
Software Pattern Communities: Current Practices and

Challenges
Scott Henninger, Victor Corrêa
Computer Science and Engineering

University of Nebraska-Lincoln
256 Avery Hall

Lincoln, NE, USA
+1 (402) 472-2401

{scotth, vcorrea}@cse.unl.edu

ABSTRACT

Software pattern designers and users have few resources available

to support pattern-based development practices. Patterns are

currently disseminated in disjoint collections in various

publishing mediums with little or no technology support. As the

number of patterns and diversity of pattern types continue to

proliferate, pattern users and developers are faced with difficulties

of understanding what patterns already exist and when, where,

and how to use or reference them properly. This defeats the very

purpose of patterns as a medium to encapsulate and disseminate

recurring design experiences. In this paper, an initial study among

a set of pattern collections is performed to better understand the

difficulties related to improve pattern-based support for software

development activities. Based on the empirical survey, challenges

are identified that define impediments to the federation of

software patterns into an interconnected body of knowledge. A

Semantic Web ontology is presented as an initial attempt at

solving some of these issues through the use of Web-based

ontologies.

Categories and Subject Descriptors

D.2.m [Software Engineering]: Miscellaneous – Reusable

Software; K.6.3 [Management of Computing and Information

Systems]: Software Management – Software Development.

General Terms

Design, Documentation, Management, Measurement,

Experimentation.

Keywords

Design Patterns, Software Pattern Collections, Pattern-Based

Software Development, Semantic Web, Ontologies.

1. SOFTWARE PATTERNS IN PRACTICE
The Software patterns encapsulate proven solutions extracted

from the experiences of software developers that address recurring

problems within a context [25]. The concept of using patterns to

disseminate and document design knowledge derives from

Alexander‟s notion of design patterns for Architecture [4]. The

main intention of design patterns has dual connotations:

1) provide a common vocabulary by which people can succinctly

communicate well-known solutions to recurring problems; and

2) create a systematic language for developing holistic solutions

by composing patterns at different levels of abstraction [3]. While

the former concept of patterns as vocabulary has been widely

embraced by the software patterns community, far less attention

has been paid to meeting the challenge of achieving pattern

languages for systematic design. While this problem has been

recognized for some time [2, 37], little progress has been reported

to date.

It can be argued that the informal use of software patterns have

become ubiquitous in software development research and practice

[24], at least with respect to an awareness of the topic and

collective knowledge of a few well-known patterns. Current

design pattern practices have focused on identifying and

describing patterns and patterns collections/languages (see

Section 2.2 for further discussion on pattern languages and

collections). These patterns are designed for human consumption

alone. Pattern users (software designers, etc.) are expected to

study patterns in a collection and add them to their cognitive

repertoire of techniques. This representation must be preserved, as

most pattern collections are described at a level of abstraction that

requires human interpretation of pattern contents and adaptation

to the implementation context. But this practice is limited by

human cognitive ability, that can only master a few patterns [1,

37] that add to an already burgeoning tool mastery burden [11]

facing software developers. Patterns now exist for a wide range of

software development topics, from process patterns to code

patterns at various levels of abstraction to maintenance patterns.

The scale of published software patterns is reaching a point where

it is becoming infeasible to know all potentially relevant patterns,

let alone understand when a given pattern should be applied to a

specific context. The need for tools to help people find,

understand, and apply patterns is becoming a critical need.

In addition, free text representations severely limit the potential of

tool support for pattern-based design methods. More formal

specifications for pattern languages enhance machine processing

capabilities [17, 34], such as search and automated translation to

code or models, but lose the human readability aspects that are

critically important to the utility of software patterns.

Representations and tools are needed that both retain human

Preliminary versions of these papers were workshopped at Pattern

Languages of Programming (PLoP) ‟07 September 5-8, 2007,

Monticello, IL, USA. Permission to make digital or hard copies of all or

part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation on the

first page. To copy otherwise, to republish, to post on servers or to

redistribute to lists, requires prior specific permission. Copyright is held

by the authors. ISBN: 978-1-60558-411-9.

readability while enhancing automated processing and

search/browsing capabilities.

