
Patterns for Access Control in Distributed Systems

Nelly Delessy
Florida Atlantic University

Dept of CEECS
Boca Raton, Florida, USA

+1 561 297-3855

ndelessy@fau.edu

Eduardo B. Fernandez
Florida Atlantic University

Dept of CEECS
Boca Raton, Florida, USA

+1 561 297-3466

ed@cse.fau.edu

M. M. Larrondo-Petrie
Florida Atlantic University
College of Engineering

Boca Raton, Florida, USA
+1 561 297-3899

petrie@fau.edu

Jie Wu
Florida Atlantic University

Dept of CEECS
Boca Raton, Florida, USA

+1 561 297-3855

jie@cse.fau.edu

ABSTRACT
Distributed systems introduce a new variety of security threats.
The organizations that own those systems must protect their
information assets from attacks. To do this we need to start with
high-level models that represent the security policies of the
institution. We present patterns that derive from traditional
models: first, the Policy-Based Access Control which models how
to decide if a subject is authorized to access an object according to
policies defined in a central policy repository. Then we present
implementation-oriented patterns that implement the Access
Matrix or RBAC model: The ACL pattern allows control access to
objects by indicating which subjects can access an object and in
what way. There is usually an ACL associated with each object.
The Capability pattern allows control access to objects by
providing a credential or ticket to be given to a subject for
accessing an object in a specific way. Capabilities are given to the
principal.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Patterns

General Terms
Design, Security

Keywords
Security Patterns, access control, software architecture

1. INTRODUCTION
Distributed systems are typically heterogeneous systems that are
opened to a wide variety of partners, customers or mobile
employees that introduce a new variety of security threats. They
are widely used by organizations that must protect their
information assets from attacks. Those information assets
typically are accessed through services that come in a variety of
technologies. It is important to develop systems where security
has been considered at all stages of design, which not only satisfy
their functional specifications but also satisfy security
requirements. To do this we need to start with high-level models
that represent the security policies of the institution [1].

To protect its assets, an organization needs to define security
policies, which are high-level guidelines that specify the states in
which the system is considered to be secure [2]. These policies
need to be enforced by security mechanisms. In large
organizations, the policies may be issued by different actors
making their management difficult. Moreover, they need to be
enforced for a variety of resources.

Furthermore, the nature of distributed systems implies that a
subject does not need to be known in advance by the system in
order to request access to a resource. The use of credentials
including attributes may be sufficient to trust a subject. Policies
should be able to capture this aspect. Figure 1 illustrates some
patterns used in access control in the context of distributed
systems. A pattern diagram shows relationships between patterns
(represented by rectangles with rounded corners). The
relationships appear as labeled arrows. In this diagram, traditional
models, such as the Access Matrix and RBAC (Role-Based
Access Control), are represented along with Attribute-Based
Access control [3] and Policy-Based Access control. The two
latter models are more suitable in the case of distributed systems.
All of the models use a Reference Monitor to enforce access
decisions. ACL (Access Control List) and Capability are
implementation-oriented patterns; they implement the Access
Matrix or RBAC model. More specifically for web services,
XACML (eXtensible Access Control Markup Language) Access
Control Evaluation implements the Attribute-Based Access
control pattern and the Policy-Based Access control pattern, and
the XACML Policy Language implements the Policy-Based
Access control pattern. SAML Authorization Assertion is a kind
of Capability.

In this paper we present the following patterns:

• Policy-Based Access Control: models how to decide if a
subject is authorized to access an object according to policies
defined in a policy repository

• Access Control List: controls access to objects by indicating
which subjects can access an object and in what way. There
is usually an ACL associated with each object.

• Capability: controls access to objects by providing a
credential or ticket to be given to a subject for accessing an
object in a specific way. Preliminary versions of these papers were workshopped at Pattern

Languages of Programming (PLoP) '07 September 5-8, 2007, Monticello,
IL, USA. Permission to make digital or hard copies of all or part
of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission. Copyright is held by the authors. ISBN: 978-1-60558-411-9.

These patterns are of value to security designers and software
developers implementing distributed systems.

Section 2, 3 and 4 respectively present the aforementioned
patterns and section 5 concludes the paper.

