
Stateless Process Enactment

Raf Haesen Lotte De Rore Stijn Goedertier

Monique Snoeck Wilfried Lemahieu Stephan Poelmans

Katholieke Universiteit Leuven
Department of Decision Sciences & Information Management

Naamsestraat 69, B-3000 Leuven, Belgium
firstName.lastName@econ.kuleuven.be

1. NAME
Stateless Process Enactment

2. ALIAS
Flowless Workflow

3. AUDIENCE
Business process designers, Process-Aware Information

Systems designers

4. MOTIVATION
John from the claims department at InsuranceCo is quite

dissatisfied after his exploratory study of some popular work-

flow engines available in the market. In his opinion, they all

act like some “Big Brother” who needs complete control over

all existing information systems. John considers their claim

handling process that is enacted by such a workflow engine,

but for which a specific activity can be executed without in-

tervention of the engine. However, in that case, the state of

the running process will not be updated in the workflow en-

gine and as a consequence it will be erroneous. Stateless

Process Enactment facilitates the construction of a work-

flow engine, in which the state of processes is not explicitly

stored.

5. CONTEXT
An average company contains many information systems

that are typically designed according to a layered approach:
the lowest layer contains a set of database transactions that
enable the consistent retrieval and modification of business
data. On top of this data layer, applications are offered
that support the execution of clearly delineated activities,
such as opening a new claim case, registering damage, fraud
detection or indemnity payment.

Preliminary versions of these papers were workshopped at Pattern Lan-
guages of Programming (PLoP) ’07 September 5-8, 2007, Monticello, IL,
USA. Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission. Copyright is held by the authors. ISBN: 978-1-60558-411-9.

In the topmost layer, a business process represents the co-
ordination of a set of activities to achieve a high-level busi-
ness goal. For example, a claim handling process coordi-
nates different activities to process insurance claims. The
coordination of these activities can be automated by means
of a workflow engine that interprets process descriptions and
manages the accompanying process instances.

Figure 1 sketches a typical service-oriented enterprise ar-
chitecture, in which each service type externalizes function-
alities of a particular layer. A business domain offers busi-
ness concept services and activity services, while a workflow
engine offers workflow services:

• Business concept services provide access to business
data and associated business logic in a transactional
way.

• Activity services support the execution of activities to
be executed by human actors or machines. An activity
service can use one or more business concept services.

• Workflow services coordinate activity services accord-
ing to a business process.

Activity
Service 1

3

4 5

6

Activity
Get next
Activities

Manage
State

Execute

2

Any business domain Workflow Engine (infrastructure)

Workflow Service

Service
Business Concept

Figure 1: Service-Oriented Enterprise Architecture

Figure 1 also indicates the main steps of process enact-
ment: the workflow engine typically guides the actor to a
particular activity service (step 1). Eventually one or more
business concept services will change a part of the business
data (step 2). After execution of the activity, the workflow
service continues the enactment of the process (step 3). Af-
ter the workflow service has assessed the state of the process
(step 4) the next activities can be determined (step 5) and
executed (step 6).



6. PROBLEM
Figure 2 shows a typical representation of a business

process, using the Business Process Modeling Notation
(BPMN). Since all activities and their routing are explic-
itly predefined, state can be maintained in an efficient way,
as it only involves updating one or more points of execution.
The example represents a simplified version of a claim han-
dling process with the sole focus on the control flow between
the activities. After the case is opened, a claim handling ex-
pert needs to assess the damage of the involved object. Sub-
sequently, the indemnity can be calculated in parallel with
the investigation for a possible fraudulent case. If fraud is
detected, the case is immediately closed; otherwise the in-
demnity is paid and finally the claim case is closed.

Most existing workflow engines explicitly store the state
of running process instances as part of the workflow control
data [5]. Such a workflow engine is called stateful since the
enabling (pre-condition) and completion (post-condition) of
activities is explicitly maintained in the engine for each ac-
tivity of the process.

Stateful enactment boils down to the replication of the
state of business concepts into the workflow engine, entail-
ing all known problems associated with replication of data
such as synchronization issues. The following two scenar-
ios will show how inconsistencies can arise between the data
in the business domains and the workflow control data (see
Figure 3):

1. Experts should not be forced to follow predefined pro-
cesses since the obligation to follow a predefined path
of activities might be counterproductive. For example,
a senior claim handler with many years of experience
knows which activities he has to perform to handle a
claim without the assistance of a workflow engine. As
a consequence the workflow engine may not be notified
about the completion of each executed activity.