The overall objective of this research is to describe the current

state of software patterns and enumerate existing barriers for using

patterns as a more effective software development tool. We begin

by surveying currently available pattern collections, focusing on

the scale, diversity, and other factors that characterize current

software pattern practice. Drawing on this empirical data, we then

identify a number of challenges for transitioning from current

practices to realizing the potential of patterns as a unified

(federated) body of knowledge. We conclude by briefly describing

our plans to utilize Semantic Web technologies as a promising

technical solution that meets many of the challenges we identify.

2. SURVEYING SOFTWARE PATTERN

COLLECTIONS
The overall goal of the software pattern community has been to

build a body of literature to support software design and

development efforts. This culture of focusing on documenting

sound design principles and cataloging best practices are a first

step toward codifying software design knowledge. This has in turn

led to the development of a number of patterns across a wide

range of topics.

To better understand the scope and content of current available

patterns, where “availability” is defined as being either in a

published form (books, journals, proceedings) or in Web pages,

we have conducted a survey. Thus far, we have sampled 170

pattern entities (collections and individual patterns not in a

collection) with a total of 2,241 patterns. Although “patterns” (in

the Alexandrian sense) have been created for a number of

disciplines, we focused solely on those related to software

development and the software development process, including

topics such as software project management. The patterns

surveyed ranged widely from those that were closely related to

programming activities and could potentially be used in

automated code development to process and management patterns

that are strictly informational. The following sections explain our

findings in detail, but we should be clear that our purpose is not to

simply enumerate the different patterns available, but to analyze

our findings to find current trends in pattern practices. Since

pattern collections normally represent a coherent domain of

interest, we focused on “collections”, sets of patterns (although

some are single patterns) gathered in a single location, and the

types of patterns these collections contain.

2.1 Method
The definition of a pattern is particularly troublesome. One could

say it is a structured text representation consisting of attributes

describing a „problem‟, a „solution‟ and a „context‟ and/or

„forces‟. But there are many known software patterns that use

freeform text and others that use concepts that do not map well to

problem/solution/context/forces. In addition, due to the lack of

clearly defined standards, any author can claim that their text is a

pattern. It takes some community debate and a considerable

amount of expertise to state “definitively” whether the text is

indeed a pattern.

Given these issues we adopted the following attributes: Problem

AND Solution AND (Forces OR Context) as our least common

denominator for considering the contents of a collection as

patterns. Where possible, we sampled the contents of collections,

looking for evidence that these attributes, whether in structured or

free-form text, were present. This was not possible for all

collections. For example, we cannot reasonably have access to all

pattern books and other printed publications. In these cases, we

made conjectures about inaccessible pattern collection contents

based on tables of contents, Web pages, and other sources.

Appendix A shows a full listing of all collections used in this

(evolving) study.

We began with some well-known pattern collection portals such

as Hillside [28], Appleton‟s Web page [6], the Portland Pattern

Repository [16], etc. The collections referenced in these portals

sometimes pointed to other collections that were included as well.

Note that both the searches and pointers to collections referenced

books and published literature as well as other pages (see Section

2.8). There were also a number of other well-known pattern

collections that were used as initial references. Amongst these are

the GoF book [25], PLoP proceedings, POSA [12, 30, 42],

Fowler's Analysis Patterns [23], the Amsterdam Usability patterns

[50], Tidwell‟s UI Patterns [48], the J2EE Patterns [46], the

Yahoo! Pattern Library [51], and a handful of others. These

collections also provided a set of exemplars for considering other

pattern collections and often provided references to other

collections.

When these links were exhausted, Google was used to search for

pattern collections using key phrases such as “software pattern”,

“pattern collection”, etc. Once a collection was found, we sampled

patterns from the collection or carefully considered whether the

assertion that the reference contained software patterns was

sound. In some cases an informal reputation criteria was used. I.e.

if the collection was referred to as a pattern collection by known

pattern collections, then it was considered a pattern collection for

our study.

