formulaic path leading from napligy to agility nor is there an
aggregation of practices that ensure agility.

Agile practices are themselves patterns — frequently eds$e@rganizational and
behavioral solutions to commonly encountered problems.pfideices are present, in
various combinations, in individuals and organizations dhatrecognized as agile.
However, the mere presence of those practices iffizisut to transform individuals and
organizations to the agile state of being.

Agile “methods” and agile “processes” are misnomersipedy because there is no
formula or specifiable combination of practices foriattey agility. The patterns and
pattern language we introduce in the following pages reflea believe, discernable
patterns in the dynamics of adoption expressed by indigdual organizations
attempting the transition to agility. Necessarilythgll reflect some of the same
ineffability as agility, QWAN, and smells.

Adoption - the act of taking as one’s own a thing or behaviao diten, agile adoption

is seen as little more than exhibiting, by rote, thevamated practices and exhibiting, via
mimicry, the described artifacts in one or more ofade method books. It was held,
and some still hold, that agile adoption was an afiadhing proposition. You did
everything listed exactly as described or you were not adpagile. This view of
adoption is actually a smell — specifically the “CargdtE8yndrome.”

We see adoption as much more than aping as closplysathle each and every
described practice advocated by an agile advocate. Wéedthat successful adoption
requires asking additional questions, such as:

* “Which practice do | adopt first?”

* “Which practices relate to (in terms of support or depengl) others?”

* “Can | incrementally adopt a given practice or incretaynadopt from a set of
practices?”

» “Can | adapt the form of a practice without alteringsiibstance?”

e “Can | add to or delete from a specified set of practices?

* “What values and assumptions are presupposed by a given gPactic

* And, consistent with the spirit of agility, “what bosss value does each practice
deliver?”

! During World War 1l a number of airbases were builtemote tropical islands inhabited by pre-
industrial societies. During the war soldiers builtieids and control towers and engaged in various
activities that resulted in large airplanes full of caiagaling and discharging their contents. The native
inhabitants shared this cargo. After the war the eddieparted and no more cargo was available to the
natives. So they adopted, as best they could, the sugleidien of airstrips, control towers, and ritual
behaviors intended to induce the return of planes fulhgj@ A cargo cult is any group that adopts form
instead of substance and believes that doing so will biogt a desired result.

The patterns we introduce are intended to provide guidand¢bdse embarking on the
journey to agility. Our focus is on that problem spawcé how each pattern addresses
both the mechanics of adoption and the expected tectamddusiness value derived
from that adoption.

We are not presenting a finished or polished work ChitiPlop 2006 we quickly
discovered that a full pattern language describing adoiarmonumental undertaking.
So the few simple patterns here are only a beginningfluBhing these out and gaining
invaluable feedback from the Pattern Language communityilvenake these more
valuable to the readers. In addition to presenting this @ag@ltoP 2006, we are making
our work and results available on a Wikivatw.agileprocessadoption.comWe also
have a companion article scheduled for the Agile Adigas quarterly publication in
September 2006. Finally, we have initial sponsorship fromgile Alliance to build an
online community focused on Patterns of Agile Practidegion.

Mega-Smell — “Us versus Them” (UvT)

An organization or a development team has decided ta adamile software
development methodology. Unfortunately, that organinagihibits an all too common
problem — clearly, though often non-consciously, delirceatd-groups whose
interaction is characterized by “CYA” contractual coomeation. Failure is expected
and each sub-group is intent on making sure the “othetisér than themselves are to
“blame” for that failure. The organization smells likés versus Them.”

A number of forces and factors have converged to gengniatemell. Among them:

* History — contention between IT and business, anatygstader, coder and
tester, developer and user has been an industry plaguetsradvent of
commercial computing.

* Physical separation which contributes to social sejparat

* Any organization in the United States (we cannot inithetrest of the world on
this point) is embedded in a very litigious culture whaividuals seem loath to
accept personal responsibility.

* Industrial cultures have generally abandoned group consemgusfarmal
resolution mechanisms in favor of formal courts andiilelcite decision making.

* Much of the industrialized world shares a heritage #ethes people are innately
flawed but capable of redemption instead of innately good butulbj
corruption.

* Along-standing conflict between perceptions of Art vsefSce.

* Documentation is seen by most as a means to represdityt instead of an
ephemeral evocation of current group understanding.

* Functional separation (silos) - testing team/ codaagr/ analyst team.

* Human Resources (and litigious culture) imposed false/alguicy that
categorizes people instead of recognizing individual diffezen

* Aculture of debate instead of dialog.

Although we believe we are the first to identify thislgeon area as UvT, the problem
itself has been recognized by other pattern writers ingu@oplien, Rising, and Manns.

A significant motivating factor in the development d®was the need to address and
resolve UvT. Each of the original 12 XP practiceslmamnderstood as a means of
resolution. (This, of course, implies that the Pcadtiare themselves patterns.) Any
organization seeking to become agile must adopt & peactices sufficient to eliminate
all (or at least most) vestiges of UVT.

Although the adoption of the practices seems simpl&lifes said, “Just Do It!")
organizations and teams have experienced significantudifés and too many have
failed in the attempt. Our involvement with (and oba&on of) teams and organizations
that have been successful suggest that there is anetldrpatterns — adoption patterns
— that increase the likelihood of success when trangity to agility.

The following list names many of these observed pattefigure One shows some
relationships among the listed patterns, the motivatingarsetell, and a set of practices
to be adopted.

