
High Availability Design Patterns

Copyright © 2006 by Kanwardeep Singh Ahluwalia and Atul Jain. Permission is
granted to copy for PLoP 2006. All other rights reserved.

1

High Availability Design Patterns

Kanwardeep Singh Ahluwalia
81-A, Punjabi Bagh,
Patiala 147001
India
kanwardeep@gmail.com
+91 98110 16337

Atul Jain
135, Rishabh Vihar

Delhi 110092
India

jain.atul@wipro.com
+91 98119 84678

Abstract
As information technology spreads its wings in to all spheres of human life, including
areas which are mission-critical, like telecom services, medical sciences, air transport
systems, space missions etc., High Availability (HA) has become utmost important
aspect in the development of these systems. This paper presents a pattern language
that can be used to make a system highly available.

Introduction
In information technology, high availability refers to a system or component that is
continuously operational for a desirably long length of time. Availability can be
measured relative to "100% operational" or "never failing."

In actual practice, availability goals are expressed and measured in the number of
nines of availability ranging typically from 99.9% (3NINES) to 99.999% (5NINES)
and even up to 99.9999% (6NINES) availability for the most demanding applications.

Mission critical applications like those found in telecommunications need to meet and
exceed 5NINES. Table 1 shows the annual downtime and typical availability for
various classes of system applications.

Typical Application Availability Down Time per Year

Typical Desktop or Server Enterprise
Server Carrier-Grade
Server Carrier Switch Goal

99.9% (3NINES)
99.99% (4NINES)
99.999% (5NINES)

~9 hours
~1 hour
~5 minutes

Table 1

The patterns in this paper address the architectural and design choices that one
must consider when designing a highly available system. These patterns are not
discussing the programming techniques that can be used to implement these
patterns. The intended audience includes system architects and designers who are
designing reliable systems.

The pattern “System monitor” presented in this paper duplicates pattern form
“Detection Patterns for Fault Tolerance” by Robert S. Hanmer – PLoP 2004. This
pattern has been presented here to take its place in the larger collection of patterns
presented here for High Availability.

The term ‘part of a system’ will be used here to denote an element of a system that
could be a software or hardware component used in the system.

High Availability Design Patterns

Copyright © 2006 by Kanwardeep Singh Ahluwalia and Atul Jain. Permission is
granted to copy for PLoP 2006. All other rights reserved.

2

The term ‘client to the part’ will be used here to denote any entity that is
communicating with a part of the system. It may not necessarily mean the ‘end
client’ of the system. It can be some other part of the system as well who is
interacting with other parts of the system.

The following definitions of terms fault, error and failure shall help to understand the
patterns described in this paper.

• a system failure occurs when the delivered service deviates from what the system
is intended to do (e.g. as stated in its specification).

• an error is that part of the system state which is liable to lead to subsequent
failure.

• a fault is the (hypothesized) cause of an error.

Language Map
Figure 1 shows how various patterns work together to make a system highly
available.

The patterns analyzed in this paper fall in two groups. Patterns 1 to 5 fall in the
group “Fault tolerance” as these patterns suggest various options by which a part of
the system can be made fault tolerant by making it redundant. Patterns 6 to 9 fall in
the group “Fault management” as these patterns suggest how failures can be
detected and notified so that recovery can be done and system be notified about
recovered parts so as to gain redundancy in the system.

Figure 1

2. Active-Passive
redundancy

4. Active-Active
redundancy

5. N+1
redundancy

1. Introduce
Redundancy

9. Recovery
notification

6. System
monitor

7. Failure
notification

8. Failure
recovery

3. Active-Passive
conflict resolution

Fault Tolerance

Fault Management

Refinement relationship

Dependency relationship

High Availability Design Patterns

Copyright © 2006 by Kanwardeep Singh Ahluwalia and Atul Jain. Permission is
granted to copy for PLoP 2006. All other rights reserved.

3

Pattern 1: Introduce Redundancy
Context:

System that wants to continue working normally under conditions when one of its
parts fails.

Problem:

What should a system do to continue working normally even if one of its parts fails?

Forces:

• The cost of keeping the system working even in case a part of it fails should be
low.

• The client’s requests should be processed transparently even if there is failure in
the system.

Solution:

The key to a reliable design is to identify and address single points of failure. Single
points of failure are those parts whose failure causes the entire system to fail. A
production server is a complex system and many factors affect its availability,
including environment, communication links, software, and hardware. Each of these
factors can potentially be the source of a single point of failure.