In the end, it is impossible to tell whether something is a “pattern”

or not and could be the source of considerable debate. Our

approach was to make careful but practical conjectures on what

we felt could be named a pattern/pattern collection. As this

research proceeds, we will seek input from the patterns

community, both authors and users, to help refine our conjectures

for accuracy and continuously refine our listing, the current

version of which is found in Appendix A.

2.2 Patterns and Pattern Collections
The definitions we used are as consistent as possible with current

software pattern literature. Patterns are considered as structured

entities that address a commonly recurring problem within a

context. For this study, we do not make any value judgments on

the validity or quality of patterns, whether they have been

properly vetted, or whether they were duplicates (although see

Section 2.5). Pattern collections are loosely coupled patterns

located in a common location (repository, paper, book, Web site).

Most collections address a fairly homogeneous set of topics and

consistently use a common pattern form, a set of attributes used to

describe the collection‟s pattern, although pattern form vary

widely between collections.

Many collections are referred to as pattern languages. It can be

argued that many of these languages, which in Alexander‟s vision

were connected by a kind of “grammar” that supported the

composition of patterns from large to small scale [4], lack the

means to systematically compose patterns into holistic design and

therefore are not “languages”. In the very least, one would expect

the pattern language to show clear dependency relationships

between the patterns, such as one pattern being required before

another pattern can be applied. We will leave it as a topic for

further debate in the community and/or future research define

precise differences between languages and collections [41]. For

the purposes of this study, we have opted to use the term

“collection” to refer to any body of patterns, whether considered

a language or not. The overall criterion we want to communicate

is that individual patterns should be seen as a piece of a larger

puzzle that together sheds light on a body of design knowledge.

Indeed, the objective of our future work is to provide the means to

put these pieces together in a meaningful way.

2.3 Scale and Availability of Software

Patterns
Even before 2000, when Rising published a catalog of over 1000

individual patterns [40], it was stated that “...there are now so

many patterns it is very difficult to remember them all” [14] and

that “the increase in the number of Design Patterns makes a

common vocabulary unmanageable” [1]. Since then, the number

of patterns has more than doubled and has been created for an

increasing diverse set of software development topics. Figure 1

shows our current sampling in terms of the year they were created

(we could not determine the year of origin for 9 patterns).

The size of collections ranges from 1 (which really isn‟t a

collection) to 146. Note that with the exception of a down year in

2006, the number of patterns developed have been rather

consistent at over 200 patterns per year since 2002 (2007 has

partial data as the survey was performed in April 2007) Figure 2

reveals that collections tend to be small. Excluding the 46

individual patterns, 70 of 121 collections (58%) have between 2

and 10 patterns. The mode is 5 patterns in a collection and the

average is 18, being skewed by a collection with 146 and two with

over 90 patterns. The pattern listing in Appendix A is sorted by

the number of patterns in the collection.

Figure 2. Number of Patterns within Collections.

2.4 Types of Software Patterns
The development of pattern languages addressing holistic

solutions for software requires patterns that address a wide variety

of topics. Table 1 shows a subset of these topics that are related to

technical (software-oriented) domains. The largest number of

patterns is User Interface design patterns. OO Design has the

largest number of collections, meaning that UI design collections

tend to be larger in size. Not all patterns address software

development technologies. Forty-one of the collections (546

patterns) do not fall under the 17 categories shown in Table 1.

Many of these patterns address specific application domains,

leading to even more diverse pattern types.

Table 1. Pattern Diversity by Technical Domain

Type #Collections #Patterns

User Interface 14 425

Programming Languages 14 243

Architecture 11 231

OO Design 33 161

Workflow 11 149

Systems 14 140

Communication 11 91

Database 5 54

Frameworks 4 51

Components 3 47

Parallelization 3 35

Security 2 16

Management 2 12

Concurrency 7 11

Networking 3 11

Information Integrity 1 10

Fault Tolerance 1 8

34

221

296

164

57

189

117

37

176

6

211 215

307

90
111

0

25

50
75
100
125

150
175

200
225
250
275
300
325

1994 1995 1996

6

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
Year

r

N
u

m
b

e
r
 o

f
P

a
tt

e
r
n

s

Figure 1. Number of Patterns, 1994 - 2007.

