
“SEAMLESS APPLICATION” for seamless and personal
mobile computing

Paul G. Austrem
Dept.of Information Science and Media Studies

Fosswinckels gt. 6, 5007 Bergen, Norway
The University of Bergen

(+47) 55 58 41 18

paul.austrem@infomedia.uib.no

ABSTRACT
Mobile information systems are growing in acceptance; in
order for the vision of true mobility to be realized users must
be able to seamlessly move running applications between
devices in an ad-hoc manner. Workers such as journalists, or
workers that travel a lot could draw benefit from this. The task
of implementing mechanisms to ensure that a running
application is successfully moved from one device to another
can be considered a generic task, wherein the same
fundamental design can be reused. This work presents a high
level architectural composite design pattern that resolves the
challenges associated with transferring a running application
from one device to another whilst maintaining state and
tailoring to capabilities. This is accomplished by using a
transferable command stack to maintain state and the involved
device's implementing an interface exposing their functional
profile. This facilitates the adaptation of the command stack to
suit the target device, and for new target devices to be added
in an ad-hoc manner. The pattern is comprised of three roles
which each utilize other design patterns. Additionally the
pattern addresses exception scenarios and how they should be
handled to keep an application in a consistent state. The
solution adds complexity and imposes conventions on the
extendibility of a system, but makes it possible for users to
maintain state so they can seamlessly move their work
between devices.

Categories and Subject Descriptors
D.2.11 {Software Architecture]: Design Patterns;

General Terms
Design

Keywords
Composite design pattern, architecture, application transfer,
mobile workers

1. INTRODUCTION
Today people expect to have internet connectivity and access
to their files regardless of place and time. Their purpose can
be anything from multimedia streaming of their favourite

music to various devices, to downloading dinner tips at the
supermarket to their mobile phone, or receiving and sending
emails on their Blackberry or laptop. Thus, there is an inherent
expectation of ubiquity, of being connected with information
available any time, anywhere.

Additionally, more and more workers are befitting the term
mobile knowledge workers. These are workers who in order to
perform their job need to have timely access to information
and applications, and may be performing their work in places
that have not been determined upfront. Mobile workers may
also need to suddenly transfer their ongoing work from one
device to another. These are technical challenges that are
rooted in the evolvement of mobile computing and need to be
resolved if the promise of true mobility is to come to fruition.
Seamless mobility as a concept is being researched by both
industry and academia [7][10][5][2], and although some work
has been done towards the application level [3], the network
and hardware levels have been the focal points of research.

The main challenge that the solution in this paper resolves is
how to maintain the state of the application when it is moved
between devices and adapt the state to accommodate the
capabilities of the new device. This enables a seamless user
experience wherein it ideally becomes completely transparent
to the user whether or not the application has been moved
between devices.

However there are several technical issues that need to be
resolved. One such issue is the distribution of responsibilities
between software components involved in the transfer activity
in order to minimize coupling and gracefully handle
exceptions, and how the actual transfer of the application is
managed and adapted to the target device. This work presents
a design pattern pertaining to the domain of ubiquitous
computing and to the problem of transferring a running
application between heterogeneous devices. The design
pattern is intended for use in scenarios involving mobile
workers, and is aimed at software developers with experience
in developing solutions for mobile information systems. Thus
it can be considered a guide, or even a check-list, detailing
elements that should be present in an application-level
seamless solution.

It will be presented using the POSA pattern form [1] and
accompanied by a class diagram, an activity diagram and a
sequence diagram. The solution is represented as a single
pattern even though it is a composite pattern. The rationale
behind this choice is due to the necessity of the reader seeing
the “big picture”, the whole structure of the pattern and it's
interactions and dependencies. If it had been presented
fragmented as a pattern collection this may have diluted the
solution making the interactions and connections between
classes murkier.

Preliminary versions of these papers were workshopped at Pattern
Languages of Programming (PLoP) ’07 September 5-8, 2007,
Monticello, IL, USA. Permission to make digital or hard copies of all
or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, to republish, to post
on servers or to redistribute to lists, requires prior specific
permission. Copyright is held by the authors. ISBN: 978-1-60558-411-9.