Figure 1. Pattern diagram for access control in web services

2. POLICY-BASED ACCESS CONTROL
The Policy-Based Access Control pattern decides if a subject is
authorized to access an object according to policies defined in a
central policy repository.

Example
Consider a financial company that provides services to its
customers. Their computer systems can be accessed by customers
who send orders to the company for buying or selling
commodities (stocks, bonds, real estate, art, etc.) via email or
through their website. Brokers employed by the company can
carry out the orders of the customers by sending requests to the
systems of various financial markets, or consult information from
financial news websites. Also, a government auditor visits
periodically to check for application of laws and regulations.

All of these activities are regulated by policies with various
granularities within the company. For example, the billing
department can have the rule «only registered customers whose
account status is in good standing may send orders», the technical
department can decide that «emails with attachments bigger than
x Mb won’t be delivered», the company security policy can state
that «only employees with a “broker” role can access the financial
market’s web services» and that «only the broker custodian of a
customer can access its transaction information», whereas the
legal department issues the rule that «auditors can access all
transaction information», etc.

All of these policies are enforced by different components of the
computer system of the company (email server, file system, web
service access control component, and financial application). This
approach has several problems: the policies are described in
possibly different syntaxes and it is difficult to have a global view
of what policies apply to a specific case. Moreover, two policies
can be conflicting and there is no way to combine them in a clear
way. In summary, this approach could be error-prone and
complex to manage.

Context
We consider centralized or distributed systems with a large
number of resources (objects). A large number of subjects may
access those objects. Rules are defined to control access to
objects. The rules defined by the organization are typically
designed by different actors (technical, organizational, legal, etc),
and each set of rules designed by a specific policy designer can
concern overlapping sets of objects and/or subjects. We assume
that access requests come from authenticated subjects.

Problem
Enforcing these rules for a particular access request may be
complex, and thus error prone, because there is no clear view of
what rules to apply to a request.

How can we enforce access control according to the pre-defined
rules in a consistent way? The solution to this problem is affected
by the following forces:
• Objects may be frequently added or removed

• The solution should be able to implement a wide variety of
access control models, such as the Access Matrix, RBAC.

• Malicious users can try to have access to unauthorized
objects.

• There should be no direct access to objects, i.e. every request
must be mediated.

Solution
Most access control systems are based on the authorization pattern
[4], where the access of a subject to an object depends only on the
existence of a positive applicable rule. If no such rule exists, then
the access is denied. In our case, the situation is more
complicated: the existence of a positive applicable rule should not
necessarily imply that the access should be granted. All of the
rules must be taken into account, and a final decision must be
made from the set of applicable rules and some meta-information
about the way they should be combined. Part of that meta-
information is located in a policy object. This policy object
aggregates a set of rules, and specifies how those rules must be
combined. For more flexibility about the combination of rules, a
composite object regroups the rules into policies and Policy Sets.
Basically, policy sets aggregate policies, and includes information
about how to combine rules from different policies. In order to
easily select all applicable rules, they should be stored in a unique
repository for the organization and administered in a centralized
way. At access time, all requests are intercepted by Policy
Enforcement Points (PEPs), a specific type of Reference Monitor
[2]. The repository is accessed by a unique Policy Decision Point
(PDP), which is responsible for computing the access decision by
cooperating with a Policy Information Point (PIP), which may
provide information about the subject or the resource accessed.
The rules and policies are administered through a unique Policy
Administration Point (PAP). Finally, because rules and policies
are designed by different teams, possibly about the same objects
and subjects, this scheme does not guarantee that a conflict
between rules in different policy components would never occur.
In that case, the PDP may have a Dynamic Policy Conflict
Resolver to resolve the conflict, which would need to use meta-
rules. A complementary Static Policy Conflict Resolver may be a
part of the PAP, and should detect conflicts between rules at the
time they are entered into the repository.