Another measure of pattern diversity is the ability to address

various software development issues, both process and lifecycle.

Out of all patterns found, about 86% of the patterns addressed

software development issues. Figure 3 shows the distribution of

patterns across types of software development activities. Design

and Architecture patterns constitute a majority of the types of

development patterns (65%). The types of patterns available are

quite broad, although testing patterns, in particular, seem

underrepresented relative to the amount of effort that goes into

testing techniques. Thirty of the collections, containing a total of

315 patterns, were not classified as software development patterns

and do not appear in Figure 3.

Figure 3. Types of Software Development Patterns.

2.5 Variants and Duplicates
In our investigations, we have found few instances of direct

duplication. For example, there are at least four instances of the

“Breadcrumbs” usability pattern [13, 43, 50, 51], one of which

uses the (more appropriate) name “Homeward Bound” [13]

(which includes a study showing that Breadcrumbs does not solve

the problem – enhancing navigation in Web sites). But pattern

variants are much more common. For example, Dyson and

Anderson split the GoF State pattern into a set of intra-related

patterns forming a language of the overall GoF State pattern [5].

Variants of the GoF Observer pattern include the “Extended

Observer” [49] and “The Middle Observer” [29]. GoF Patterns

have also been combined to make new aggregate patterns such as

the Managed Observer, which combines the Observer and

Mediator patterns [34].

There are many other examples that seem to be valid by

Alexander‟s definition that a good pattern describes “the core of

the solution to that problem in such a way that you can use the

solution a million times over without doing it the same way twice”

[3]. Others are more oriented toward specific implementations.

For example, the GoF Iterator pattern has documented variants

including patterns that follow the Iterator and Enumeration classes

in Java [18]. Some of these implementation-oriented patterns may

not be considered as distinct from the original Iterator pattern by

many pattern experts.

There are often good reasons for these variants, and they therefore

not only need to be embraced, but represented in terms of how

and when the variants should be used. This also adds a dimension

of semantic complexity to the problem of finding appropriate

patterns. I.e. once appropriate patterns are found, a secondary task

arises to choose which variant is best suited to the task at hand.

2.6 Pattern Relationships
Perhaps most concerning for the development of systematic

pattern-based methodologies is that patterns tend to be defined in

isolation from other pattern collections, having no inter-collection

links or relationships. While many pattern collections either have

explicit references to “related patterns” or embed pattern

relationships within pattern descriptions, most relationships are

intra-collection, i.e. between patterns within the collection. Cross-

collection (inter-collection) relationships are rarely found, and

most references are to a minority of collections, notably the GoF

or POSA patterns. Out of 170 collections, we were able to find

only one instance that lists URL references to patterns in other

collections, the Web patterns collection [43]. However, the URLs

in this collection are listed in plain text and not hyperlinks.

Even within pattern collections, intra-collection relationships are

not always represented explicitly through a “related patterns” or

other attributes. Even rarer are instances in which machine-

processable links, such as URLs, are used. As stated, some links

between patterns in the collection are found in the pattern text, a

reasonable way to describe a pattern and its overall context with

other patterns. Nonetheless, the lack of explicit links between

patterns to define relationships between patterns, whether inter- or

intra-collection, remains an impediment for computational pattern

language support.

2.7 Pattern Forms
One issue that may contribute to the lack of cross-reference (inter-

collection) relationships is the lack of consistency between pattern

forms. Most pattern collections use a common pattern form,

consisting of a set of named attributes that describe collection

patterns, to describe all patterns within the collection, although

some collections use a flat-text format. Almost every pattern

collection we surveyed used a different pattern form. Table 2

shows some of the complexities involved through three example

pattern forms. Even where the attributes have the same meaning,

different terms are used, such as “also known as” and “alias”.