Redundancy is a means to address single points of failure. It is achieved by
replicating a single part of the system which is critical for system functioning. The
replication will make sure that if the critical part fails, there would be an alternate
part available to take on the responsibility of the failed part. Redundancy is based on
the assumption that multiple faults will not occur in the system together.

Redundancy can be in the form of hardware redundancy or software redundancy.
Hardware redundancy aims at having replicated set of hardware while software
redundancy aims at having multiple instances of software.

The replicated part may be introduced in a stand-by form also known as active-
passive redundancy, or it may be introduced in active-active form where in all
replicas are active at the same time. If one replica "throws a fault", then other
replicas can be used immediately to allow the system to continue operating normally.

Structure:

The single point of failure in the system has been made redundant by having one or
more replicas as demanded by the situation. This helps in making the system highly
available since ‘single point of failure’ no more exists.

Single Point
Of Failure

Replica 1

Replica 2

Replica N

High Availability Design Patterns

Copyright © 2006 by Kanwardeep Singh Ahluwalia and Atul Jain. Permission is
granted to copy for PLoP 2006. All other rights reserved.

4

Figure 2

Resulting Context:

System would be able to function even if a critical part fails. Introduction of
redundancy shall make sure that there is no single point of failure in the system. If a
critical part fails, its functionality shall be served by someone else. This shall make
the system always up and running and hence serve the client requests without any
failures.

Known Uses:

Almost all the team games (cricket, hockey etc.) have two sets of players. One set of
players are active which are playing in the field while other set of team is used as
‘extras’ which become active, when some of active members are not able to play
(due to injury or rules of the game).

Example of hardware redundancy can be found in an airplane which has multiple
flight computers to provide high availability.

Another commonly known example of redundancy is redundant arrays of inexpensive
disks (RAID), which employs two or more drives in combination.

Related Patterns:

Active-Passive redundancy [5]

Active-Active redundancy [10]

N+1 redundancy [12]

High Availability Design Patterns

Copyright © 2006 by Kanwardeep Singh Ahluwalia and Atul Jain. Permission is
granted to copy for PLoP 2006. All other rights reserved.

5

Pattern 2: Active-Passive redundancy
Context:

You have determined that you need to Introduce Redundancy [3] into your
system, that has neither dearth of resources to provide redundancy nor can
compromise on performance.

Problem:

What should the system do to function without any compromise on its performance
even if one of its parts fails?

Forces:

• Performance should not be compromised.

• Failed part’s client should be able to get its requests processed seamlessly.

• System should not loose its state (in case of stateful systems), due to failure of
its part.

Solution:

Introduce active-passive redundancy for the critical part of the system which may
potentially act as a single point of failure in the system. This critical part of the
system is provided with a standby replica which shall be activated in case of failure
of the former.

The client to the failed part should be informed about the passive part’s activation by
fault management sub system, so that it can get its request served by the new
activated part and does not try to send the requests to the failed part. The client
should provide handling for failure notification from the fault management sub-
system so that it can re-direct requests to the newly activated part.

In case the part has some state which system can not afford to loose in case of its
failure, the state also needs to be replicated in the standby part. Thus helps the
system to maintain its data (state) integrity in case of failures. All the state changes
in the active part should be sent over to the passive part. There is a need for a good
communication channel between active-standby, so that state updates are sent over
the communication channel in real-time.

Resulting Context:

The introduction of a standby part makes sure that the performance and throughput
of the system is not impacted in case of failure of active part. Thus, each active part
is replaced by its replica upon its failure, keeping the system’s capability same as
before the occurrence of failure. Here, it is assumed that the standby part has the
same capabilities as of active part. Otherwise, the performance of the system may
vary depending up on the capabilities of the passive part.

The handling of failure notifications in the client to the failed part makes sure that
there is a seamless switch over happening to the newly activated part and no
requests are failing because of failure of previously activated part.

The continuous update of state by active to passive part makes sure that the state
possessed by the failed part is not lost.

Structure:

High Availability Design Patterns

Copyright © 2006 by Kanwardeep Singh Ahluwalia and Atul Jain. Permission is
granted to copy for PLoP 2006. All other rights reserved.

6

In the following diagram, the single point of failure has been removed by providing a
replica of the same. This replica is not participating in serving the client requests.
The requests are only processed by the active part. However, as soon as active part
fails, the passive part takes over the control and starts processing the requests.
Hence, at any given moment, there is only one part which is serving the requests.