Structure
Figure 2 illustrates the solution.
A Subjects’ access requests to particular Objects of the system
are intercepted by PEPs, which are a part of the security
infrastructure that is responsible for enforcing the organization
Policy about this access. PEPs query another part of the security
infrastructure, the PDP, which is responsible for computing an
access decision. In order to compute the decision, the PDP uses
information from a PIP, and retrieves the applicable Policy from
the unique PolicyRepository. A PolicyRepository stores all of
the rules for the organization. It is also responsible for retrieving
the applicable Rules by selecting those Rules whose
subjectDescriptor, resourceDescriptor, and
environmentDescriptor match the information about the subject,
the resource and the environment pulled from the PIP, and whose
accessType matches the required accessType from the request.
The PAP is a unique point for administering the rules. In case the
evaluation of the Policy leads to a conflict between the decisions
of the applicable Rules, a part of the PDP, the
DynamicPolicyConflictResolver, is responsible for producing a

uniquely determined access decision. Similarly, a
StaticPolicyConflictResolver is a part of the PAP and is
responsible for identifying conflicting rules within the
PolicyRepository.

Dynamics
Figure 3 shows a sequence diagram describing the most
commonly used case of Request Object Access. The Subject’s
request for accessing an Object is intercepted by a PEP, which
forwards the request to the PDP. The PDP can retrieve
information about the Subject, the Object and the current
Environment from the PIP. This information is used to retrieve
the applicable Rules from the PolicyRepository. The PDP can
then compute the access decision by combining the decisions
from the Rules forming the applicable Policy and it can finally
send this decision back to the PEP. If the access has been granted
by the PDP, the PEP forwards the request to the Object.

Example Resolved
The use of the Policy-Based Access Control pattern a;;ows the
company to centralize its rules. Now, the billing department, as
well as the technical department, the legal department and the
corporate can insert their rules in the same repository, using the
same format. The different components of the computer system
that used to enforce policies directly (that is, email server, file
system, web service access control component, and financial
application) just need to intercept the requests and redirect them to
the central Policy Decision Point. In order to do that, each of them
runs a Policy Enforcement Point, which interfaces with the main
Policy Decision Point. The rules could be grouped in the
following way: a unique company policy set might include all
other policies and express that all policies coming from the
corporate should dominate all other policies. Each department
would have their own policy, composed of rules from this
department, and combined according to each department’s policy.
Finally, a simple dynamic conflict resolver could be configured to
enforce a closed policy in case of conflict. The rules can be easily
managed, since they are written to the same repository, the
conflicts can be resolved, and there is a clearer view of the
company’s security policy.

Known Uses
• XACML (eXtensible Access Control Markup Language),

defined by OASIS, includes languages for expressing
authorization rules and for access decision following this
pattern.

• Symlabs Federated Identity Access Manager Federation is an
identity management from Symlabs implementing identity
federation. Its components include a PDP and PEPs.

• “Components Framework for Policy-Based Admission
Control”, a part of the Internet 2 project, is a framework for
the authentication of network components. It is based on five
major components: Access Requestor (AR), Policy
Enforcement Point (PEP), Policy Decision Point (PDP),
Policy Repository (PR), and the Network Detection Point
(NDP).

• XML and Application firewalls [5] also use policies.
SAML (Security Assertion Markup Language) is an XML
standard defined by OASIS for exchanging authentication and
authorization data between security domains. It can be used to
transmit the authorization decision.

Figure 2. Class diagram for Policy-Based Access Control

Figure 3. Sequence diagram for use case Request access to an object

Consequences 3. ACCESS CONTROL LIST This pattern presents the following advantages:
The Access Control List allows control access to objects by
indicating which subjects can access an object and in what way.
There is usually an ACL associated with each object.

• Since the access decisions are requested in a standard format,
an access decision becomes independent from its
enforcement. A wide variety of enforcement mechanisms
could be supported and can evolve separately from the Policy
Decision Point.

Example
We are designing a system in which documents should be
accessible only to some specific registered users, who can either
retrieve them for reading or submit a modified version. We need
to verify that a specific user can access the document requested in
an efficient manner.

• This pattern can support the access matrix, RBAC or
multilevel models for access control.

• Since every access is mediated, illegal accesses are less
likely to be performed.

Context The pattern also has some (possible) liability:

• It could affect the performance of the protected system since
the central PDP/PolicyRepository/PIP subsystem may be a
bottleneck in the system.