2. To reduce costs, the workflow engine may be installed
on a machine with low Service Level Agreements.
Therefore the engine may occasionally fail. Suppose a
particular activity – of a process under control of the
workflow engine – has successfully been executed but
flagging off that activity in the workflow engine fails
because the engine is down at that moment. In other
words, activity execution and process state modifica-
tion form no single unit of work (UOW). If the engine
is up again, it will return that same activity since for
the engine it appears not to be executed yet. The re-
peated execution of one activity may obviously leave
the system in an incorrect state.

Summarizing the problem, a workflow engine may

fail or an actor may choose not to be assisted by a

workflow engine. How can we ensure that the use

of a workflow engine is optional?

7. FORCES
The forces can be described in terms of a set of quality

characteristics that need to be considered. Furthermore it is
appropriate to distinguish between forces that arise during
process modeling (design time) on the one hand and process
enactment (runtime) on the other hand.

Workflow
Control Data

Service
Activity

1

3

4 5

6

Activity
Get next
Activities

Manage
State

Execute

2

Any business domain Workflow Engine (infrastructure)

Workflow Service

Business Concept
Service

Concepts
Business Consistent ?

Figure 3: Architecture for stateful process enact-

ment

• Process modeling forces

– Executability: The specification of a process is
interpreted by the workflow engine. Therefore the
specification must be complete and correct. Ac-
tivities of a process model like the one in Figure 2
are identified only by their respective names. To
improve executability the workflow engine should
e.g. be able to automatically determine when a
particular activity can be registered as completed.

– Comprehensibility: A process model must be
easily understood by business people. For exam-
ple, Figure 2 depicts a process model that can
easily and rapidly be interpreted. However, in or-
der to enable the automated execution of business
processes (executability force), the corresponding
process models should be as detailed as possible,
which will most likely be at the expense of the
understandability for the human actors.

– Flexibility: In order to minimally constrain a
human actor, a process model should allow the
execution of a ‘happy path’ and some variants
of that path. However, each variant should not
be explicitly elaborated, as it will lead to overly
complex process models.

– Expressivity: A process modeling language
should have a rich semantics that enables mod-
eling all relevant requirements. The Workflow
Patterns initiative1 has identified different cate-
gories of patterns that should be supported by a
workflow engine. A distinction is made between
control-flow, data, resource, operational and ex-
ception handling patterns.

• Process enactment forces

– Performance: The introduction of workflow
support should not create performance issues,
especially not in the existing operational infor-
mation systems. As explained in the context,
activity services and business concept services
are often realized by means of optimized main-
frame transactions. During process enactment
the workflow engine should influence these trans-
actions to the minimal amount possible.

1See http://www.workflowpatterns.com



Detect

Fraud
Possible

Calculate
Indemnity

Identify
Object

Damage

Open
Claim
Case

Pay
Indemnity

Close
Claim
Case

fraud?
yes

no

Figure 2: Claim handling process

– Progress monitoring and enforcement: The
workflow engine must ensure that enabled activ-
ities are effectively being executed. The problem
description states that an actor may execute ac-
tivities without intervention of the workflow en-
gine. However, these activities may influence the
state of process instances and therefore the activ-
ity instances that need to be executed.

8. SOLUTION
Synchronization problems between business data and pro-

cess state can be avoided if the process state is not explicitly
stored. Therefore, one should create a workflow engine that
reconstructs the process state each time it is needed. Such
a workflow engine is stateless since the conditions for en-
abling and completing activities are derived from the state
of one or more business concepts. As illustrated in Fig-
ure 4, the workflow engine reconstructs the state of a pro-
cess through the use of business concept services, each time
the next possible activities are to be determined. As op-
posed to stateful process enactment, the state of a process
is not explicitly stored as part of the workflow control data.

Service
Activity

Business
Concepts

1

3

4 5

6

Activity
Get next
Activities

Derive

Execute

2

State

Any business domain Workflow Engine (infrastructure)

Workflow Service

Service
Business Concept

Figure 4: Architecture for stateless process enact-

ment

Stateless process enactment can be seen as the extension
of one of the key principles of the case handling paradigm,
which states that an activity is completed if the associated
mandatory data objects are entered [4]. As illustrated in
Figure 5, both the pre-conditions and post-conditions of an
activity depend on (the existence and/or state of) one or
more (attributes of) business concepts. If the pre-conditions
of a particular activity in the context of a process are met,
that activity can be executed. On the other hand, an ac-
tivity is completed if all its post-conditions are met. Note
that the pre- and post-conditions can be added to the ac-
tivities of an existing process model. However, as we will
illustrate below, a set of activities enriched with pre- and
post-conditions describes an (implicit) process model on its

own.