Figure 3

Known Uses:

One of the known uses can be found in MySQL database cluster solution1. All
potential single points of failure are made redundant in this solution. This includes
data nodes, network cards, switches and links.

The data nodes are made redundant with a standby node acting as mated pair.
There is active communication going on between these two active and passive
nodes, so that state is also replicated between these pairs. Thus, MySQL suggests
having efficient network connectivity between these mated pairs of active-standby
data nodes. As soon as active data node goes down, SQL node is made aware of the
failure and it connects to the passive data node. Figure 4 depicts the clustered
architecture of MySQL.

Figure 4

Active

Passive

Client Active

Passive

Client

After Failure Before Failure

High Availability Design Patterns

Copyright © 2006 by Kanwardeep Singh Ahluwalia and Atul Jain. Permission is
granted to copy for PLoP 2006. All other rights reserved.

7

The node pairs 152.100.0.10 - 152.100.0.11 and 152.100.0.12 - 152.100.0.13 are
mated data nodes out of which one acts as active (primary) and the other as passive
(secondary).

Related Patterns:

Introduce Redundancy [3]

Active-Passive conflict resolution [8]

High Availability Design Patterns

Copyright © 2006 by Kanwardeep Singh Ahluwalia and Atul Jain. Permission is
granted to copy for PLoP 2006. All other rights reserved.

8

Pattern 3: Active-Passive conflict resolution
Context:

System that needs to implement Active-Passive redundancy [5] for high
availability.

Problem:

What should the system do in case both the redundant parts in Active-Passive
redundancy claim to be active?

Forces:

• There should not be deadlock between the redundant parts to become active.

Solution:

Introduce a mechanism so that there is no conflict between the redundant parts to
become active and at any given point of time there is only one active part. However,
there can be situation which may lead to race conditions, where in both the
redundant parts claim to be active. There are various mechanisms to resolve this
conflict.

To resolve the conflict in redundant hardware, one of the solutions can be that the
hardware with smaller id shall become active at start-up.

Alternatively, the redundant parts shall generate a random number and the one who
generates a number with lower value shall become active and the other becomes
passive.

Another solution is that the redundant parts exchange their startup time stamp and
see which one of them came up (started) first. The one with older time stamp can be
considered as the active and other one will play the role of passive part.

Resulting Context:

The introduction of conflict resolution algorithm depending up on the scenario shall
reduce the possibility of conflicts while deciding who shall become active out of the
redundant parts.

Structure:

The following diagram shows that the replicas need to follow an algorithm to have a
handshake on who will become active.

Figure 5

Known Uses:

In a switching system, whenever a redundant pair of controller cards come up after
initialization during system start up, each can claim to be a master due to race
conditions. They use hardware ids to resolve the conflict.

Replica 1

Replica 2

Conflict resolving
Algorithm

High Availability Design Patterns

Copyright © 2006 by Kanwardeep Singh Ahluwalia and Atul Jain. Permission is
granted to copy for PLoP 2006. All other rights reserved.

9

Related Patterns:

Active Passive Redundancy [5]

High Availability Design Patterns

Copyright © 2006 by Kanwardeep Singh Ahluwalia and Atul Jain. Permission is
granted to copy for PLoP 2006. All other rights reserved.

10

Pattern 4: Active-Active redundancy
Context:

You have determined that you need to Introduce Redundancy [3] into your
system, that does not want to waste resources by having passive redundant
resources and homogenous software configuration.

Problem:

What should the system do if it has limited resources to provide redundancy but still
wants to be functional in case of failure of a critical part?

Forces:

• The system should maximize the usage of its resources.

• The client (to redundant) part should be talking to a single entity and get its
requests processed seamlessly.

• The state (in case of a stateful part) should not be lost in case of failure of a part.

Solution:

Introduce active-active redundancy for the critical part. In this case, redundancy is
introduced by having more than one active part. All the redundant parts are active
and helping in processing at the same time. This solution is sometimes known as
cluster, which is a collection of resources that functions as a single computing
resource. Any member of the cluster can service a client request without the client
knowing which member performed the operation. This is made possible by
introducing another entity between the client and the cluster members, usually
known as dispatcher2. The client talks to the dispatcher which further get the
requests processed by cluster members. Using dispatcher, the cluster can be
configured so that an application fails over from one cluster member to another. This
is usually only possible when cluster members utilize a homogenous software
configuration. The dispatcher keeps the information about all the failed members as
well as working members, which helps in forwarding requests only to active
members.