This applies to distributed systems where access to resources must
be controlled. Those systems comprise a Policy Decision Point
and Policy Enforcement Points that enforce the access policy. A
system is composed of subjects that need to access resources to
perform tasks. In the system, not every subject can access any
object: access rights are defined and can be modeled as an access
matrix, in which each row represents a subject and each column
represents an object. An entry of the matrix is indexed by a
specific subject and a specific object, and lists the types of actions
that this subject can execute on this object.

• Complexity
• We need to protect the access control information.

Related Patterns
XACML patterns [5] is an implementation of this pattern. The
Access Control List and the Capability pattern are simple
implementations of this pattern.
PEP is just a Reference Monitor [4].

Problem This pattern can implement the Access Matrix and RBAC
patterns. In some of those systems, the number of subjects and/or objects

can be large. In this case, the direct implementation of the matrix

can use significant amounts of storage, and the time used for
searching this large matrix can be significant.
In practice, the matrix is sparse. Subjects have rights on few
objects and thus most of the entries are empty.
How can we implement the access matrix in a space- and time-
efficient way? The solution to this problem is affected by the
following forces:
• The matrix may have many subjects and objects. Finding the

rule that authorizes a specific request to an object may take a
good amount of time (un-ordered entries).

• The matrix can be very sparse and storing it as a matrix
would require storing many empty entries, thus wasting
space.

• Subjects and objects may be frequently added or removed.
Making changes in a matrix representation is inefficient.

• The time spent for accessing a centralized access matrix may
result in an additional overhead time.

• A request received by a Policy Enforcement Point indicates
the requester identity, the requested object, and the type of
access requested. The requester identity, in particular, is
controlled by the requester, and may be forged by a
malicious user.

Solution
Implement the Access Matrix by associating each object with an
Access Control List (ACL) that specifies which actions are
allowed on the object, by which authenticated users. Each entry of
the list comprises a subject’s identifier and a set of rights. Policy

 Enforcement Points (PEPs) of the system enforce the access
policy by requesting the PDP to search the object’s ACL for the
requesting subject identifier and access type. In order for the
system to be secure, the subject’s identity must be authenticated
prior to its access to any objects. Since the ACLs may be
distributed, like the objects they are associated with, several
Policy Administration Points (PAPs) may be responsible for
creating and modifying the ACLs.

Structure
Figure 4 illustrates the solution. In order to be protected, an
Object must have an associated ACL. This ACL is made of
ACLEntries, each of which contains a set of Rights permitted for
a specific authenticated Subject. An authenticated Subject
accesses an Object only if a corresponding Right exists in the
Object’s ACL. For security reasons, only the PDP can create and
modify ACLs. At execution time, the PDP is responsible for
searching an Object’s ACL for a Right in order to make an
access decision.

Dynamics
Figure 5 shows a sequence diagram describing the typical use
case for Request Object Access. The authenticated Subject’s
request for accessing an Object is intercepted by a PEP, which
forwards the request to the PDP. It can then check that the ACL
corresponding to the Object contains an ACLEntry which
corresponds to the Subject and which holds the accessType
requested by the Subject.

Figure 4. Class diagram for Access Control List

Figure 5. Sequence diagram for use case for Request Object Access

Example Resolved
To enforce access control, we create a Policy Decision Point and
its corresponding Policy Enforcement Points, which are
responsible for intercepting and controlling accesses to those
documents. For each document, provide the Policy Decision Point
with a list of the users authorized to access it and in what way
(read or write). At access time, the Policy Decision Point is able
to search the list for the user. If the user is on the list with the
proper access type, it can grant access to the document; otherwise
it will refuse access. In our distributed system, we make sure that
only authenticated users, that is, users who provided a valid
credential, could make requests.

Known Uses
• Operating systems such as Microsoft Windows (from

NT/2000), Novell's NetWare, Digital's OpenVMS, and Unix-
based systems use ACLs to control access to their resources.