Others are more subtly similar, such as “motivation” (GoF) and

“problem” (POSA), which may be misaligned enough to not be

used as the exact same attribute.

Standard formats have been proposed to incorporate a wide

variety of pattern forms. PLML is specified as a DTD schema

where none of the elements are required so that free-text forms

can be accommodated [21]. This allows flexibility, but still does

not accommodate all pattern forms, as shown in Table 2. Not all

pattern form attributes are appropriate for all pattern types. For

example, the GoF „collaborations‟ and „participants‟ attributes

refer to specific object-oriented design constructs and will not be

appropriate for other design methodologies or other pattern types.

Any standard form will need to be both flexible and able to

accommodate a wide variety of pattern types while retaining a

degree of formal representation for computational queries and

browsing.

2.8 Pattern Publishing Mediums

Patterns are available in a number of publishing mediums, from

books to proceedings to Web sites. Figure 4 shows the

distribution of patterns across these mediums. Much of the

distinction is between printed and electronic mediums. Although

31% of the patterns are electronically inaccessible in book format

(proceedings, journal, book), 69% are electronically accessible in

the Web. However, less than half (44%) of the Web-accessible

patterns are represented using structured text such as HTML (10%

of patterns), or XML (1 collection of 120 patterns). The other

57% are available through PS/PDF/Word files. In Figure 4,

“Hardcopy” means any printed form, such as books, proceedings,

and journals. Patterns in the “Hardcopy & PS/PDF/Word”

category means that the patterns were published in hardcopy and

all patterns in that publication are also available in a

downloadable form. For example, the GoF patterns are available

in book form only and therefore appear in the “Hardcopy only”

category. As an example, although various GoF patterns are

available on the Web from third-person authors, the original book

is not available electronically. PLoP proceedings are hardcopy but

can be downloaded in PDF format. Therefore, they are placed in

the “Hardcopy & PS/PDF/Word” category. The same is true for

the “Hardcopy & HTML”, although some Web pages for books

have only a subset of their patterns online. These are divided into

their respective categories. For example, suppose we have a

printed collection of 24 patterns, 10 are in the publication‟s Web

page. Then 10 would be used for the “Hardcopy & HTML”

category, and 14 (24-10) appear in the “Hardcopy only” category.

Figure 4. Types of Electronic Accessibility.

3. TOWARDS PATTERNS AS A UNIFIED

BODY OF KNOWLEDGE
There is a great potential for software patterns to become a

medium for defining knowledge about best practices for software

development and about domains of expertise in software

development. In many respects, this is already happening. The

process of vetting patterns through shepherding processes is a

peer review process that ensures a degree of quality. In addition,

most patterns define structured knowledge representations

(pattern forms) that can be utilized to search for relevant patterns

by different attributes – problem, solution, context, author, etc.

But software patterns have yet to receive the widespread use

commensurate with the potential of the technique. As shown in

our study, the scale and diversity of patterns has reached the point

where tools are needed to help pattern users and developers find

and discover potentially relevant patterns. Critical to the issue of

tool support is utilizing existing patterns and defining the

infrastructure for new pattern development and refinement. Given

the haphazard way in which patterns have been created thus far,

many issues need to be addressed before software patterns become

an integral part of software development practices.

Table 2. Mappings Between Three Pattern Forms.

GoF POSA PLML

name name name

author author author

implementation implementation implementation

consequences consequences

known uses known uses

structure structure diagram

motivation problem problem

applicability context context

related patterns see also related-patterns

intent

collaborations

participants

sample code

also known as alias

 summary synopsis

 solution solution

 example example

 example resolved

 dynamics

 variants

 forces

 evidence

 rationale

 literature

 confidence

 management

 illustration

 pattern-link

 creation-date

 credits

 last-modified

 revision-number

3.1 Six Challenges for Federating Software

Patterns
Through our empirical work, we have identified a set of

challenges for federating the currently disconnected realm of

pattern collections into an interconnected body of knowledge.