* Reciprocal Visibility

* One Vision

* One Culture

* One Language

» Disciplined Practice

* Co-located Team

* One Room School

» Track Record

* Evocative Documents

* Bury the Hatchet, aka Truth and Reconciliation
» Tribal Organization

* Poly-Vocal Conversation

* Baby Steps

* Recognize Individual Differences
* Dynamic Information Radiator

» Static Information Radiator

* Reaffirmation Ritual

» Solidarity Ritual

» Participant Observation

2 \We are using XP as an exemplar of Agile approaches imsianice. We believe that all agile
approaches equally value communication and all have peadpecifically addressing the issue of
communication.

Pair Proarammir

Solidarity Ritual

Sustainable Pa

/

One Culture

T

Participant
Observation

Metapho

Reaffirmation
Ritual

e

/

Or anlzation

Recobgnize
Individual
Differences

Ameliorate:

Co-located

Simple Desia

7

Codina Standart

Collective Ovnershiy

Pair Proarammir

Evocative

ms\ls-a-kmd-of
Static

Define style o

One Vision

\

One Room School

Reciprocal
Visibility

Is-a-kind-of
AN

Dynamic

Information
Radiators

Radiators

Track Record

Information

Small Releast

|

Testing
Baby Steps
Continuous
/ Integratior

Courage

™

Ameliorate
Bury the
Hatchet

Practice

Poly-Vocal
Conversation

Plannina Garr

-

n-site Custome

In the remainder of this paper we will introduce a sedectif the patterns that illustrate
the various directions in which we can continue oardefor adoption patterns.

Reciprocal Visibility

Sketch: Upon joining an agile team Waterfall Will discovered that stand-up meetings
not only let him know what developer’s were doing but also what Scott the
ScrumMaster was doing to remove each and every road-block that came up.
When an issue was brought up it was put up on the Impediment Chart (an
Information Radiator) and everyday Scott was responsible to report tedhe t
the progress he has made towards removing the impediment. Will ¢iicik’of
Scott as just ‘overhead’ on the team anymore. Will understood that Sicbtt pa
attention to what he and the rest of the development team were doing@nd als
understood that Scott was diligently removing roadblocks for the team.

Context: An organization exhibiting multiple symptoms of the us-vertsiem smell, for
example: tightly constrained communication channelsyg@ntation that is
viewed as legal contract rather than a communicatidnitdequent contacts
among users, managers, and developers; and, clearly tedispacialty areas
— e.g. analysts, coders, testers — reporting to ditfenanagers.

Numerous forces have combined to create this state akafiahe
organization, but the most significant is ‘expectatibfadure.” Everyone
involved in the project, including management, immedistdlypts a posture of
self-protection and blame avoidance. The less expo$oree’s activities, the
lower the portion of blame than can accrue.

Therefore: Success in the adoption of agile practices likgpthaning gamepair
programming andsustainable pacenandates deployment of countering
actions. Reciprocal Visibility provides a pattern that shape appropriate
counter actions. The essence of the pattern dervesd belief that the state of
a project and the contributions of all parties to tkatiesshould be overtly
manifest to all.

Reciprocal Visibility is an abstract pattern, one thegcribes traits reflected in
several related patterns. These traits are not stali¢as is typically the case
with Alexander inspired patterns); instead they are ppse. They define
constraints that must be satisfied if the pattern exist. Reciprocal Visibility
is sufficiently abstract that there are only threestaints:

» All actions that affect the state of the project expressed in a manner
that includes the whole team.

» Allinformation about the state of the project is pulali@ omnipresent
in the whole team environment.

But:

* All communication (actions and information sharing) tplece in a
“safety zone” —i.e. no one can be punished (or rewardedheir
participation in the conversation.

Satisfying the constraints imposed by this pattdiralmost certainly raise the
anxiety level of everyone involved in the project. Mamagell be
uncomfortable addressing the entire team instead of comniagicaly with
the team’s coach. The presence of the managemategtings will inhibit —
at first — frank conversation regarding issues.

Documenting individual and team performance on the waliseofeam work
area will expose individual differences that will maeeme uncomfortable. (It
will also serve as a source of motivation for change

Some will attempt to abuse the communication safetg rathad hominem
remarks. This error needs to be pointed out and corrediatinot punished
unless it persists after several reminders.

Reciprocal Visibility is parent to two abstract sub-pais: Static Information Radiator
and Dynamic Information Radiator.

Static Information Radiator

Sketch: Dave the Developer and Aparna the Analyst were both on a project that has

been incrementally adopting agile development practices. Test-driven-
development had made a real improvement in the quality of the code Isotfar,
there was still a lot of improvement to be done. Aparna stillmany issues fall
through the crack, and by the time she got to reviewing the work thatHadve
completed for the iteration they would go into overdrive to get the canpleted

or just miss completing the card all together. Recently Scott thenStaster put

up a StoryBoard chart in the common area. Aparna saw that Dave’s work was
completed and ready for testing half-way through the iteration and was reminded
of it every time she passed the chart. She picked up the woekh@dv

completed, found the one or two issues and notified Dave. Dave had tlse issue
fixed in a couple of days and the card went through to completion smolbthly.

was funny how such a simple chart placed so that both she and Dave saw many
times a day helped them both finish the card on time...

Context: The whole team needs consistent and continuous infomabout factors that

inhibit/enhance the process of delivering business-valu¢éda@f Traditional
forms of project documentation are (rightfully) peregivas overhead, generally
inaccurate, and incomplete. Information must be accueateedingly easy to
update, and understandable “at a glance.” A Static Infoom&adiator captures
and displays information. It is the medium (e.g. esstwhite board diagrams,
charts) that is static not the information.