The number of redundant parts required is calculated depending up on the peak load
requirements on the system. One additional part is added to the number of
redundant parts required to handle the peak load so as to have same efficiency even
if a part fails.

In case cluster members are keeping some state which they can not afford to loose
in case of failure, the state also needs to be replicated in all other members. This
helps the system to maintain its integrity in case of failures. However, as the size of
cluster grows, the cost to replicate the state increases, as state updates are being
sent across all the cluster members. There is a need for a good communication
channel between cluster members, so that state updates are sent by active to
passive over that communication channel in real-time.

Resulting Context:

By introducing a redundant part which is also active, overall cost has been saved,
since the replica is also helping in processing. However, if a member fails, then other
members will have to do more work now, as they have to do their own assigned
work as well as the work of the failed member. Hence, performance may be
impacted if failure occurs when the system is running at full load.

High Availability Design Patterns

Copyright © 2006 by Kanwardeep Singh Ahluwalia and Atul Jain. Permission is
granted to copy for PLoP 2006. All other rights reserved.

11

The introduction of dispatcher makes sure that the client is not bothered about the
status of each of the cluster members.

Structure:

The following diagram shows that both all the replicas are actively processing the
client requests.

Figure 6

Known Uses:

One of the known examples of active-active redundancy is Apache’s Tomcat cluster
solution for web based applications. As shown in Figure 7 an Apache web (HTTP)
server acts as a communication point for all the web clients. Apache web server
would be further connected to various Tomcat instances through mod_jk3 module.

Figure 7
In case any Tomcat sever fails, Apache web server stops sending requests to that
instance. The clients who were being served by the failed instance shall now be
served by some other Tomcat instance.
Tomcats can also be configured to replicate their state among themselves, so that if
any of the Tomcat server crashes, its state is not lost.

Related Patterns:

Introduce Redundancy [3]

Apache
Web

Server

Tomcat 1

Tomcat 2

Tomcat 3

Tomcat n

Database

Active Replica 1

Active Replica 2

Client

High Availability Design Patterns

Copyright © 2006 by Kanwardeep Singh Ahluwalia and Atul Jain. Permission is
granted to copy for PLoP 2006. All other rights reserved.

12

Pattern 5: N+1 redundancy
Context:

You have determined that you need to Introduce Redundancy [3] into your
system that consists of parts with heterogeneous software configuration and does
not want to waste resources by providing one passive node for each potential single
point of failure.

Problem:

What should the system do if it does not want to waste resources by having a
standby part for each active part, but still wants to behave normally in case of
limited failure?

Forces:

• The cost and resources required for introducing Active-Passive Redundancy
[5] should be reduced.

• The system should be able to handle failure in one out of N parts without any
compromise on performance.

• The client should be talking to a single entity and get its requests processed
seamlessly.

Solution:

Introduce 1 slave (passive) for N potential single point of failures in the system. This
slave would be working in a standby mode and waiting for a failure to happen in any
of the N active parts. As soon as any of the N active parts fails, then the standby
part takes over the work of the failed one. This way the system shall be able to
handle one failure for every N critical active parts at any given point of time. The
number ‘N’ can motivated by various factors, like the expected number of failures
that can happen at any given point of time in a group of active parts and the cost
and resources required while introducing the redundant parts.

The client should provide handling for failure notification from the fault management
sub-system so that it can re-direct requests to the newly activated part. This shall
make sure that the requests are getting processed seamlessly.

Structure:

The following diagram shows that there is one passive part for N potential single
point of failures in the system. If any of these N parts fails, then the passive part
shall takeover the functionality of the failed part.

Figure 8

Potential SPoF 1

Potential SPoF 2

Potential SPoF N

Passive
Replica

For
1,2,.., N

Client

High Availability Design Patterns

Copyright © 2006 by Kanwardeep Singh Ahluwalia and Atul Jain. Permission is
granted to copy for PLoP 2006. All other rights reserved.

13

Resulting Context:

The introduction of 1 standby part for every N active parts makes sure that the
system is able to handle failure of one out of N active parts. Since, only N parts are
being introduced to a single standby part, the cost of introducing redundancy is
reduced as compared to 1:1 active-passive redundancy.

Known Uses:

Modern communications systems with multi-port T1/E1/J1 line cards employ
redundancy to achieve the high-availability that telecom networks require. Usually,
these systems use relays to implement N+1 redundancy switching.