Our challenges are heavily biased toward federating currently

heterogeneous patterns in a distributed electronic format utilizing

Web technologies. In addition, the development of communities

that build on their collective intelligence in a “network effect”

[10] is crucial to the realization of this vision. To achieve these

goals, the following challenges must be met.

3.1.1 Electronic Accessibility
A wide variety and large number of software patterns are available

in electronic form. While all of these can be accessed through the

Web, about a quarter of these are available in HTML and XML, a

total of 537 patterns in the collections we surveyed. Many more

are available in PDF or other txt-based document formats. The

challenge is to turn these patterns into formats that can be

searched and browsed through pattern attributes. XML formatting

is most amenable to this and other forms of machine computation.

HTML and other file formats will either need to be converted into

some XML or database form or have some kind of wrapper that

supports attribute-based querying. While this involves some

effort, the benefit of interconnecting the patterns may prove

worthwhile.

3.1.2 Lack of Standard Pattern Forms
The pattern forms in Table 2 are indicative not only of the

heterogeneous pattern forms available, but also the complexities

involved in reconciling the attributes of forms to support querying

and browsing. The lack of formal and widely adopted standards

adds a rather cumbersome barrier to develop patterns in a way that

can be meaningfully communicated and inter-linked. However, it

is neither possible nor desirable to create a single pattern form

that meets the needs of all types of patterns. Different pattern

types may require different types of attributes. Techniques are

needed to create relationships between pattern attributes such that

different collections in different forms can be used as a federated

whole while accommodating necessary differences for different

pattern types.

3.1.3 Inter-Pattern Relationships
Defining intra-pattern relationships within collections, which is

not a universal practice for pattern collections, is clearly only a

first step towards understanding how patterns can and should be

used together. Defining inter-pattern relationships is far less

common, to the point that the practice does not exist at all. Not

only does this make it difficult to federate pattern collections, but

larger, more damaging, implications can be found when

considering the severe paucity of knowledge about the

interrelationships between patterns – for novices and experts

alike. Software patterns and collections tend to be written to solve

specific problems with little to no regard about how the pattern

could or should be used with other patterns. This makes it all the

more difficult to understand the interdependencies, potential side-

effects, or benefits of using pattern combinations.

There have been some attempts to define standard relationship

types between patterns. Noble defined three “Primary

Relationships”, Uses, Refines, and Conflicts, and a number of

“Secondary Relationships” (expressed in terms of the primary

relationships), Used by, Refined by Variant, Variant Uses,

Similar, Combine, Requires, Tiling, Sequence of, and Elaboration

[36]. These are good starting points for defining pattern

relationship semantics, but are by no means a complete list, and

have certainly not become an integral part of defining patterns.

The lack of infrastructure (relationships types, semantic links,

etc.) for defining inter-collection relationships makes it extremely

difficult to devise a true pattern “languages” that integrate

different kinds of knowledge for a holistic solution.

3.1.4 Software Pattern Validation
Very little work has been done to capture pattern validation

efforts. With the exception of the “confidence” and “evidence”

attributes in PLML [21], patterns and pattern forms do not

explicitly represent information about pattern validation. While

patterns in PLoP proceedings undergo a rigorous shepherding

process through Writer‟s Workshops [38], this and subsequent

validation information is lost. Information associated with

validation and empirical evaluation efforts for patterns and issues

associated with the patterns need to be captured and associated

with the patterns to help designers make informed decisions on

how and when to use the pattern. Pattern usage information is also

crucial to the effective application and evolution of patterns.

Information such as how a pattern was applied to different

context, caveats, etc., is all critical information for the pattern

user.