2. SEAMLESS APPLICATION
2.1 Problem
You wish to move an application between different personal
(mobile) devices; however you also want to maintain the state
of the application. The snapshot state and operational history
could be important to you in your worksession, for example if
you are using a text-editor. Furthermore there will be
challenges in terms of various devices sustaining different
functional capabilites. How do we provide a means to handle
the transfer of a running application from one device to
another whilst maintaining application state and adapting to
the target device’s performance profile, thereby enabling
seamless mobility at the application level?
2.2 Context
Mobile workers conduct their business in changing
environments and with changing resources. They need to be
able to quickly move their work from one device to another in
a seamless manner that does not interrupt their flow. There
should be transparency between devices; there should be no
“scars” indicating that the work has been transferred between
multiple devices during a work session. The pattern must
handle two separate tasks; the transfer of state between
devices and the tailored reconstruction of the application on
the target device. Jill will illustrate this as follows:

A mobile worker, Jill, is preparing a sales presentation to be
held in a distant city. Unfortunately before she can finish it
she must leave for the airport. She transfers the application to
a mobile device knowing that she will spend the next 30
minutes travelling as a passenger, thereby being able to work
on the presentation. When she reaches the airport she
transfers the application to her laptop so she can continue
work during travel.

The pattern essentially makes it completely transparent in
terms of the state and representation of the application
whether it has been transferred between devices. The pattern
makes it possible for the state of an application to be tailored
to the target device and context in which it will be used. If
certain functions are not available due to computational
limitations on the target device then these can be disabled in
the state during the transfer. Alternatively state could be
disabled due to security reasons, for instance undoing
financial transactions is disabled on a mobile device being
used in a public area but allowed on a stationary computer. To
attain this capability one can “tag” elements of the Command
stack to indicate they are disallowed on the current device.
2.3 Applicability
The pattern can be applied to systems where there is a distinct
chance that workers will use the system in an ad-hoc, mobile
and unpredictable manner. Solutions that are used by workers
that move around a lot during their workday, or do not upfront
know when or where they will be conducting certain business
tasks could benefit from this design pattern. Currently
primitive solutions prevail; e.g. users could store their work
on a server, or simply copy files from one device to another to
continue work. However such primitive solutions, although
simple, do not maintain the application’s state in terms of
operation/user action history. The transfer of the work task
from one device to another becomes stateless and manual.
“SEAMLESS APPLICATION” resolves this issue.

Use the pattern when:

• Users would benefit from retaining the internal state of
their applications across devices

• You wish to establish a framework or create a
middleware solution wherein all devices follow
interfaces that enable their interoperability.

The pattern is useful in applications where operational history
is important, such as the undo operations in a text document or
maintaining the contents of the clipboard. Additionally the
pattern accommodates one to tailor the reconstruction of a
process based on a mix between the profile and capabilities of
the target device. For instance if the target device is a mobile
phone, and the user profile of the mobile phone is set to
“speech only”, then this information can be used by the server
to tailor the representation of the reconstructed application on
the target device.

Following Jill’s travel, she has now arrived at her destination
and has hired a car as she will be spending some time
travelling between various meetings. Unfortunately she didn’t
quite manage to finish her presentation whilst travelling, and
her laptop’s battery is almost drained. Therefore, she sets her
mobile phone to “speech and text only” mode and transfers
the application to it. The server creates a profile of the target
device (in this case the mobile phone) and tailors the
representation on the target device. For instance due to the
limited screen size and resolution of the mobile phone Jill will
not be able to see the presentation slides on the screen, only
pure text. Furthermore she will not have access to the
operational history that involves adding/editing/deleting
elements that cannot be represented on the current device
(e.g. images, animations, etc.). This to prevent her from
inadvertently making changes that are not visible to her.
Whilst driving she can now use voice commands to work with
the presentation. Using voice commands she narrates her
presenter’s notes to specific slides and saves the file.
2.4 Forces
• A transfer of both state and profile requires the handling

of two separate items. Handling is required because the
two items may have dependancies that affect the transfer
process.

• Moving an application between heterogeneous devices
could produce issues in terms of the target device
sustaining different functional characteristics (screen
size, memory, etc.) compared to the source device. This
must be actively handled in some way.

• The transfer of an application between two devices is a
sequential multi-step task, if the transfer process fails at
any point there must be mechanisms in place to ensure
that all is not lost.

• The liberty to transfer an application should, to the
largest degree possible, exist regardless of the
environment in which it is attempted. Hence it should not
be overly reliant on any technological infrastructure, such
as a fixed networking protocol for connection to a server,
etc.

2.5 Solution
Create a three role solution, where there is low coupling
between the roles. Maintain the operational history in a
collection and allow the reconstruction of a process to be
adapted to the target device’s capabilities. The operational
history is known as the “State”, whereas the functional
capabilities of the device’s involved are described in the
“Profile”.