• In Solaris 2.5, file ACLs allow to have a finer control over
access to files and directories than the control that was
possible with the standard Unix file permissions. It is
possible to specify specific users in an ACLEntry. It is
possible to modify ACLs for a file ‘testfile’ by using the
‘setfacl’ command in a similar way to the ‘chmod’
command, used for changing standard Unix permissions:
setfacl -s u::rwx,g::---,o::---,m:rwx,u:user1:rwx,u:user2:rwx
testfile

• IBM Tivoli Access Manager for e-businesses uses ACLs to
control access to the Web and application resources [6].

• Cisco IOS Software, Cisco’s network infrastructure software,
provides basic traffic filtering capabilities with ACLs [7].

Consequences
This pattern presents the following advantages:
• Because all authorizations for a given object are kept

together, we can go to the requested object and find out if a
subject is there. This is much shorter than searching the
whole matrix.

• The time spent accessing an ACL is less than the time that
would have been spent accessing a centralized matrix.

• Access to unauthorized objects by subjects submitting forged
requests on behalf of legitimate subjects is not possible
because we made sure that the requests are from only
authenticated subjects.

The pattern also has the (possible) liabilities:
• The administration of the subjects is rendered more difficult:

The deletion of a subject may imply the scan of all ACLs,
but this can be done automatically.

• When the environment is heterogeneous, it needs to be
adapted to each type of PEPs. PDPs and PAPs must be
implemented in a different way, thus adding an additional
development cost.

Implementation
A decision must be made regarding the granularity of the ACLs.
For example, it is possible to regroup the users, such as the
minimal access control lists in UNIX.

It is also possible to have a finer-grained access control system.
For example, the extended access control lists in UNIX that allow
specified access not only for the file’s owner and owner’s group
but also for additional users or groups.

The choice of access types can also contribute to a finer-grained
access control system. For example, Windows defines over ten
different permissions, whereas Unix-like systems usually define
three.

A creation/inheritance policy must also be defined: what should
the ACL look like at the creation of an object? From what objects
should it inherit its permissions?

ACLs are pieces of information of variable length. A strategy for
storing ACLs must be chosen. For example, in the Solaris' UFS
file system, each inode has a field called i_shadow. If an inode
has an ACL, this field points to a shadow inode. On the file
system, shadow inodes are used like regular files. Each shadow
inode stores an ACL in its data blocks. Linux and most other
UNIX-like operating systems implement a more general
mechanism called Extended Attributes (EAs). Extended attributes
are name and value pairs associated permanently with file system
objects, similar to the environment variables of a process [8].

Related Patterns
The PEP and PDP come from the previous pattern is this paper.
The Capability pattern is another way to implement the Access
Matrix.

Access Matrix and RBAC [4] are models that can be implemented
using ACLs.

PEP is just a Reference Monitor [4].
A variant with a solution to centralized systems exists; in
particular, it leverages on particular data structures to enhance
efficiency.

4. CAPABILITY
The Capability pattern allows control access to objects by
providing a credential or ticket to be given to a subject for
accessing an object in a specific way. Capabilities are given to the
principal.

Example
We are designing a system that allows registered users to read or
modify confidential documents. We need to verify that a specific
user can access a confidential document in an efficient and secure
manner. In particular, we worry that if the parts of our system that
deal with access control are too large and/or distributed, they may
be compromised by attackers.

Context
We refer to distributed systems where access to resources must be
controlled. Those systems have a Policy Decision Point and its
corresponding Policy Enforcement Points that enforce the access
policy. A system is composed of subjects that need to access
resources to perform their tasks. In the system, not every subject
can access any object: access rights are defined and can be

modeled as an access matrix, in which each row represents a
subject and each column represents an object. An entry of the
matrix is indexed by a specific subject and a specific object, and
lists the types of actions that this subject can execute on this
object. The system’s implementation is vulnerable to threats from
attackers that may compromise its components.

Problem
In some of those systems, the number of subjects and/or objects
can be large. In this case, the direct implementation of the matrix
can use significant amounts of storage, and the time to search this
large matrix can be significant.

In practice, the matrix is sparse. Subjects have rights on few
objects and thus most of the entries are empty.

How can we implement the access matrix in a space- and time-
efficient way? The solution to this problem is affected by the
following forces:
• The matrix may have many subjects and objects. Finding the

rule that authorizes a specific request to an object may take a
good amount of time (un-ordered entries).

