
The Mutator Pattern

Mirko Raner∗

Parasoft Corporation
mirko@parasoft.com

July 31, 2006

Abstract

The Mutator pattern is a simple behavioral pattern that applies a se-
ries of successive modifications to a mutable object. The Mutator pattern
is similar to the Iterator pattern but has significant advantages in situ-
ations where a small modification to an existing object is more efficient
than creating a new object from scratch.

Introduction

The discovery of the Mutator pattern began with a bug that was partic-
ularly hard to track down. The method in which the bug occurred was
supposed to execute a sequence of unit tests that were all generated from
a common test case template and subsequently collected in a repository.
The sequence of test cases was made available by means of an Iterator
pattern [GHJV95]. However, instead of executing a number of different
variations of the common template, the code apparently executed always
the very last variation in each iteration (example code written in Java 5;
see [AGH05]):

import java.util.*;

public class TestCaseExecutor

{

public void executeTestCases(Iterator<ConcreteTestCase> testCases,

Comparator<ConcreteTestCase> executionOrder)

{

List<ConcreteTestCase> testList

testList = new ArrayList<ConcreteTestCase>();

while (testCases.hasNext())

{

testList.add(testCases.next());

}

Collections.sort(testList, executionOrder);

Iterator<ConcreteTestCase> execution = testList.iterator();

while (execution.hasNext())

{

execution.next().run();

}

}

}

∗Copyright c© 2006 Mirko Raner. Permission is granted to copy for the 13th Pattern
Languages of Programs (PLoP) conference 2006. All other rights reserved.

After a long search, the cause of the problem was found: the client
code assumed that the iterator that was passed as an argument would
return a sequence of distinct objects, but that was not the case:

import java.util.*;

class ConcreteTestCaseIterator implements Iterator<ConcreteTestCase>

{

private TestCaseTemplate template;

private TestCaseParameters[] parameters;

private ConcreteTestCase testCase;

private int index;

ConcreteTestCaseIterator(TestCaseTemplate template,

TestCaseParameters[] parameters)

{

this.template = template;

this.parameters = parameters;

testCase = new ConcreteTestCase(template, parameters[0]);

}

public boolean hasNext()

{

return index < parameters.length;

}

public ConcreteTestCase next()

{

if (!hasNext())

{

throw new NoSuchElementException();

}

if (index > 0)

{

testCase.setParameters(parameters[index]);

}

index++;

return testCase;

}

public void remove()

{

throw new UnsupportedOperationException();

}

}

As can be seen from the source code, the concrete test cases are not
actually pre-existing objects. The code reuses a single ConcreteTestCase

object for all iterations. A new ConcreteTestCase is instantiated only
once. Subsequent iterations only modify the object’s parameterization
and then return the same object again.

Though ConcreteTestCaseIterator does implement the Iterator in-
terface, it violates the expected semantics of the underlying Iterator pat-
tern in several aspects. As an iterator is supposed to provide “a way to
access the elements of an aggregate object sequentially” [GHJV95] client
code will commonly assume that each iteration will return a distinct object
(unless the original aggregate object indeed contained multiple references

2

to the same object). In the example, sorting the incoming test cases in
a specific order does not have any effect because the Collections.sort

method is applied to multiple references to the same object (rather than
different objects). Also, the modification of the iterated objects is not
part of the responsibilities of an iterator. Most client code will not be
prepared to deal with iterators that modify the iterated objects (or any
other objects).

However, a closer examination of this bug scenario showed that some
valuable lessons could be learned. The reason for choosing such an unusual
implementation for the iterator was that, in this particular case, creating
a new ConcreteTestCase object was a much more expensive operation
than changing the parameters of an existing object. Object creation is
usually an expensive operation in an object-oriented system. Especially
the creation of complex object graphs can be very inefficient. However,
there are many situations where a series of objects is processed in a strictly
sequential manner and where each object in the series is very similar to
its predecessor. In those cases, it may be possible to use a single object
that mutates its state so that it effectively at some point assumes the
state of each object in the series. If the differences between successive
objects are relatively small it is more efficient to create only a single
object and then apply a succession of modifications to that object. The
code shown above actually ran faster and used less memory than the
straightforward implementation approach, which would have created all
the objects in advance, stored them in a collection data structure and
then used a standard iterator.

Though the optimization was an abuse of the Iterator pattern (for
the reasons stated above), the optimized reuse of the same object was a
valuable and useful new pattern by itself. Instead of returning a sequence
of pre-created objects this pattern applies a series of modifications – or
mutations – to a single object. This new pattern is therefore subsequently
called the Mutator pattern.