As an abstract pattern, Static Information Radiattereds Reciprocal Visibility
by adding additional constraints:

» Every aspect of a project’s state of interest to aegnber of the whole
team is an appropriate subject for a static informatairator

» The contents of any given static information radiat@r limited to 1-3
distinct aspects of the project state.

» Updates to the content must require nominal effort (eaying a story
card from one column of a progress chart to anothenglaridaily
meeting) or be automatically generated as a byproduct efageuent
efforts (e.g. tests written, tests passed).

» Radiators should be “large format,” i.e. large postetste board
diagrams, or any other equally visible and interpretabsi®.fo

* Radiators should be consistent with the pattern, “Btree Document” as
discussed below.

Almost all agile methods discuss and advocate thefusgrious forms of
static information radiators. The idea of “big visiblearts” is common
vocabulary and addresses, but does not explicate, ritieeisaue as Static
Information Radiator.

But: Simply posting a series of “facts” about a projetéte is insufficient to satisfy the
constraints imposed by this abstract pattern. "SmeligtiSInformation
Radiators can exhibit one or more of the followingpyoms:

. Voids in the information exist indicating that individsi@r roles are persisting in
their predisposition to secrecy. Some members okt still believe that they
can avoid or transfer to others accountability for failur

. Team members fail to see any value in one or moreeohformation radiators in
use — e.g. progress is being measured but not in a meaningfullea
information does not lead to improvements in the deveéy process.

. Wrong metrics are being employed. One common exampiimating in terms
of person hours rather than relative effort.
. Updates are not performed in the same time frame a®toey and they are of

use. Usually means that the updates require far moretimimal effort to make
and/or are not automatically generated. Overtimetiepeoductivity, and
declining team morale are secondary symptoms of this pnoble

Dynamic Information Radiator

Name: Dynamic Information Radiator

Sketch: Ahmed the Analyst, Tammy the Tester, and Debbie the Developait had
worked together before on many successful (and unsuccessful) projedtseove

10

years. Getting a product out the door was hard, and even though they were good
friends and frequently went out to lunch together, they each had a féelinye
other’s “just didn’t get it” completely. There were always umderstandings and
complications in the requirements, and of course the code was less tfext pe
when developed, and the testing team did their best to find all the bugs but
somehow never got them all. The project they are currently on boseems to

be quite a bit different from the start. There are iterationdiskevery two weeks
where the entire team gets together to make decisions and commitonehtt

will be done in the next iteration. Daily stand up meetings keepane

informed and roadblocks are removed ASAP. And finally, at the endrof eac
iteration there is a Retrospective that allows the team to tiemagrocess itself

and get things on the same track. All of this frequent communicatidre hpesi

the team move functionality through very fast and has reduced many ofdise err
that would have previously been missed or would have taken several months to
catch because of the slow cycle time. They may not have asdonaagnents’
describing exactly where they are, but as a teamrtily know where they are
and where they are going much more accurately than ever before.

Context: The whole team needs consistent and continuous iatanmabout factors that
inhibit/enhance the process of delivering business-valuédaef Some of that
needed information is not reducible to static form s émbodied in the actions
and decisions of individuals interacting with the teamaditional forms of inter-
personal communication are too limited to meet the needs agile team.
Circumstances must be crafted that allow multi-charsmalltaneous, and
verifiable communications to take place among the wieamt

As an abstract pattern, Dynamic Information Radiat@ends Reciprocal
Visibility by adding additional constraints:

» Every action, decision, and communication affectingpitegect must be
public to all involved in the project.

» Dynamic Information Radiator circumstances are tigbtinstrained in
terms of time and space.

» Dynamic Information Radiator circumstances are re@ddrin terms of
scheduling and format. Spontaneous creation of a dgnaformation
radiator circumstances is possible, and sometimessagedut should be
an exception.

» Dynamic Information Radiators should be “high bandwidtlg. i
involving as many human senses as possible. This impageéace-to-
face radiators are preferable to multi-media whichpaegerable to voice
only.

Almost all agile methods discuss and advocate thefusgrious forms of
dynamic information radiators. The most prevalentgda of a dynamic

11

information radiator is the “stand-up meeting.” Repexgives and planning
games are other common examples.

But: Simple articulation of information about the piajis insufficient to satisfy the
constraints imposed by this abstract pattern. "Smeligrtidnic Information
Radiators can exhibit one or more of the followingpyoms:

* Articulations are misperceived or misinterpreted. Tdrenat of the
radiator or the circumstances of delivery do not allomstfficient
feedback and clarification.

* Radiators exist for purposes other than sharing comnmedgied
information. E.g. to reinforce the status of a paldictole, often a
management role.

* Inappropriate vocabulary is employed, e.g. a vocabulatiglame.”

» Attendance is sporadic and resisted indicating thantbemation or the
format is not of any real value to the team.