• The matrix can be very sparse and storing it as a matrix
would require storing many empty entries, thus wasting
space.

• Subjects and objects may be frequently added or removed.
Making changes in a matrix representation is inefficient.

• The time spent for accessing a centralized access matrix may
result in an additional overhead time.

• A request received by a Policy Enforcement Point indicates
the requester identity, the requested object, and the type of
access requested. The requester identity, in particular, is
controlled by the requester, and may be forged by a
malicious user.

• The size of the units that can create and/or modify the
policies (such as Policy Administration Points) has an impact
on the security of the system. Minimizing their size will
reduce their chance of being compromised by attackers.

Solution
Implement the Access Matrix by issuing a set of capabilities to
each subject. A capability specifies that the subject possessing the
capability has a right on a specific object. Policy Enforcement
Points and the Policy Decision Point of the system enforce the
access policy by checking that the capability presented by the
subject at the access time is authentic and searching the capability
for the requested object and access type. Trust a minimum part of
the system – create a unique capability issuer that is responsible
for issuing the capabilities. The capabilities must be implemented
in a way that allows the PDP to verify their authenticity, so that a
malicious user cannot forge one.

Structure
Figure 6 illustrates the solution. In order to protect the Objects, a
CapabilityProvider, the minimum trusted part of our system,
issues a set of Capabilities to each Subject by using a secure
channel. A Capability contains a set of Rights that the Subject
can perform on a specific Object. A Subject accesses an Object
only if a corresponding Right exists in one of the Subject’s
Capabilities. At execution time, the PDP is responsible for
checking the Capability’s authenticity and searching the
Capability for both the requested Object and the requested
accessType in order to make an access decision.

Figure 6. Class diagram for Capability

Dynamics
Figure 7 shows a sequence diagram describing the typical use
case of Request Object Access. The Subject requests access to
an Object by including a corresponding Capability. The request
is intercepted by a PEP, which forwards the request to the PDP.
It can then check that the Capability holds the accessType
requested by the Subject.

Example Resolved
To enforce access control, we create a Policy Decision Point and
its corresponding Policy Enforcement Points that are responsible
for intercepting and controlling accesses to those documents.
When a user logs on to the system, a robust token issuer
provides a set of tokens that indicate which confidential
documents are authorized. Tokens are digitally signed so that
they can’t be created or modified by users.

At request time, a user wishing to access a confidential
document presents its token to the Policy Enforcement Point,
and then to the Policy Decision Point, which grants him access
to the document. If a user does not present a token
corresponding to the document and the access mode, access is
refused.

Known Uses
• Most of the capability-based systems are operating systems.

Usually hardware assistance is needed, for example,

capabilities are placed in special registers and manipulated
with special instructions (Plessey P250), or they are stored
in tagged areas of memory (IBM 6000).

• Many distributed capability-based systems have been
researched and are described in [9, 10, 11, 12]. Among
those, Amoeba [12] is a distributed operating system in
which multiple machines can be connected together. It has
microkernel architecture. All objects in the system are
protected using a simple scheme. When an object
(representing a resource) is created, the server doing the
creation constructs a 128-bit value, called a capability and
returns it to the caller. Subsequent operations on the object
require the user to send its capability to the server to both
specify the object and prove the user has permission to
manipulate the object. Capabilities are protected
cryptographically to prevent tampering.

Consequences
This pattern presents the following advantages:
• Because the capability is sent together with the request, the

time spent for accessing an authorization is much less than
the time that would have been spent searching a whole
matrix, or searching an ACL.

• The time spent accessing a capability at request time is less
than the time that would have been spent accessing a
centralized matrix.

Figure 7. Sequence diagram for use case for Request Object Access

• The part of the system that we need to trust is minimal. The

capability provider is only responsible to issue capabilities to
the right users at an initial time.

• It is harder for malicious users to forge or modify
capabilities, since a capability provides a way to verify its
authenticity.

The pattern also has some (possible) liabilities:
• The administration of the objects is more difficult: The

addition of an object implies the issuance of capabilities to
every authorized user.

• When the environment is heterogeneous, the administration
of the rights is more complex. There is no straightforward
way to revoke a right since the user is in control of the
capabilities it has acquired. A solution could be to add a
validity time to each capability, or by through indirection, or
by using virtual addresses [13].