Related Patterns:

Introduce Redundancy [3]

High Availability Design Patterns

Copyright © 2006 by Kanwardeep Singh Ahluwalia and Atul Jain. Permission is
granted to copy for PLoP 2006. All other rights reserved.

14

Pattern 6: System Monitor
Context:

You have determined that you need to Introduce Redundancy [3] into your
system that wants to monitor failures of its parts to avoid potential single point of
failures which may lead to non-functioning of the system.

Problem:

How to detect that the failure has occurred in the system?

Forces:

• Failure must be detected at the earliest instance so that the faulty part does not
corrupt the behavior of the system.

• Failure must be detected at the earliest so that faulty part can be recovered;
before any additional failures in the system makes the system completely non
functional.

Solution:

Introduce a mechanism to monitor all potential single point of failures in the system,
so that upon failure, the fault tolerance mechanism can be activated. This pattern
can be refined as depicted by the following diagram which has been taken from the
work of Robert Hanmer4.

Figure 9

The SYSTEM MONITOR4 can employ any of the following solutions.

The system can rely on ACKNOWLEDGEMENT4 messages exchanged with monitored
part, or it can rely on I AM ALIVE4 messages sent by the monitored part.
Alternatively, the system can periodically check the state of the monitored part by
sending ARE YOU ALIVE4 messages. The system can SET A REALISTIC THRESHOLD4
after expiry of which it may consider the monitored part to be dead.

High Availability Design Patterns

Copyright © 2006 by Kanwardeep Singh Ahluwalia and Atul Jain. Permission is
granted to copy for PLoP 2006. All other rights reserved.

15

Each of the above solutions adds complexity to the system. To minimize complexity,
system monitor can just watch and verify the tasks performed by the monitored part
using WATCH DOG4 mechanism.

Structure:

The following diagram shows that all the replicas (monitored parts) are being
observed for any failures by System monitor.

Figure 10

Resulting Context:

Implementation of ACKNOWLEDGEMENT, I AM ALIVE, ARE YOU ALIVE, SET A
REALISTIC THRESHOLD and WATCHDOG helps in detecting the failures at the
earliest, which helps the system to avoid a situation where it is not behaving as per
the specifications and further leading to its non-functioning.

Known Uses:

In case of Tomcat cluster solution, Apache HTTP server keeps on checking the health
of various Tomcat servers using its mod_jk3 module.

In case of real time systems based on non-preemptive priority process scheduling,
each process is expected to utilize the CPU for a definite amount of time and
voluntarily relinquish the CPU before the expiry of the definite amount of time. If due
to a fault, any process misbehaves and starts to hog the CPU, the watch dog process
that is monitoring all the processes, detects the process failure on controller card and
triggers the fault tolerance mechanism.

Related Patterns:

Introduce Redundancy [3]

Monitored part 1

System
Monitor

Monitored part 1 Monitored part 1

High Availability Design Patterns

Copyright © 2006 by Kanwardeep Singh Ahluwalia and Atul Jain. Permission is
granted to copy for PLoP 2006. All other rights reserved.

16

Pattern 7: Failure Notification
Context:

You have implemented System Monitor [14] in the System that now wants to
handle failures of its parts to avoid potential single point of failures which may lead
to non-functioning of the system.

Problem:

What should system do when it detects a failure in a part?

Forces:

• Failed part should not be given any requests for processing to avoid mal-
functioning of the system.

• System should initiate the handover of responsibilities of the failed part to a
redundant part.

• System should initiate recovery of failed part.

• Failure notification should not be prolonged.

Solution:

The SYSTEM MONITOR4 should notify the fault recovery sub-system so that the
failed part can be immediately isolated by marking it out of service, thereby
restricting the failed part from impacting the behavior of the system.

Since the system is expected to finish the requested task despite failure, it must
notify the fault tolerance sub-system so that the redundant part takes over the
functions of the failed part immediately.

Systems often may not afford to provide redundancy at all levels in the system
hierarchy. In such situations, if the failure occurs at a level where redundancy is not
available, the failure notification should be propagated up to a level where client to
redundant sub-system is available. This will enable client to switch over to the
redundant sub-system so as to get its requests processed seamlessly.

There may be situations, where the failed part of the system may not be recovered
by the fault recovery sub system without manual intervention. In such situations, it
is recommended to notify the I/O5 system to generate audio or visual alarms
depending upon the criticality of the failure.

Structure:

The following diagram shows that the client is being notified up on failure of a
replica, so that client no more gives requests to the failed part.