Evocative Documents
Name Evocative Documents

Sketch: Suva and Ademar were on their way home from a weeklong UML training
course and discussing what they had learned. “UML certainly providesa ric
and detailed tool for describing our software,” Ademar noted. “Buait still be
misleading,” Suva responded, “remember our discussion about the customer
class?” “l do,” said Ademar, “ and how we got into that discussionvbht ‘is’
is — when people started using our UML description as if to say iawas
customer.” “Oh yes, and that guy in the back talking about Alfred Kdzésd
‘the map is not the territory,” that was weird,” Suva added. “Butas right,
really,” continued Ademar, “no matter how much detail you get in your UML
model and templates, something is always missing. The model isheeveal
thing.” “And our understanding of what the real thing keeps changing, and
changes from one context to another,” Suva said, “how can we put all ahtaat
model?” “Well,” Ademar suggested, “we probably don’t need to if we aachd
way to remind ourselves of everything we know about something wimeedve
it.” “How would we do that?” Suva asked. “Remember that icon on the ofall
the seminar room,” Ademar enquired, “remember when we asked tifecthiy
manager about it and she talked for half an hour about its meaning and history,
and everything.” “Sure do,” Suva responded, “one simple symbol evoked a huge
amount of memory. Maybe that is the secret ...”

Context: Literate and legalistic societies and organizationsesaaleeply held, though
often non-conscious, belief that written documents gueesentative in nature.
A contractlS the agreement among parties to the contract. TherohéS the
building, albeit in a different format. The specitioa IS the software artifact
desired. This belief is so strong in the arena ofrsr# that many believe that it

12

should be possible to formally and mechanically transfpetifications into an
artifact with no interpretation or ambiguity.

Agile development is the epitome of group “theory dinity” as described by
Peter Naur [citation]. Agile practices, more than ather kind of development
practice require the creation of a rich and easilgs&ible “external memory” as
described by Bo Dahlstrom [citation]. Representatidnalimentation is
notoriously limited and has a long track record of failarthis regard.

Therefore: All documentation should be evocative rather thgnagentational. Anyone
that has read a good novel is familiar with the notiban evocative document —
one that enables the reader to “recall to mind” thadsah sensations, emotions,
even details of time and place that the author coulgossibly have included in
the text of the novel. West has previously writtbaowd the power of evocative
documentation in agile [citation] development.

One force that must to be taken into account whemgtieg to create evocative
documentation is the previously mentioned assumption: doc¢atizenis
representative. Documentation that is highly stylizleat uses precisely defined
and context free syntax (e.g. UML) will almost certpibe perceived as
representational rather than evocative. The cansremposed by Evocative
Documents’ parent, abstract, patterns (Reciprocal Migiand Static
Information Radiator) are additional forces that musadssommodated.

Evocative Documents are:

* Informal — 3x5 cards rather than UML diagrams.

* Natural language based — both in terms of the natural lgegused by the
team for communication inside and outside the officealad in terms of
the domain driven vocabulary of the project itself.

* Rich in referents to people, time, and place.

* Inclusive of .jpeg rather than .gif graphics (i.e. photds in color and
detail of the sort typically save in jpeg format inskeh the line drawings
and UML diagrams typically saved in .gif format).

But: Your documentation has probably slipped into representdtiorm and is no
longer evocative if:

» It takes longer to produce the documentation than it ttbesmprehend
and use it. (Refer to constraints stated in Statmrindtion Radiator.)

* Anyone in the organization begins to express a beli¢tliea
documentation has intrinsic value and not just utilitavalue.

» There is any kind of movement to make the documentat@nval.

» Specialists are employed to produce the documentatioere Than
exception to this rule, technical writers (who shouldlydze more
novelist than tech writer) charged with producing manaatsbooks for
users of the software that were prevented from ppéticn in its creation.

13

Stand Up Meeting

Sketch: When Joe joined his current project it was his first ‘agile’ progead he
couldn’t imagine a meeting every day. The previous meetings todneralinost
always a waste of time where he had to sit through discussions tteat'twer
always very related to his work. Of course, the really impor@e#tings where
decisions were made about scope and deadlines did not necessarily include him.
So he went to his first Stand Up meeting which was refreshinglyastxtery
focused on the iteration at hand. After several meetings, he alspeck#tiat
impediments to meeting iteration goals were addressed by Scott the SEtemM
quickly. In short, Stand Up meetings weskevant to the current iterations work
and were not too much of a burden to attend.

Context You are an organization that has started to see sefdevelopment as an
Empirical process instead ofleterministicprocess. Therefore you need
constant information about where the current projest ithat you can accurately
control where it is going. Your organization is also wogkio establish and
maintain a 'whole-team' that is does not suffer ftégrvs. Thenvia Reciprocal
visibility. Your team is in the process of improving its commurocast

Forces

» Software projects are empirical in nature and not detestic, therefore constant
readings of where the project stands is necessary.

* Meetings tend to be long and wasteful because they mmasry agendas — both
explicit and hidden.

* Itis necessary to structure meetings and interactmtisag they focus on one
specific purpose — like making sure everyone understandgydgiess is being
made towards a collective goal.

Therefore introduce Stand Up meetings as feedback for managemantesfpirical
process. The daily meetings will give the entire tealevant information to
adapt to changes and new information within an iteratidhatoobstacles can be
addressed in a timely manner and the goals of the deredin be met. Stand Up
meetings also help establiReciprocal Visibilityamong the different members of
the team as the see that the entire group (managemalysta, developers,
testers) work together to meet the iteration goals.

But your meetings can easily go off track or be co-optethdgagement. Some meeting
smells — indicating a need to pull back and correct the toanm@or purpose of a
meeting include:

* Meetings become travelogues, i.e. people tell whatditein detail instead of
short, concise status and impediments.

14

Meetings become design sessions, the need for desigmsdions can be
recognized inside the Stand Up but should be scheduled at amwoihevith the
relevant participants.

Meetings become planning meetings. Planning should be doreratiomn
boundaries and outside the Stand Up meetings.

Meetings are not regular and are dropped because littte walne to the
meetings is perceived.