• The right is transferable, that is, a capability can be stolen
and replayed by (or given to) a malicious user! (This is not
the case in OSs in which accesses to the capabilities are also
controlled by the TCB, but those need the support of special
hardware.)

Implementation
Since a capability must be un-forgeable and un-modifiable, it can
be implemented as hardware or software:

• Hardware:

o Tags: Tagging allows for the categorization of each word
as data or a capability. Then no copying should be allowed
from capability to data or vice versa, no arithmetic
operation should be allowed on capabilities. A
disadvantage of this method is the memory waste by using
tags.

o Segmentation: Whole segments of memory are used
exclusively for capabilities or for data. No operation
should be allowed between partitions of different types. A
disadvantage of this is that many processes may need two
segments.

• Software: Cryptography is usually used. The capabilities
may be encrypted by the capability issuer’s key.

Related Patterns
The PEP and PDP are from the previous pattern in this paper. The
ACL pattern is another way to implement the Access Matrix.

Capabilities can be implemented into the VAS (Virtual Address
Space) using segmentation.

PEP is just a Reference Monitor [4].

Access Matrix, RBAC [4] are models that can be implemented
using ACLs. Credentials [14] are a type of capability.

5. CONCLUSIONS
In this paper, we have shown patterns to describe the access
control in distributed systems. An abstract one is the Policy-Based
Access Control that describes how to decide if a subject is
authorized to access an object according to policies defined in a
central policy repository. Then we presented implementation-
oriented patterns that implement the Access Matrix or RBAC
model: The ACL pattern allows control access to objects by
indicating which subjects can access an object and in what way.
There is usually an ACL associated with each object. The
Capability pattern allows control access to objects by providing a
credential or ticket to be given to a subject for accessing an object
in a specific way. We have also shown the relationships between
these patterns and traditional access control patterns for
distributed systems.

6. ACKNOWLEDGEMENTS
We thank our shepherd Sami Lehtonen whose valuable comments
helped improve this paper. Also, the Secure Software
Development Research Group from Florida Atlantic University
contributed to improve this paper by providing useful comments
and suggestions.

7. REFERENCES
[1] E.B.Fernandez and M.M.Larrondo-Petrie, "A methodology

to build secure systems using patterns", 22nd Annual
Computer Security Applications Conference (ACSAC),
Works in Progress, Miami Beach, FL, Dec. 11-15.
http://www.acsac.org

[2] M. Schumacher, E.B.Fernandez, D. Hybertson, F.
Buschmann, and P. Sommerlad, Security Patterns:
Integrating security and systems engineering", Wiley 2006.

[3] T. Priebe, E. B. Fernandez, J. I. Mehlau, and G. Pernul, "A
pattern system for access control," in Research Directions in
Data and Applications Security XVIII, C. Farkas and P.
Samarati (Eds.), Proc. of the 18th. Annual IFIP WG 11.3
Working Conference on Data and Applications Security,
Sitges, Spain, July 25-28, 2004.

[4] E. B. Fernandez and R. Pan, “A Pattern Language for
security models”, Proc. of PLoP 2001, The 8th Annual
Conference on the Pattern Languages of Programs, Urbana,
IL, USA, 11-15 September 2001.
http://jerry.cs.uiuc.edu/~plop/plop2001/accepted_submission
s/PLoP2001/ebfernandezandrpan0/PLoP2001_ebfernandezan
drpan0_1.pdf.

[5] N. Delessy, and E. B.Fernandez, "Patterns for the eXtensible
Access Control Markup Language", in Proceedings of the
12th Pattern Languages of Programs Conference
(PLoP2005), Monticello, Illinois, USA, 7-10 September
2005.
http://hillside.net/plop/2005/proceedings/PLoP2005_ndeless
yandebfernandez0_1.pdf.

[6] IBM Tivoli Access Manager for e-business webpage -
http://www-306.ibm.com/software/tivoli/products/access-
mgr-e-bus/, Last accessed 2007-06-26.

[7] Cisco IOS Software webpage -
http://www.cisco.com/en/US/products/sw/iosswrel/products_
ios_cisco_ios_software_category_home.html, Last accessed
2007-06-26.