2.6 Structure
State is represented as a structure containing all the operations
performed by a user during an uninterrupted user session. An
interruption is the termination of the session through the
application being closed. The tailored reconstruction uses a
device profile stored as a structure containing the functional
abilities of the device. All devices involved in the transfer
adhere to an interface describing functional characteristics.

The client class (fig 1) represents the source device that is the

device on which the application is currently running. It
implements the IDeviceProfile interface thereby being
applicable for use in an application transfer action. The client
class has the responsibility of maintaining its own internal
state up until the point where transfer commences. Client in
this context is different from the traditional client/server roles
of for instance the world wide web. Client merely denotes the
source device, the device from which the application will be
transferred.

Figure 1. Class diagram of the pattern

The classes Invoker, ConcreteCommand and Command are
associated with the Client class and are the classes utilized to
maintain the operational history of an application, wherein the
Invoker maintains a collection, known as the ”Command
Stack” which is the representation of State, with a ”Last In
First Out” structure of all operations / user actions.

ServerProxy is used as a front-end for the Handler package
and used by the Client to provide the required objects to
perform the transfer. Moreover, this ServerProxy enforces the
decoupling and opaqueness of the client and handler, since the
client only communicates with a proxy object it has no real
knowledge of where the server actually resides (is it a
dedicated handler, a handler on the client itself, or on the
target device?). The ServerProxy does not perform any
operations itself, it merely decomposes and delegates the tasks
on to the Server class.

The Server class performs the required processing in order to
transfer the process to the target device. It uses the two
structural classes ProfileObject and StateObject to maintain
the data required to reconstruct the process with state on the
target device. The ProfileObject structural class is essentially
a message format, defining the structure of a profile message.
It may describe the QoS characteristics of the target device,
for instance the CPU power, multi-threading capabilities,
screen resolution etc. The object is used by the
recreateProcessOnTarget method. Since this object follows a
predetermined format it establishes a shared ontology between
the devices and the server thus allowing the server to
understand the capabilities of devices and tailor the
application recreation accordingly.

The StateObject is a structure containing a CommandStack, a
list of all user operations performed during the current session.
The Journaling pattern [8] may be used to improve
performance in terms of adding new Commands to the
CommandStack. Especially true if the CommandStack is
stored as a flat file involving disk operations.

Finally the TargetDevice class represents the target device on
which the application will be recreated. It implements the
IDeviceProfile which facilitates it to be ”profiled” by the
Server. This runtime profiling, as opposed to the server
maintaining a database of device profiles strengthens the
decoupling between the server and the target devices, thus the
server can transfer between devices that it originally did not
know existed.

Furthermore, the pattern is a composite pattern and utilizes
several other patterns in order to attain its objective. We can
identify the applicability of the “COMMAND” [4] pattern as
it maintains the operations history; the user actions that have
been performed in the application. The “COMMAND”
pattern’s “Caretaker” object would reside on the handler side
(Figure 1).

The rationale behind this is that if there is in fact a physical
separation between the source device and the handler, then in

case of the source device experiencing a terminal exception
when moving the process the object state would be stored
separately. Hence the state could be recreated when the
application is re-initiated on the source device, or the transfer
of the process could continue to the target device.

The other task we are concerned with here is the use of three
patterns to enable the creation of the ProfileObject. As we can
see from Figure 2 there are a set of design requirements that
support the use of the “INVOKER” [11] pattern, the
“INTERFACE DESCRIPTION” [11] pattern and the
“OBJECT ID” [11] pattern. Firstly the use of “OBJECT ID” is
warranted because in a mobile work environment a user may
have the possibility to move her work process to several
different mobile devices. For instance the process could be
transferred from a stationary computer to either a laptop
computer or an ultra-portable PC or a PDA. The pattern
ensures that the “server” invokes the retrieval of the profile
from the correct remote target device. This leads onto the use
of the “INTERFACE DESCRIPTION” pattern.

The “poll target device” activity encourages the use of this
pattern, since in order for various devices to be able to poll
each other’s capabilities it is a pre-requisite that they share a
pre-agreed set of methods that can be used for this purpose,
furthermore there may surface ontological issues that need to
be resolved.