How. Have one person in charge of keeping the meeting on tratkis they must be
responsible for:

a.k.a.

Promptly starting on time

Attendance

Letting the pigs talk and keeping the chickeas listeners

Keeping the meeting under 15 minutes

Interrupting burgeoning planning and/or design discussions asmighhiem be
scheduled after the meeting.

Keep the focus on concise status and not letting it tuona travelogue.

[Beck1999, Beck2004] Describes a stand up meeting with respexireme

Programing (XP).

[Coplien2005]Stand-Up Meetingpatternoverlaps with this pattern but is more

broad in that they may “be held for the purpose of revigwhe architecture”
whereas our experience suggests that this type of discumsiaken off-line with
respect to the daily Stand Up Meeting.

[Yip2006] presents an entire pattern language to descrilethés of a Stand Up

Meeting.

[Schwaber2002] defines a Stand Up meeting with regards to Scrum.

Reaffirmation Ritual

Sketch: Once upon a time, at the World’'s Fastest Computer Company held an annual

event called Ducky Days. On the surface this was a typical compamg pi
intended to improve interactions and professional relationships among the
employees of a large organization. It transcended most similar corpoenése
in that it also celebrated a prized aspect of corporate culture — egalitiam,
free-spirited creativity, and grass roots management. Ducky Days=athg a
reaffirmation ritual — helping all involved remember, in a light headed social
way, the core values of the organization. The story goes, that wheontiparcy
began to grow it needed to add managers from the outside world. One such

% The terms “pig” and “chicken” in this context are detiiom a story about a pig and chicken starting a
restaurant. Given a menu of bacon and eggs, the pignmitted and the chicken is merely involved. The
suggestion here is that only those who are committedse tthat will suffer the repercussions of failure —
should speak in stand-up meetings even though all invohegdamd should attend to gain an
understanding of what is happening with the project.

15

manager was a notorious “stuffed shirt.” One day an employee put a yellow
plastic duck in the fountain outside the entrance to corporate offides.ugtight
manager was appalled and notified all employees that such behavior was
undignified and not to be tolerated. The next day, you guessed it, tharfounta
was full of yellow ducks. The manager left the company shortlativer and
Ducky Days commemorates the victory....

Context You are an organization that is working to establish aaithtain a ‘whole-team’
that is does not suffer from Us vs. Them via Recipruoisatbility. Your team
members tend to get 'heads-down' in their work and, esiyesiti larger teams,
the do not communicate outside of their tasks.

Therefore use Reaffirmation Rituals to give the teams a laid-laéiciosphere to enjoy
time together. They will naturally discuss their warkd keep in touch with each
other. A team lunch is an excellent venue and onkeofitost common
reaffirmation rituals.

But (Smells) Be careful to keep these rituals informabna particular case lunches
were very productive until the project manager started sigomp and tried to
'run’ the lunch like a stand-up meeting. This destroyedtthesphere and
reduced the high bandwidth informal communications whicleweappening
without him.

a.k.a Small Successes Fearless Changéas a lot of overlap.

Solidarity Ritual

Sketch: The project was certainly important enough. Everyone seemed eageorto be
the project and to utilize the new agile approach. But the team jgsttwa
coming together. Stand-up meetings were characterized by a kind of finger
pointing, e.g., “l gave the specs to Jose yesterday, my roadblockgettiog the
updated customer requirements from Julia.” Angela, the coach, recogheded t
the team needed some rituals to create and maintain a sense of commion ident
so she approached the IT director with a list of requests. “\&kyraeed our
own space to consolidate the team. We can start with one wall aflilotec
space where we will own all the whiteboards and bulletin boards. Wemdluct
our daily meeting in the aisle in front of that wall. We also neetesmarker of
team membership. | talked with HR and they said they could isstferardi
color security badge to the members of this team and since everyotoeweses
those badges in a visible way every day — it will help everyoranthstecognize
who is and is not a member of the team.” “Well those sound simplggh,” the
manager replied, “what else might you need?” ...

16

Context You are an organization that is working to establish aaithtain a ‘whole-team’
that is does not suffer from UvT. Your team is in pinecess of building itself
and establishing its culture.

Forces Organizations are comprised of individuals. Even thaaghe cultures
emphasize individualism more than others almost everys shaped by
idiosyncratic needs and history. We all return honmeefzarate homes which are
the real focus of our lives. Large organizations ardivoultural in composition.
Different people bring different food for lunch, may apelifferent languages
around the water cooler, have different artifacts @irtbubicles. Assertion of
identity, gender, and ethnicity are powerful forces gotin all of us.

Therefore Solidarity Rituals to help teams establish theinitliality and pride in their
work. Celebrate Success when a team passes a mégstame and remember
important events as a team.

How. The challenge here is creating a new subcultureur@sliare characterized by
common values, world views, behaviors, and language. iQyehe outward
appearance of a culture is the first step.

» The importance of a common space cannot be overeimmptlaBegin small, e.g.
an owned whiteboard and a bit of aisle space among the, dubesessary but
push hard for a dedicated room.

 Common attire is important. It is frequently easteuse jewelry or distinctive id
badges rather than clothing (people do not want to weaathe T-shirt
everyday).

» Schedule common meals. Use food to mark important tmrles or points where
the team needs to resolve issues among themselved@retrospectives with a
potluck lunch.

* Engage the team in activities other than work — a ngagiioup for instance, a
movie night, a Friday afternoon picnic.