Activity

Business
Object 1

Business
Object n

PRE POST

Figure 5: Activity pre- and post-conditions

Consider the enactment of the claim handling process in
a stateless way. To do so the activities must have pre- and
post-conditions that are expressed in terms of business con-
cepts. An overview of the relevant business concepts and
their attributes is depicted in Figure 6 using the Unified
Modeling Language (UML). A client has one or more con-
tracts and each contract insures one or more objects. For the
sake of simplicity, we assume that each claim case is about
exactly one damaged object. A claim case can be in five dif-
ferent states: opened, fraudulent, genuine, paid and closed.
The possible indemnity of a case can be derived from the
assessed damage of an insured object.

«enumeration»

ClaimCaseState

opened
fraudulent
genuine
paid
closed

Claim Case

state: ClaimCaseState
indemnity

Client

Object

value
damage

Contract

* 1

1

1 object

1

*

* 1

Figure 6: Relevant business concepts

Table 1 shows the set of activities and their accompanying
pre- and post-conditions. These conditions can be added to
the process model (Figure 2) or the set can be used as a
process model on its own.

Activity Pre-conditions Post-conditions

Create Claim Case /
ClaimCase cc exists and

cc.state = opened

Identify Object Damage cc.state = opened
cc.object exists and

cc.object.damage filled out
Calculate Indemnity cc.object.damage filled out cc.indemnity filled out

Detect Possible Fraud cc.state = opened
if fraud
then cc.state = fraudulent
else cc.state = genuine

Pay Indemnity
cc.indemnity filled out and

cc.state = paid
cc.state = genuine

Close Claim Case
cc.state = paid or

cc.state = closed
cc.state = fraudulent

Table 1: Claim handling activities, pre- and post-

conditions



9. CONSEQUENCES
In most existing process modeling notations, the pre- and

post-conditions on activities are often only implicitly spec-
ified as part of the control flow (arrows, messages and the
conditions associated to gateway constructs). For stateless
process enactment instead, one is obliged to model these
conditions as they are used for deriving the process state
at runtime. This clearly enhances the executability of the
process since it is precisely defined when an activity is en-
abled or completed. When using typical process models, the
workflow engine has no clue when an activity is completed
until it receives an explicit notification. Moreover the engine
can not verify the completion of the activity; it merely has
to ‘believe’ the sender of the notification. This approach is
error-prone especially for activities that require human in-
put. On the other hand, explicitly modeled post-conditions
enable the engine to verify them. Besides improving the
workflow engine’s executability, allowing the specification of
pre- and post-conditions also extends the modelers’ expres-

siveness.
The major drawback of this approach is the possibly in-

tolerable drop in performance that may occur. Each time
the workflow engine needs to derive state, all attributes that
occur in the pre- or post-conditions must be queried in or-
der to evaluate the conditions. Obviously, these operations
can be extensively time-consuming if the process consists of
many activities with many conditions to be checked.

The number of attributes to be retrieved can be de-
creased by adding “meta-state” attributes to business con-
cepts. Those attributes explicitly indicate the state of the
concept. For example, the state of an order (requested,
shipped, paid, etc.) is often added as an attribute of order,
or the claim case state in Figure 6 is a meta-state attribute
of a claim case. Although such attributes simplify the recon-
struction of process state, one should not be tempted to add
attributes to business concepts only for the sake of a partic-
ular process. This obviously moves process information in
the business concepts and consequently hinders separation
of concerns. Note however that the addition of attributes
to business concepts does not reintroduce the problems of
the stateful approach since all state information stays part
of the business concepts.

As indicated in the solution, it is possible to add pre- and
post-conditions to an existing process model or it is possible
to specify a set of activities only in terms of its pre- and post-
conditions. This way a process can be seen as an unstruc-
tured set of activities in which an activity can be executed as
soon as its pre-conditions are met. Such a specification of-
fers the most flexibility since appropriate execution paths
can be inferred at runtime. For example, according to the
process model in Figure 2, it is possible to execute activity
“Detect Possible Fraud” only after “Identify Object Dam-
age” is executed, while according to Table 1 this is allowed
as soon as the claim case is created. This way the claim
handler has more freedom in deciding when to execute the
activity. As another example, consider a claim handler who
finds evidence to have the activity “Detect Possible Fraud”
executed again at some arbitrary point in time after its first
execution. Obviously, the process model in Figure 2 must be
heavily extended to support this plausible scenario, whereas
in the stateless approach, the claim handler can schedule
this activity as long as its pre-conditions are satisfied.