The “INTERFACE DESCRIPTION” pattern supports this as
both the client device and the target device will be forced to
adhere to the method signatures defined in a shared interface.
Finally the “INVOKER” pattern will be used to enable the
actual communication between the remote objects; a pre-
requisite in this case is the use of “OBJECT ID” to ensure the
client device has the required ID of the target device. The
client device acts the role of the “Requestor” in the
“INVOKER” pattern, whereas the server (ref fig 1) acts the
role of the “Invoker”. Thus when the client delegates the task
of retrieving the target device profile to the “ServerProxy” it
passes in a TargetDevice object which contains the
signature/objectID of the target device to the server through
the server proxy object.

The “ServerProxy” class is used to decouple the client from
the actual server, as mentioned; depending on the environment
in which the client device is working there may, or may not be
access to a physically separate server. However, the client
application should work without any explicit knowledge of
this. Therefore the proxy class is used to enforce this
opaqueness.

After the server has asynchronously created the two objects
profile and state, which are essentially just structures, it will
initiate the operation recreateProcessOnTarget in which it
will recreate the application on the target device based on
information from the “profile” and “state” object.

Figure 2. A generic approach to moving a running process from one device to another

2.7 Collaborations
Firstly we use activity partitions to create swimlanes in which
each of the partaking devices are positioned. In this approach
it is feasible to introduce three swimlanes denoting the client,
the server and the target device. The Source Device - Handler
division is purely logical, since both the Source Device and
the Handler could potentially exist on the same device, or the
handler could even exist on the target device, thus the Handler
is not necessarily a separate physical entity or disk; it is a
logical description that separates disparate tasks associated
with transferring an application between devices.

The description of Handler is a role, a part played for a short
duration before it is passed on. As soon as the application has
been recreated on the target device the command stack is
deleted from the Handler and the application is closed on the
Source Device. The Target Device then becomes the new
Source Device. If the recreation had failed however, the
Handler notifies the original Source Device of this and “rolls-
back” any operations performed on the Target Device. This
approach is simplistic and hinders one from transferring an
application to multiple devices simultaneously. However, the

simplicity resolves issues that stem from multiple instances of
the same application at the same time and moreover succeeds
challenges with merging different command stacks from
different devices. Thus there is never more than one instance
of the command stack at any given time, and all contents of
the stack are preserved. If certain operations in the stack
cannot be performed due to device limitations or business
rules then they are “tagged” in the stack, but never removed.
The CommandStack maintains its consistency across devices
regardless of their profile and capabilities.

The Handler sustains a backup of the state of the process
before it is attempted moved. This backup should preferably
be stored on a persistent storage device, e.g. a memory card in
the mobile device or a hard-drive in a laptop or even on a
separate server; however in-memory storage is also acceptable
if no other viable options are available. The point is that this
data should be logically separated from the process working
on it, which would be the source device application. Therefore
the backup state and state object reside at the Handler level.

2.8 Sequence Diagram
The client initiates the process by contacting the handler
through ServerProxy, using two separate requests to pass the
required data to construct the Profile object and the State

object. The ServerProxy forwards the requests to the actual
server that creates a Profile object and a State object. When
both objects have been successfully created the Server calls
the recreateProcessOnTarget method, which is defined in the
IDeviceProfile interface implemented by the TargetDevice.

Figure 3. Sequence Diagram of the design pattern

2.9 Considerations
One issue that needs to be resolved is how the command stack
is handled by devices with limited capabilities. If a mobile
device can only perform a subset of the operations performed
on a desktop computer there will be a need to handle this
capability mismatch. The server can use the ProfileObject to
“tag” operations in the Command Stack (StateObject) that
cannot be performed due to the limitations of the target
device. This way when recreating the state the target device
will skip these tagged operations; they will still remain in the
stack but be unavailable as long as the user is working on the
limited device. Hence, if an application is transferred from a
laptop to a limited device and back again no operations will be
lost, the stack will be intact because for each transfer the stack
will be “re-tagged”.

However there are exceptions to this principle. For instance
considering proprietary software developed for multiple
devices using a MVC approach, wherein all applications
regardless of device share the same “Controller”, or functional
core. Thus, the “View” is adapted based on the profile of the
device, but the functionality of the “Controller” is maintained.
This would allow the user to perform all operations on the
stack, for example to “undo” operations on a graphical entity
in the application although the same operations are not
directly supported through the user interface of the
application. Thus at the user interface level this would
manifest itself by buttons becoming greyed out or drop-down
lists becoming inactive. A slight digression, and an issue not
addressed by this pattern, but still important is the fact that
when dealing with battery powered devices one could adopt
adaptive user interfaces in mobile applications that
accommodate changes in the non-functional state of the
device. For instance if the battery is low then certain battery
draining operations in the application are disabled by default.