Participant Observation

Sketch: “Hey Samantha, where were you last week?” asked Henri. “Back in the
trenches over at Facilities Management,” she replied. “l useddrk in an area like
that before becoming a business analyst. They had a crisis and needed sonhetme
our for a few days.” “I bet that was awful,” Henri sympathize@t first,” Samantha
admitted, “but then | noticed that | was really gaining a much better wtaleding of the
requirements for this new system we are building for them.”

Context Your team, and your entire organization, ir organizeddaseoles and roles
within product lines. Even though you are assembling a teainncludes most
of the roles, customer to coder, communication isrsiifl-to-role with lots of
interpretation across the communication channel.

17

Therefore. Anthropologists long ago discovered that true understgmdquires more
than talking and observing. They invented the term, “ppéait observation,” to
describe how they gather the information and understgm#inessary to write a
great ethnography. Live with, eat with, work with, ancpathize with the other
members of your team.

» Pair programming is only the beginning — do some pair testimgsteay writing,
pair database design, pair forms entry. Have all af people work alongside all
of your other people.

* In addition to working with your on-site customer, pairr & day or two in the
actual business unit where your software will be used.

Conclusion

So here we are - with a collection of Agile Practhaoption Patterns that all address the
Us vs. Them smell found in many organizations. The ctagmectices we have are 3
levels removed from the smell; that is we have Recgr@isibility which in turn
references other patterns such as Dynamic Inform&aahator, which references the
concrete practice of Daily Stand-Up.

We envision new adopters of agile processes going te traterns driven by the smells
they need to address at their particular organizatiorupad locating the concrete
patterns being able to get advice on how to adopt them. @yrmeost of the literature is
about the pattern itself not how to go about adoptiegith

Finally, we see that the full pattern language is vargd and requires much more work
to flesh out. One of the issues we are currently gnagmiith is taking subsets of this
language that make sense as a cluster instead of jusadgbdigging deep as we have
done here.

Vision and Future Work

The vision we have for this work is to build a commumityere these and other patterns
come together and are available for those who arkeanway to becoming agile. To
this end we have a wiki at httpuw.agileprocessadoption.com/wikivhere we are
documenting our initial results from different worksh¢@siliPlop and XP and

hopefully PLOP 2006). We also have initial support fromagile alliance
(http://agilealliance.org/AgilePracticePattedns

At a more immediate scope our aim is to get a few pettera useful “cluster” and tie
them to related business values and smells. This papestep towards writing this
“cluster”, and as we get feedback (from the Pattermgbage Community) we will be
able to put this information in a useful format for d@mmunity.

18

References:

[Bartlet2006] Bartlet, EANnd The Agile Survey SaysAgile Journal,
http://www.agilejournal.com/content/view/29/432006.

[Beck1999] Beck, K,Extreme Programming Explained: Embrace Chariggston, MA,
Pearson Education, 1999.

[Beck2004] Beck, K. and Andres, Extreme Programming Explained: Embrace
Change (2 Edition), Boston, MA, Pearson Education, 2004.

[Bergin2005] Bergin, JRatterns for Agile Development Practice, Parptesented at
EuroPLoP 2005.

[Bergin2006a] Bergin, JRatterns for Agile Development Practice, ParpPesented at
EuroPLoP 2006.

[Bergin2006b] Bergin, JRatterns for Agile Development Practice, Part@be
presented at PLoP 2006.

[Elssamadisy2006a] Elssamadisy, A., Elshamy, A., Johscand West, D Patterns of
Adopting Agile Development Practices WorksHoipiJiPLoP, Phoenix, AZ,
http://agileprocessadoption.com/wiki/index.php?title=Cllf? 2006_Results
2006.

[Elssamadisy2006b] Elssamadisy, A. and ElshamyPAtterns of Adopting Agile
Development Practices WorkshofR? 2006, Oulu, Finland,
http://agileprocessadoption.com/wiki/index.php?title=XP200&eRat, 2006.

[Manns2004] Manns, M.L. and Rising, [Eearless Change: patterns for introducing
new ideasBoston, MA, Pearson Education, 2004.

[Schwaber2002] Schwaber, K. and Beedle, Myile Software Development with Scrum
Upper Saddle River, NJ, Prentice Hall, 2002.

[Yip2006] Yip, J.,It's Not Just Standing Up: Patterns for Daily Stand-up Meetitmbe
presented at PLoP 2006.

At this point references need to be flushed out — thesglace holders that need details
for each reference.

* ‘War Stories’ articles from several previous confeesnc

* Extreme Programming Applied (also war stories)

Acknowledgements

We thank all of the people who participated in the worfshat ChiliPlop and XP2006
and others that have taken the time to share the@rences and critique our work.
These are Ahmed Elshamy, Ashley Johnson, Rod Coffin, Nuiffarage, Jean
Whitmore.... (more here later)

Author Bios:

Amr Elssamadisy, Valtech Technologies Inc.

Amr is currently a Principal Consultant at Valtech (www.valtech.com). He considers
himself a developer but has also worked for consulting companies since 1999, so
maybe an outgoing, people-oriented, developer is a better description. He has been
working professionally as a software developer, architect, manager, consultant, etc...
for over 12 years helping build software systems in C++, J2EE, and .NET. His first

19

agile development project was a large project XP effort in 1999 where he had a
chance to work and learn from some of the best in the field. Since then he has led,
participated, and guided teams in several large and small agile development projects
in both the .NET and J2EE worlds.

David West, PhD. Dave has been a working professional — computer operator to
consultant with side trips into management - since 1968. He has taught university
courses for sixteen years, authored a book, Object Thinking, published by Microsoft
Press Professional. He has been doing agile development since the mid-nineties,
earlier if you count the rapid application development, prototyping, and objects. He
has worked with small teams and large fortune 100 organizations doing training,
mentoring, and coaching.