In its simplest form, a mutator requires only two methods: a method
hasMoreMutations that determines whether the mutator can apply ad-
ditional mutations to a given object, and a method applyNextMutation

that modifies the object so that its new state reflects the next logical mu-
tation in the sequence. A mutator is very similar to an iterator. The main
difference is that it does not return an object from an existing collection
but modifies an object that was passed as a parameter.

The following sections contain a detailed description of the Mutator
pattern, loosely based on the format introduced by the Gang of Four
[GHJV95].

1 Intent

The intent of the Mutator pattern is to apply a series of successive modi-
fications to a mutable object, specifically as an alternative to successively
creating new object instances.

3

2 Problem

Certain algorithms can produce a large number of objects, which are then
passed to some sort of client component that processes the incoming ob-
jects in a sequential manner. The algorithm that originally produces the
objects often stores the newly created objects in a collection and then
uses an iterator or a similar pattern to pass the objects to the clients.
When the generated objects have large object graphs it can be very in-
efficient to generate new objects from scratch. Creating the objects from
scratch also does not take advantage of possible similarities between suc-
cessive objects in the sequence. Objects that are only processed once and
then discarded also impose a heavy strain on the system memory and the
garbage collector (if present).

3 Solution

Instead of maintaining a separate object for each iteration a single object
is reused and successively modified. Thus, the overhead of object creation
occurs only once, regardless of the number of elements. If the differences
between two successive objects are sufficiently small and can be applied
efficiently then the overall sequence of objects can be traversed much
more quickly. Also, memory space for only a single object is required,
and there is no need for repeated garbage collection or deallocation of
already processed objects.

4 Applicability

The Mutator pattern is applicable when:

• an algorithm operates on a sequence of complex objects whose indi-
vidual creation is rather expensive

• the objects are created on-the-fly, they do not exist yet

• the objects in the sequence are all relatively similar to each other

• the objects in the sequence are mutable, and applying minor modi-
fications to an object is a relatively inexpensive operation

• the client algorithm processes the objects in a strictly sequential
manner, i.e., after an object was processed by the algorithm that
object is no longer needed; also, the algorithm must never require
references to two or more objects from the series at the same time

• the object modifications may have different implementations but
should still be accessible under a common interface

Potential scenarios where a Mutator pattern makes sense can be quite
hard to identify. Some sophisticated profiling tools can pinpoint code
that creates large numbers of new objects. If it also becomes apparent
that all these objects are very similar then this may point to a possible
candidate for the Mutator pattern. As a starting point, it can also be
helpful to examine existing uses of the Iterator pattern and the aggregate

4

objects over which they iterate. If an aggregate object is only accessed via
iterators after it was originally created and populated it may be beneficial
to replace the aggregate object and its iterator by a mutator. To determine
whether such a replacement is feasible, the client code has to be examined
with respect to all the above listed criteria.

5 Structure

The Mutator design pattern has the following structure:

The client code that uses the mutator is not shown in the diagram.
The generic Mutator interface has only two methods:

• hasMoreMutations(MutableObject)

Determines whether a given object can be mutated by the mutator
in its current state. If the mutator is capable of applying further
mutations this method will return true; if the mutator has reached
its end this method will return false

• applyNextMutation(MutableObject)

Performs the given object’s transition into its next mutation state.
This method must be called only if the preceding invocation of
hasMoreMutations returned true. After hasMoreMutations has al-
ready returned false this method will always fail, for example, by
throwing an exception

6 Participants

In a typical Mutator pattern, the following participants are collaborating:

• Mutator
defines the general interface for the mutator; this interface can also
be a parameterized interface that can be bound to different types of
mutable objects

• ConcreteMutator
a concrete implementation of the interface; this class implements a
specific series of mutations for a specific type of objects

5

• MutableObject
provides an interface or parameterized type for mutable objects; as
a fallback, a general type like, for example, java.lang.Object can
be used

• ConcreteObjectSource
the class that provides a base object and a mutator for that ob-
ject (base object and mutator could also be provided in a different
manner or from different sources, though)

• Client Code
the code that processes the individual mutations of the object; this
code is typically very similar to the client code for using an iterator

7 Collaborations

A concrete mutator implementation directly modifies the mutable object
that was passed to it. The mutator may also carry additional internal
information that determines the next mutation and keeps track of the
sequence of mutations undergone so far.