Furthermore limited devices may have problems handling a
large command stack in-memory, this could lead to serious
issues in terms of a command stack overflow, and thereby the
whole stack becoming corrupted. A proposed solution to this
would be that such limited devices only load a small portion
of the command stack into memory, whilst the remaining part
is serialized and stored to disk. There are challenges
associated with this, for instance the CLDC (which is the API
for J2ME programming for limited devices) does not natively
support serialization, thus one must resort to proprietary
solutions or utilize a third party framework such as
FramePersist [6] or SerME [9].

Another issue that should be considered is security, for
instance certain functions should not be available, or be
“undoable” when the application is executed on a mobile
device. We could imagine a mobile worker undoing financial
transfers; business rules dictate that such operations are only
permitted on a user’s stationary computer. However the user
may still be allowed to perform work in other parts of the
application, for example fill out an electronic form etc. This
could be solved by the handler tagging certain operations in
the stack as unavailable, before transferring and recreating the
application on the target device.

Jill has finally arrived at her destination, and is now almost
ready to give her presentation. She has plugged in the AC
adapter for her laptop and is recharging it. Because she will
be running her presentation from her laptop she needs to
transfer the presentation back from her mobile phone to the
laptop. This time the profile built by the server indicates that
the target device is highly capable both in terms of power and
presentation alternatives (screen, sound). Thus the server
restores the presentation on the target device (laptop) with all
functions and history available allowing Jill to add her
finishing touches before presenting.

2.10 Implementation Remarks
Ideally the pattern should not affect the existing architecture;
therefore it shouldn’t be a native function of any applications.
This paper describes two manners in which it could be
implemented; both have their advantages and drawbacks. The
first approach involves an application service provider (ASP)
wherein a mobile worker may license a software product
across multiple devices. The ASP stores the operational
history, the state, of the application – thus the pattern is
implemented with a dedicated physical handler, and the
mobile worker accesses the application through a thin-client,
the worker’s device. The strength of this is naturally that this
does not require any adaptations from the mobile worker
using the product as it is all handled by the ASP. Whenever
the mobile worker performs an operation on the ASP web-
based application a network call, e.g. a HTTP call if it uses
browser-based access, is submitted containing information
about the operation. The calls can then be stored with
timestamps and ID of the user in a database. The operational
history can then easily be restored whenever the mobile
worker switches between devices. A drawback is that one
would need an internet connection in order to utilize the
seamless mobility.

The other alternative would be to implement the pattern as a
middleware solution installed on all devices that are used by
the mobile worker. It works locally registering the operations
performed by the user, and adding them to the command
stack. A running application is added to this transparent
container, as mentioned a key aim is to make the pattern
transparent to any application contained in it. Thus, no
changes are implemented on the platform or application.
Using this approach would introduce the need to serialize the
command stack when it is transferred between devices.

2.11 Consequences and Resulting Context
The following general advantages are provided by the
“SEAMLESS APPLICATION” pattern:

• Workers who use complex software where maintaining
state is important can become truly mobile. Complex
business processes wherein the state is paramount to the
acutal task can be transferred seamlessly between devices
allowing workers to perform their work anytime
anywhere.

• Convention over configuration. The core-system does not
have to be configured to accommodate new devices as
long as they adhere to the IDeviceProfile interface. This
makes it easy to extend.

The pattern will affect the non-functional characteristics of the
system in the following manner:

• Reduced performance: Performance will likely suffer as
recording all user actions and subsequent operations will
undoubtedly require additional time and resources, in
addition the actual process of transferring a process from
one device to another will require resources, thus the
more complex the process is, the more performance will
suffer.

• Increased ubiquity: A system implementing this pattern
will become more ubiquitous shifting the focus away
from technical limitations towards user mobility, thereby
accommodating users that move around to perform their
work in an uninterrupted manner.

• Increased complexity: The actual implementation
complexity will likely be increased as developers must
write the Server logic profiling operations.

• Reduced flexibility: Although this pattern is only one way
of handling the transferral of applications from one
device to another, the “convention over configuration”
axiom used reduces the overall flexibility as all devices
must implement a certain set of methods as defined in the
IDeviceProfile interface, and it is only these methods that
will be used in the transfer process.

• Increased extendibility: A converse effect of the causes
of reduced flexibility is an increase in extendibility. It is
easy to add new devices as all requirements are specified
and determined up front through the use of the interface.
All devices are essentially autonomous and have no deep
knowledge of, nor interest in, the other devices. This is
ensured through the decoupling provided by the server.