20

This is a copy of a running conversation with Ralph John$gan’t be part of the paper
but is good for reference:

Also, there is a blog by Ralph Johnson partially based on his advice to
me (I think)

at http://www.cincomsmalltalk.com/userblogs/ralph/blogView?showCo
mments=true&entry=3327001782

<RalphJohnson>

Joe and I are co-chairs of PLoP. When Joe told me about your
situation, I said that if you were not comfortable with your shepherd,
you should get a new one. That is what Joe was thinking, too, so he
went ahead and told you that.

I got a copy of the e-mails {between me and my old shepherd} and
looked them over. In fact, I think that Sue was pretty accurate. Her
main problem was using too much Alexandrian jargon, giving you too
much information, and not being able to understand some of the
things you were saying. I'm not trying to talk you out of getting a new
shepherd; I think that was the right decision. I'm just trying to make
sure you profit from the time you have spent on this so far.

The first issue was what the paper was really about. Does it make
sense to have patterns about becoming an agile organization? In
some sense, all patterns about X are patterns about becoming X.
Patterns are supposed to be applied one at a time. Piecemeal growth
is considered a good thing in the pattern community. {so it seems I
am not clear about my intent - I don't know what an agile organization
is really... I know these are practices that move us in the direction of
delivering better software... Not sure what the ccts of an agile
organization will be - haven't seen enough of them :) }

I think you point is that there are some prerequisites to becoming
agile that the other work has missed. {Actually my point is that other
work either takes the wrong granularity - i.e. methodology and not
practice, and it discusses the 'what' more than the 'how'. When it
does discuss the 'how' it is again, w.r.t. to a methodology and does

21

not have the fuzziness of a pattern - i.e. the forces and consequences
- clearly marked} This paper is focusing on building up trust between
all the members of the team. {Actually, you are right in one case -
the examples I've taken are expanding Reciprocal Visibility. On the
other hand, there is the notion that these are the first patterns of a
much larger language - hence the title.} It is easy to say the "Whole
team", but if people are taking an "Us vs. Them" attitude then it is just
not going to happen. Trust is not going to get built up overnight.
Going from "Us vs. Them" to a Trusting Community will take a lot of
time because people have a lot of bad memories and experiences to
overcome. It might be easier to create this community with a new
team.

Your main pattern is Reciprocal Visibility. It is weird that you do not
define it! Maybe that is just the fact that this is a rough draft. When
you say you are going to do define it, you instead say how you are
going to get it. The definition of RV should be something along the
lines of "The sate of the project is visible to all members of the
project. Not only can developers see what developers are doing, but
business can see what developers are doing and developers can see
what business is doing." Rituals and Radiators are how you achieve
RV, not what it is. {point well taken, this makes sense for RV, not so
sure for the others... More later.}

The context is too specific. RV is important even if you have a new
team, or if everybody gets along well. {That may be true in the
abstract. But, by taking a smell driven approach we naturally looked
at RV from the point of addressing "Us vs. Them". Maybe we were
just wrong here - maybe it is more useful to drive through smells....}
The context defines the solution when you say "there are tightly
constrained communication channels", because the pattern in "use
communication channels that everybody can see". So, the context
should REALLY be something like "the developers, users, and business
people are all different, but have to interact for the project to be
successful". To help figure out the context, think about when the
pattern is not important. For example, you don't need to consider it if
development regularly produces a stream of value and business is
happy with them and so is always worrying about other things.

I think that "Reaffirmation ritual" {In fact, reaffirmation ritual looks a
lot like "small successes" by Mary Manns and Linda Rising. The idea
that "small success" should be acknowledged and celebrated does not
say how to do so - that can be done in a myriad of ways.} and
"Information radiator" are not patterns, they are categories of

22

patterns. {There is also “personal space” from Manns and Rising
which is exactly the same as static information radiator. So...}

Pattern writers are always torn between being concrete and being
concrete and being abstract. If we make our patterns more abstract,
they are more likely to apply. If we make them more concrete, they
are easier to apply. "Stand up meeting" is much easier to understand
and to follow than "Dynamic information radiator". {I contend they
are both valuable. Dynamic information radiator tells you what type of
things need to be done to solve a particular set of forces. This is why
they look like aggregations, in fact they are a projection into a set of
concrete patterns with a focus on the value of a dynamic info radiator.
It also leaves room for the reader to come up with their own. Stand
up meeting is a concrete implementation of that pattern which you
may use. You may be constrained in doing so, for example distributed
teams, and come up with you own dynamic info radiator to achieve the
same goal.}

I suggest that RV have a real definition followed by an implementation
section. The implementation section will have five subsections, one for
the reaffirmation ritual, solidarity ritual, dynamic information radiator,
static information radiator, and participant observation. The latter is
actually more of a pattern though both name and description is bad.
{Hmmm... Sounds reasonable, I still get the information I need and it
is within the context of RV... At the same time the granularity is too
large. Each of these patterns stand alone in their own right and are
more than just groupings. The fact that two of them are very related
to already published and (I assume shepherded) patterns in Fearless
Change is external validation.}

Most of the time I first look at a pattern paper, I think that a pattern
should be broken into smaller pieces. It is weird that I am telling you
to combine these patterns into one, but that is in fact what I am
doing!