8 Consequences

The use of the Mutator pattern has a number of beneficiary consequences:

• it saves time by eliminating the repetitive creation of objects

• it saves memory by using only a single mutable object

However, there are also some drawbacks to the Mutator pattern:

• it requires mutable objects, which can be more problematic to handle
than immutable ones

• it has a sizeable list of prerequisites that limits its applicability

• it may require extensive restructuring of the code if one of its pre-
requisites suddenly no longer holds

The use of mutable objects often entails a number of problems. For
example, mutable objects are unsafe as keys into hashed data structures
and prone to issues of concurrent modification. References to mutable
objects that participate in a Mutator pattern should be kept as local as
possible.

The Mutator is applicable only in those situations that fulfill all of
its prerequisites (see section 4). If one of the prerequisites can no longer
be maintained a fairly large restructuring of the code may be necessary.
In some cases such a restructuring may effectively cancel out the benefits
of the Mutator pattern. The example of the ConcreteTestCaseIterator

demonstrates such a problem: the TestCaseExecutor needs to sort the
incoming test cases, which requires references to two test case objects at
the same time for the purpose of comparison. This violates one of the
Mutator’s prerequisites, which in turn caused the described bug. Turning
the code into a proper application of the Mutator pattern could prove
very difficult here.

6

9 Implementation

Mutators can be implemented in a stateless or stateful fashion.
A stateless mutator carries no state information in addition to the mu-

table object that is passed. Stateless mutators either derive their termina-
tion condition solely from the mutated object or may produce mutations
ad infinitum, in which case it is up to the client code how many mutations
are requested.

Stateful mutators carry additional information, for example the num-
ber of mutations that was already applied. They can also store a reference
to the mutated object. This allows for creating mutators that are specif-
ically designed for a particular mutable object and may only be used
on that particular object. For example, a stateful mutator could com-
pare the passed mutated object with the internally stored reference and
throw an exception if they do not match. If the mutated object is already
passed to the mutator’s constructor (and the mutator is only supposed
to work on that particular object) the methods hasMoreMutations and
applyNextMutation do not need a parameter that specifies the mutated
object.

The basic mutator interface may also be extended to include methods
for undoing the previous mutation or “rewinding” the mutated object to
its original state.

10 Sample Code

In Java 5 [AGH05], a generic interface for the main participant of the
Mutator pattern can be defined as follows:

public interface Mutator<MutableObject>

{

boolean hasMoreMutations(MutableObject object);

void applyNextMutation(MutableObject object);

}

A sample implementation that mutates a StringBuffer could look like
this:

public class StringBufferMutator implements Mutator<StringBuffer>

{

private int position;

private int mutation;

public boolean hasMoreMutations(StringBuffer buffer)

{

return (position < buffer.length()-1)

|| (position < buffer.length() && mutation < 2);

}

public void applyNextMutation(StringBuffer buffer)

{

switch (mutation)

{

case 1:

7

buffer.setCharAt(position,

(char)(buffer.charAt(position)-2));

mutation = 2;

break;

case 2:

buffer.setCharAt(position,

(char)(buffer.charAt(position)+1));

position++;

/* fallthru */

case 0:

buffer.setCharAt(position,

(char)(buffer.charAt(position)+1));

mutation = 1;

break;

default:

throw new RuntimeException();

}

}

}

For each character in the StringBuffer, the mutator will first increase
the character’s value by 1 and then decrease it by 2 in the next mutation
(effectively decreasing the original value by 1). In a practical applica-
tion, this could be used for testing how a certain method reacts to slight
variations of the original input.

The client code that would mutate the string “MUTATOR” would
look like this:

public class Client

{

public static void main(String[] arg)

{

StringBuffer buffer = new StringBuffer("MUTATOR");

StringBufferMutator mutator = new StringBufferMutator();

while (mutator.hasMoreMutations(buffer))

{

mutator.applyNextMutation(buffer);

System.err.println(buffer);

}

}

}

For the example string “MUTATOR”, the above code will produce
these mutations: “NUTATOR”, “LUTATOR”, “MVTATOR”, “MTTA-
TOR”, “MUUATOR”, “MUSATOR”, “MUTBTOR”, “MUT@TOR”,
“MUTAUOR”, “MUTASOR”, “MUTATPR”, “MUTATNR”, “MUTA-
TOS”, and “MUTATOQ”.