• Command stack: The command stack may become
problematic if it grows too large, thus not running well
on devices with limited resources.

2.12 Known Uses
Smalltalk uses image-base files to load both classes and
objects, thus maintaining the application state. The application
state is stored in an image file, and loaded when the program
is run. This is similar to the governing fundamentals of this
pattern, as the state is handled and stored separately from the
application. However they differentiate in the fact that the
Smalltalk variant does not maintain the operational history, it
only attests a ”snapshot” of the state at the time of
termination.

Hospital patient transfer is a contrastive domain, however the
bearing principles of the pattern are still maintained. Anytime
a patient is transferred between hospitals it is pivotal that the
medical history and summary clinical note is tranferred with
the patient. Thus one transfers not only a snapshot of the
patients current state, but also all medical treatment
(operational history) that has led to the current state.

3. ACKNOWLEDGEMENTS
I would like to thank my shepherd Michael van Hilst for his
support and valuable feedback during the shepherding phase,
Richard Gabriel for his insights and suggestions during
mentoring at PLoP 2007, and Linda Rising along with the rest
of my workshop group for their comments and encouragement
at PLoP 2007.

4. REFERENCES
[1] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad,

P., Stal, M.: ” Pattern-Oriented Software Architecture: A
System of Patterns” John Wiley and Sons (1996)

[2] Duong, H., Dadej, A., and Gordon, S. 2005. Proactive
context transfer and forced handover in IEEE 802.11
wireless LAN based access networks. SIGMOBILE Mob.
Comput. Commun. Rev. 9, 3 (Jul. 2005), 32-44

[3] Engelsma, J. 2007. Enabling seamless mobility: an
enablers, experiences and tools perspective. SIGPLAN
Not. 42, 7 (Jul. 2007), 136-136.

[4] Gamma, E., Helm, R., Johnson, R. and Vlissides, J.:
”Design Patterns – Elements of Reusable Object-
Oriented Software” Addison Wesley (1995)

[5] Kozuch, M., Mahadev Satyanarayanan, Bressoud, T.,
Helfrich, C., Sinnamohideen, S.
«Seamless mobile computing on fixed infrastructure»

[6] Magalhães, K. C. P., Carvalho W. V., Lemos, F.,
Machado, J. C., Andrade, R.M. C.: «FramePersist: An
Object Persistence Framework for Mobile Device
Applications» (2004)

[7] Motorola: «Motorola Seamless Mobility Connectivity
Architecture»
Motorola White Paper. Online resource at:
http://www.motorola.com/networkoperators/pdfs/SM_Co
nnectivity_Architecture_White_Paper.pdf (2005)
Accessed 13/5-2007

[8] PerlDesignPatterns TinyWiki: ”Journaling Pattern”.
Online resource at

http://perldesignpatterns.com/?JournalingPattern
Accessed 11/8-2007

[9] SerME Serialization library for J2ME devices. Online
resource at: www.garret.ru/~knizhnik/serme.html
Accessed 8/9-2007

[10] Vidales, P.: «Seamless mobility in 4g systems»
Technical report no. 656. UCAM-CL-TR-656.
Online resource at:
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-
656.pdf (2005) Accessed 3/5-2007

[11] Völter, M., Kircher, M. and Zdun, U.: ”Remoting
Patterns: Foundations of Enterprise, Internet and
Realtime Distributed Object Middleware”. Wiley Series
in Software Design Patterns (2004)

http://www.motorola.com/networkoperators/pdfs/SM_Connectivity_Architecture_White_Paper.pdf
http://www.motorola.com/networkoperators/pdfs/SM_Connectivity_Architecture_White_Paper.pdf
http://perldesignpatterns.com/?JournalingPattern
http://www.garret.ru/%7Eknizhnik/serme.html
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-656.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-656.pdf

	1. INTRODUCTION
	2. SEAMLESS APPLICATION
	2.1 Problem
	2.2 Context
	2.3 Applicability
	2.4 Forces
	2.5 Solution
	2.6 Structure
	Collaborations
	2.8 Sequence Diagram
	2.9 Considerations
	2.10 Implementation Remarks
	2.11 Consequences and Resulting Context
	2.12 Known Uses

	3. ACKNOWLEDGEMENTS
	4. REFERENCES
	[1] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: ” Pattern-Oriented Software Architecture: A System of Patterns” John Wiley and Sons (1996)