High Availability Design Patterns

Copyright © 2006 by Kanwardeep Singh Ahluwalia and Atul Jain. Permission is
granted to copy for PLoP 2006. All other rights reserved.

17

Figure 11

Resulting Context:

The notification of the recovery sub-system initiates isolation and recovery of the
faulty part which helps the system to function flawlessly.

The notification to the fault tolerance sub-system triggers an appropriate action to
activate the redundant part.

Known Use:

In a switching system, the moment one copy of the controller card fails or is marked
out of service, it toggles the control signal on its control bus which sends the
hardware signal to the redundant copy to take over.

Related Patterns:

System Monitor [14]

Failed
Replica 1

Replica 2

Client

Failure
Notification

Requests

High Availability Design Patterns

Copyright © 2006 by Kanwardeep Singh Ahluwalia and Atul Jain. Permission is
granted to copy for PLoP 2006. All other rights reserved.

18

Pattern 8: Failure Recovery
Context:

You have implemented Failure Notification [16] in the System that now wants to
recover its failed part.

Problem:

How to recover the failed part of the system?

Forces:

• Recovery mechanism should be capable of isolating the fault.

• Recovery mechanism should be capable of handling faults that require manual
intervention.

Solution:

In order to recover the faulty part, it is sent for re-initialization. The re-initialization
can be done at various level depending up on the type of the fault, e.g., data
initialization, binary and data initialization etc. In case the re-initialization fails, the
part is sent for diagnostics, where pre-defined tests are run to identify the fault.
Based on the results of the diagnostics, the part may be sent for manual recovery.

Structure:

The following diagram shows that the faulty replica is being sent for ‘Fault
Diagnostics’ so as to repair the fault.

Figure 12

Resulting Context:

The faulty part has been recovered by isolating the fault using diagnostics and fixing
the same using manual procedures.

Known Uses:

In a switching system, whenever a controller card is sent for recovery, the fault
recovery subsystem tries to re-initialize the data as well as the binary code on the
card to recover from any data or binary corruption faults. In case the problem still
persists after the re-initialization, the card is sent for diagnostics in order to isolate
the hardware faults. Based on the diagnostics test results, the operator takes
appropriate actions to fix the fault, e.g., replacing the controller card with a new
card.

Related Patterns:

Failure Notification [16]

Replica Fault Diagnostics –
Run Tests

Re-initialization
Fails Fails

Manual Recovery

High Availability Design Patterns

Copyright © 2006 by Kanwardeep Singh Ahluwalia and Atul Jain. Permission is
granted to copy for PLoP 2006. All other rights reserved.

19

Pattern 9: Recovery Notification
Context:

You have implemented Failure Recovery [18] in the System.

Problem:

What should system do after the faulty part has recovered?

Forces:

• The system should reinstate the recovered part to have redundancy in the
system.

Solution:

Fault tolerance subsystem should be notified so that it can reinstate the recovered
part for providing redundancy in the system, to enhance availability. In case of
stateful systems, the recovered part should start synchronization with its peer nodes,
in order to prepare itself for processing the requests.

Structure:

The following diagram shows that the client starts sending requests to the repaired
part after it is informed about its recovery.

Figure 13

Resulting Context:

The notification to fault tolerance sub-system results in the inclusion of recovered
part in the system which provides redundancy in the system.

Known Uses:

In case of MySQL cluster solution, whenever one of the redundant data nodes comes
up after recovery, it notifies the management server about its recovery and makes
the data nodes redundant.

Related Patterns:

Failure Recovery [18]

Repaired
Replica 1

Replica 2

Client

Recovery
Notification

Requests

1

2

High Availability Design Patterns

Copyright © 2006 by Kanwardeep Singh Ahluwalia and Atul Jain. Permission is
granted to copy for PLoP 2006. All other rights reserved.

20

References

1 MySQL Cluster documentation available at
http://dev.mysql.com/doc/refman/5.1/en/ndbcluster.html

2 “The Client-Dispatcher-Server Design Pattern” by P. Sommerlad and M. Stal – PLoP
1995

3 mod_jk documentation is available at http://tomcat.apache.org/tomcat-3.3-
doc/mod_jk-howto.html

4 “Detection Patterns for Fault Tolerance” by Robert S. Hanmer – PLoP 2004

5 “Telecommunications Input and Output Pattern Language” by Robert S. Hanmer
and Greg Stymfal – PLoP 1998