The same effect can, of course, also be achieved with an iterator:

import java.util.*;

public class StringBufferIterator implements Iterator<StringBuffer>

{

private List<StringBuffer> sequence;

private int index = 0;

public StringBufferIterator(String original)

{

sequence = new ArrayList<StringBuffer>();

8

sequence.add(new StringBuffer(original));

for (int position = 0; position < original.length();

position++)

{

for (int mutation = -1; mutation <= 1; mutation += 2)

{

StringBuffer buffer = new StringBuffer(original);

buffer.setCharAt(position,

(char)(buffer.charAt(position)-mutation));

sequence.add(buffer);

}

}

}

public boolean hasNext()

{

return index < sequence.size();

}

public StringBuffer next()

{

return sequence.get(index++);

}

public void remove()

{

throw new UnsupportedOperationException();

}

}

public class IteratorClient

{

public static void main(String[] arg)

{

StringBufferIterator iterator;

iterator = new StringBufferIterator("MUTATOR");

while (iterator.hasNext())

{

System.err.println(iterator.next());

}

}

}

In contrast to the mutator, the iterator first creates all the different
StringBuffer objects and then returns them in a straightforward fashion.
Constructing the iterator may take a long time if many StringBuffers
have to be created. Also, all objects must be stored in memory at the
same time.

The StringBufferMutator just provides a simple illustrative example;
in practice, there would probably be little difference in efficiency if new
String or StringBuffer objects were created from scratch. In typical
real-world applications of the Mutator pattern, the creation of new objects
is usually by orders of magnitude more expensive than the modification
of an existing object.

9

11 Known Uses

Possible applications of the Mutator pattern include genetic algorithms,
processing of large trees or graphs, as well as execution of parameter-
ized unit tests [TS05] or unit test generation by means of permutation or
perturbation (for an explanation of perturbation testing, see [OX04]).

For example, a genetic algorithm might have to examine a large num-
ber of tree structures to determine which one has the highest value ac-
cording to a certain metric. The tree structures are generated according
to a fixed set of rules, and whereas no two trees are exactly identical, the
variations between two trees are typically very minor. In such a scenario,
a mutator is likely to have time and memory advantages over an iterator.

12 Related Patterns

The Mutator pattern is closely related to the Iterator pattern, and the
use of mutators is very similar to the use of iterators. These are the main
differences between mutators and iterators:

Mutator Iterator
Number of pre-existing one one for each iteration
objects
Source of object(s) supplied by client code supplied by aggregate

that is being iterated
Method of iteration implicit; by explicit; as defined

successive modification by aggregate
Concurrency safety only if separate typically always

mutable objects are used
Applicable objects only Value Objects Value Objects and

Reference Objects1

13 Conclusion

The Mutator pattern provides a good alternative to iterators and similar
patterns in scenarios where, by using the Iterator pattern, a large number
of similar objects are created from scratch and processed in a sequential
fashion. By mutating a single object through a predefined series of states
the Mutator pattern requires only a single object instance and replaces
expensive object creation with less expensive object modification.

Before choosing the Mutator pattern to solve a particular problem,
developers should make sure that all of the pattern’s prerequisites are
met and are not likely to be broken by future development of the code.
Typical applications of the Mutator pattern include genetic algorithms
and unit testing by means of permutation or perturbation.

1see [Fow03], pp. 73f. for an explanation of Value Objects versus Reference Objects.

10

Acknowledgements

The Mutator pattern was originally inspired by my professional work as a
member of Parasoft’s Jtest development team. The discovery of this pat-
tern could not have happened without my daily interaction with fellow
team members in San Diego (USA), Krakow (Poland), and Novosibirsk
(Russia). Special thanks go to Philipp Bachmann of the Institute for Med-
ical Informatics and Biostatistics in Basel (Switzerland) for shepherding
my submission to PLoP 2006. Philipp’s insightful comments and detailed
suggestions greatly improved the quality and clarity of the description of
this new pattern.

References

[AGH05] Ken Arnold, James Gosling, and David Holmes. The Java
Programming Language. Addison-Wesley, 4th edition, 2005.

[Fow03] Martin Fowler. UML Distilled – A Brief Guide to the Standard
Object Modeling Language. Addison-Wesley, 3rd edition, 2003.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design Patterns – Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

[OX04] Jeff Offutt and Wuzhi Xu. Generating test cases for web ser-
vices using data perturbation. ACM SIGSOFT Software En-
gineering Notes, 29(5):1–10, 2004.

[TS05] Nikolai Tillmann and Wolfram Schulte. Parameterized unit
tests. In Proceedings of the 10th European Software Engineer-
ing Conference held jointly with the 13th ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineer-
ing (ESEC-FSE’05), pages 253 – 262, Lisbon, Portugal, 2005.

11