[8] A. Grünbacher “POSIX Access Control Lists on Linux “,
http://www.suse.de/~agruen/acl/linux-acls/online/, Last
accessed 2007-06-26.

[9] H.L. Johnson, J.F. Koegel, R. M. Koegel, "A secure
distributed capability based system," Proceedings of the
1985 ACM annual conference on The range of computing:
mid-80's perspective: mid-80's perspective, Pages: 392 –
402.

[10] J.E. Donnelley, “A Distributed Capability Computing
System,” (DCCS) Proceedings of the Third International
Conference on Computer Communication, Toronto, Canada,
August 3-6, 432-440.

[11] R D Sansom, D P Julin, R F Rashid, "Extending a capability
based system into a network environment," ACM SIGCOMM
Computer Communication Review, Volume 16 , Issue 3
(August 1986) 265 – 274.

[12] Amoeba Operating System's webpage -
www.cs.vu.nl/pub/amoeba/, Last accessed 2007-06-26.

[13] E. B. Fernandez, T. Sorgente, and M. M. Larrondo-Petrie,
“Even more patterns for secure operating systems,” Procs. of
the Conference on Pattern Languages of Programs, PLoP
2006, Portland, OR, October 2006,
http://hillside.net/plop/2006/Papers/Library/Even_more_patt
erns.pdf

 [14] P. Morrison and E.B. Fernandez, “The Credential Pattern,”
Procs. of the Conference on Pattern Languages of
Programs, PLoP 2006, Portland, OR, October 2006,
http://hillside.net/plop/2006/Papers/Library/PLoP2006_Cre
dential.pdf

http://www.acsac.org/
http://jerry.cs.uiuc.edu/%7Eplop/plop2001/accepted_submissions/PLoP2001/ebfernandezandrpan0/PLoP2001_ebfernandezandrpan0_1.pdf
http://jerry.cs.uiuc.edu/%7Eplop/plop2001/accepted_submissions/PLoP2001/ebfernandezandrpan0/PLoP2001_ebfernandezandrpan0_1.pdf
http://jerry.cs.uiuc.edu/%7Eplop/plop2001/accepted_submissions/PLoP2001/ebfernandezandrpan0/PLoP2001_ebfernandezandrpan0_1.pdf
http://hillside.net/plop/2005/proceedings/PLoP2005_ndelessyandebfernandez0_1.pdf
http://hillside.net/plop/2005/proceedings/PLoP2005_ndelessyandebfernandez0_1.pdf
http://www-306.ibm.com/software/tivoli/products/access-mgr-e-bus/
http://www-306.ibm.com/software/tivoli/products/access-mgr-e-bus/
http://www.cisco.com/en/US/products/sw/iosswrel/products_ios_cisco_ios_software_category_home.html
http://www.cisco.com/en/US/products/sw/iosswrel/products_ios_cisco_ios_software_category_home.html
http://www.suse.de/%7Eagruen/acl/linux-acls/online/
http://www.cs.vu.nl/pub/amoeba/
http://hillside.net/plop/2006/Papers/Library/Even_more_patterns.pdf
http://hillside.net/plop/2006/Papers/Library/Even_more_patterns.pdf
http://hillside.net/plop/2006/Papers/Library/PLoP2006_Credential.pdf
http://hillside.net/plop/2006/Papers/Library/PLoP2006_Credential.pdf

	1. INTRODUCTION
	2. POLICY-BASED ACCESS CONTROL
	Example
	Context
	Problem
	Solution

	Structure
	Dynamics
	Example Resolved
	Known Uses
	Consequences
	Related Patterns

	3. ACCESS CONTROL LIST
	Example
	Context
	Problem
	Solution
	Structure
	Dynamics
	Example Resolved
	Known Uses
	Consequences
	Implementation
	Related Patterns

	4. CAPABILITY
	Example
	Context
	Problem
	Solution
	Structure
	Dynamics
	Example Resolved
	Known Uses
	Consequences
	Implementation
	Related Patterns

	5. CONCLUSIONS
	6. ACKNOWLEDGEMENTS
	7. REFERENCES