In the stateful approach process progress is monitored and

enforced in the workflow engine by updating the state of
the process after a completed activity returns control to the
workflow engine. If particular activities become enabled, the
engine has three options: (a) the engine waits for an actor
to execute the activity; (b) the engine executes the activity
if it requires no actor input; (c) the engine sends one or
more tasks to actors who should execute the activity. The
workflow engine can always send notifications when activity
deadlines have to be respected.

In the stateless approach it is more complex to moni-

tor and enforce progress if an activity that requires ac-
tor input is executed without assistance of the workflow en-
gine. Indeed, in this case the workflow engine has no clue
when that activity is completed. Despite this fact there are
two possible approaches to make sure that progress is en-
forced. Firstly, the workflow engine can regularly calculate
the state of a process to see if activities must be executed or
tasks must be distributed. Given the previously discussed
performance issues, it is indispensable to set an appropri-
ate polling frequency. A second approach avoids this thorny
task, namely by using a publish/subscribe mechanism: the
workflow engine subscribes to particular data changes (pub-
lished by business concept services) that influence activity
pre- and post-conditions, so the workflow engine reacts only
when necessary. A separate component in the workflow en-
gine should (a) manage the subscriptions for each process
and (b) possibly group multiple notifications before state is
recalculated.

A control-flow based notation requires the explicit mod-
eling of each process variant, which must be represented
by a path in the model. For complex processes, this leads
to gigantic models that are difficult to comprehend. On
the contrary, processes with only a few variants can easily
be represented and interpreted using graphical flow chart-
like notations like BPMN. In addition, many tools offer an-
imation to visualize and simulate process execution, which
makes them indispensable for business people that need to
assess as-is as well as to-be processes in a quick and effi-
cient way. Finally, it is very hard to understand and verify
the eventual behavior of a group of activities that are only
specified by means of pre- and post-conditions. Even a sim-
ple set of rules, such as the ones represented in Table 1, are
quite complex to understand.

10. KNOWN USES
As discussed in [4], only a few workflow management sys-

tems, such as FLOWer [2] and COSA [3], support the case
handling paradigm. As we already mentioned earlier, the
case handling paradigm embraces only part of this pattern:
(a) only post-conditions of an activity can be expressed in
terms of mandatory data objects that must exist and (b)
a data object is the single fine-grained construct to express
post-conditions. The open-source workflow engine, called
con:cern (http://con-cern.org), fully applies this pattern.

This pattern is also part of the EM-BrA2CE framework,
a unifying vocabulary and execution model for declarative
process modeling [1]. Declarative process models represent
business processes as trajectories in a state space, in which
valid movements are described by declarative rules. In this
pattern valid trajectories are constrained by pre- and post-
conditions and the state space consists of business concepts.
On the other hand, the EM-BrA2CE framework is more
generic since it distinguishes ten additional rule types that



govern the execution of activities. Secondly, a state space
does not only contain business concepts, but also other con-
cepts such as activities, events and agents. The richer vocab-
ulary facilitates the expression of more rule types to cover
the contemporary business scenarios.

11. ACKNOWLEDGMENTS
The authors would like to express their gratitude to our

shepherd António Rito Silva and the members of the ‘Cen-
taur’ group of the Writers’ Workshop, whose suggestions
greatly enhanced this pattern.

This pattern has been written as part of the KBC-
Vlekho-K.U.Leuven research chair on ‘Service and Compo-
nent Based Development’ sponsored by KBC Banking & In-
surance.

12. REFERENCES
[1] S. Goedertier, R. Haesen, and J. Vanthienen.

EM-BrA2CE v0.1: A vocabulary and execution model
for declarative business process modeling. FETEW
Research Report KBI 0728, K.U.Leuven, 2007.

[2] Pallas Athena. Case handling with flower: Beyond
workflow. Technical report, Pallas Athena, Apeldoorn,
The Netherlands, 2002.

[3] Software-Ley. Cosa activity manager. Technical report,
Software-Ley GmbH, Pullheim, Germany, 2002.

[4] W. M. P. van der Aalst, M. Weske, and D. Grünbauer.
Case handling: a new paradigm for business process
support. Data and Knowledge Engineering,
53(2):129–162, 2005.

[5] WFMC. The workflow reference model. Technical
Report WFMC-TC-1003, Workflow Management
Coalition, 1995.