Sue's second point was not to talk about smells but to talk about
forces. I think you are right. {Yipeee!} Your target audience will
understand smells much better. I thought her appeal to Alexander
was wrong. I think he advocates picking one thing that bothers you a
lot and fixing it, and that is what focusing on smells lets you do.

{Yes. Also smells are less exact than forces, which is our natural way
of thinking. It is much easier to recognize a smell coming along. The
more you wait the worse it gets.}

Sue's third point is that there should be patterns at different levels of

23

abstraction. I agree. In fact that is what I like so much about RV; itis
clearly a different level of abstraction than stand up meeting. Standup
Meeting does some things beyond RV, because it also helps a group to
respond quickly to problems, which is not what RV is about. Itis
typical that a lower level pattern can help out several higher level
patterns. {We are in agreement here - it is a many to many
relationship.}

I also think RV is a structure. Itis a structure of people. You have a
group of people who can be divided into many categories. Obviously
tow developers pair programming will know more about what the other
is doing than the customer down the hall will know about either of
them. But does this customer know ENOUGH about what they are
doing? Does management know enough about what the developers
are doing to know whether to higher more developers, to promise a
particular release date, to start looking for a new market? Do
developers know enough about business to make their decisions? RV
is about information flow. If information is not flowing then bad
decisions get made, and decisions take longer to make. {AMEN! So
RV is a structure... I can buy into that. But the lower level patterns?
probably not - probably practices....}

To summarize, you need to define what the patterns are. You can
either look at a pattern as a structure or as the process you follow to
get to the structure. {Assuming the structure is known. What
structure does a standup meeting build?} In my opinion the pattern is
the structure and the process you follow is the implementation of the
pattern. A pattern needs both. RV will be a lot better if you separate
the two. This implementation of RV is other patterns, so there is a
natural link between the higher-level pattern and the lower-level
patterns. But what you are calling intermediate level patterns are not
really patterns but categories of patterns and you can put those
categories in the description of the implementation of the pattern.
{but what about giving the reader, in fact encouraging the reader, to
use a 'dynamic information radiator' even if stand up meeting is not
applicable? Will have to see - write it both ways.}

-RalphJohnson

{retyped by Amr Elssamadisy - all misspellings are mine :)}

</RalphJohnson>

24

How: Pick any Start with Story Board - keep it ligleither a white board or some
kind of bulletin board with stickies. (DO NOT TRY TRUTOMATE AT
THIS POINT.) The story life-cycle becomes visibléne tstate of the current
iteration becomes visible to the entire team. Besaus are focusing on
stories this reinforces the correct modularity (grantylpaf work. This also
allows feedback at a finer grain than an iteratioarySBoards communicate
information from IT and from Business.
Smells

» If cards are not moving across the board there is agmmhisually people are
not updating the board, sometimes this can point to anptbblem with no
useful work being done.

» Nomadic stories that wander off the board is a badjtHihere are variations
on how to handle this.

* (Illegal Immigration) Porous borders: story cards thatraot stories and do
not have business value. (ex. stories are pure refagsri

Next there are two possible routes:
* If you have a continuous integration tool in use thertdbéprobably has a
reporting page that can be made available to the groupirfianat effort.
* The next step with Story Board is to include authorslgpdaf. Review and sign
off should be a priority and done as soon as possible.
Smells
» Business Analysts see their major responsibility al/siseand producing
more stories. Reviewing/testing implemented storiegngesimes seen as a
low priority. Signoff tends to happen at the tail endhef iteration. Many
stories don't pass because feedback is too late.
« Up-to-date running application is not available to BA's fotingsand sign-
off.

a.k.a Personal Spacen Fearless Changlas a lot of overlap — Information Radiator
already has traction as a term in the agile field.

Name: Dynamic Information Radiator
Sketch: Joe and Bob were....

Context: The whole team needs consistent and continuous infomebout factors that
inhibit/enhance the process of delivering business-valu¢daaf A major
challenge confronting adopters is establishing a sustaipab&eand an
appropriate rhythm for delivering software. The team isistcaned to an
inappropriate (possibly iterative) sequence and pace.

25

Forces
» Teams are predisposed to secrecy.
* The team is unable to articulate their progress iredutifashion.
* The team doesn't know where they are (the wrong metrécbeing used).
* Information is exchanged sporadically and tends to bedatdting in overtime
and erratic productivity.
» The world is unpredictable - therefore unpredictable svemnist be ameliorated.
* Low team morale.
* The team has not identified or established a sustainatde pac

Therefore: Use dynamic information radiators to address thesedo Stand Up
Meetings, Iteration Kick Offs, Retrospectives (itevatrelease/project level), and
Science Fairs all can be used to address one or miresaf forces. Dynamic
Information Radiators Sketch

How: Start with the Planning Game (see Story Writing) taaseteration plan (over
several iterations a tempo will develop), move totaration Kick Off. At the coach's
discretion (assumes Coached Agile pattern, see BampstcpAgile otherwise) have
intermittent Stand Up Meetings with the goal of reacldatdy Stand Up Meetings by
iteration 2. End the iteration with a Retrospective.idéothat we are not adopting these
patterns very incrementally; everything is done withinfifs iteration. Demo's and
release retrospectives should be planned for beforfesheelease.

Smells

* Too many changes made to the backlog or adjusting velocitydrsly
(non-convergence) means that your cycle time is too long.

» Kick Off/Planning Game taking too long. (All day)

» Stories are not fully flushed out before planning game.

» Stand Up Meeting attendance is low and/or sporadic (inslodestarting
on time). Reduce frequency or improve content (distingkttveen
Coached Agile and Bootstrapping Agile teams.

26