3.1.5 Tracking Software Pattern Variants and

Duplicates
Closely related to pattern validation and the need for community-

based control of pattern creation is the need to track pattern

variants and duplicates. Duplicates should be allowed – people

may want to express the patterns differently and should be

allowed a certain degree of expression. Variants are more

difficult, as there are many types of valid variants, some examples

of which were described in Section 2.5. There is currently no

mechanism for tracking such variants. Some means is needed by

which a community of experts can comment on and arrive at a

consensus on whether a pattern is a duplicate, an implementation,

a refinement, specialization, etc. Tracking these types of variants

will not only provide the means to browse and query distributed

patterns, it will provide the means for a greater understanding of

the knowledge behind the patterns for both pattern creators and

users alike.

3.1.6 Updating Software Pattern Knowledge
Patterns are currently written and disseminated in a static form.

Once the pattern is published, changes become difficult to track

and enforce, with the possible exception of edits performed by the

authors of patterns disseminated in Web mediums. In some

respects, this is expected, as the pattern should be “timeless”. But

with the rapid pace of change in technology in the software field,

this rule may not hold. Improved patterns could be created,

refinements may become more useful than the original or other

variants, etc. Allowing these refinements can lead to more

accurate and up-to-date knowledge. Some form of version and

change control may also become necessary. Usage data, instances

where one or more patterns are used can also be captured, leading

to information on how useful a pattern is would also be a valuable

source of validation information.

All of these issues involve viewing patterns not as isolated

collections of information, but as an interconnected corpus of

patterns. Furthermore, the creation of pattern languages will be

facilitated to the extent that patterns are defined with meaningful

relationships between them.

4. UTILIZING INTERCONNECTED

SOFTWARE PATTERNS
Our study leads to the inevitable conclusion that the volume,

diversity, and disconnected nature of current software pattern

practices have become significant barriers to the effective use of

software patterns in the software development process. Informal

success stories lend credence to the value of patterns and pattern

language as a potentially valuable software development

technique. But it is surprising how few developers know about

and/or use patterns [27]. The sparse success stories need to be

broadened to more ubiquitous practices used and known by the

majority of software developers. A central contention of our

research is that loosely coupled and isolated collections of

patterns, however well specified and/or catalogued, cannot alone

provide significant improvement for software design productivity

and quality. Current informally practiced techniques, particularly

given the failure to include cross-collection relationships, fall far

short of the original vision of pattern languages as organized

collections of patterns informed by their context of use [4].

Widely adopted standards are necessary but face significant

problems with reconciling diverse pattern forms, many of which

have domain-specific attributes that are necessary to properly

define patterns of that type. An alternative approach is to

construct formal models of software patterns that support

translations and/or transformations between forms. In addition,

formal specification of design patterns can enhance the

understanding of their semantics [47], for example by explicitly

showing how a pattern solution is associated with a design

problem (perhaps via explicit forces) within a context. This can

help users decide which patterns are most appropriate for a given

design problem and how the patterns can be combined.

Formalization can also support a wide range of pattern-based

tools, from finding instances of patterns in programs and fine-

tuning them to meet pattern specifications [20] to helping

designers find and adapt relevant patterns.

4.1 Web-Based Ontologies
Building on our survey results, we are investigating the use of

Semantic Web ontologies [9, 35] to formally define patterns and

semantic relationships between patterns that can be distributed

across collections in the World-Wide Web. The use of ontologies

to represent pattern languages is a marriage of two complementary

philosophies. An objective of pattern languages is to provide the

means for professionals to use a common vocabulary about design

and other issues [25]. An ontology, often defined as a “formal,

explicit specification of a shared conceptualization” [26, 45],

consists of a vocabulary of concepts, relationships, and axiomatic

definitions. Ontologies are therefore a natural extension to the

essential design pattern goal of providing a common vocabulary

to communicate design concepts. For these reasons, we are

investigating the feasibility of using Web-based ontologies to

formally represent shared vocabularies that can be used as a

framework for pattern languages.

We are in the early stages use a semi-formal approach that defines

pattern relationships using formal Description Logic [7]

implemented in the Web Ontology Language (OWL)

recommendation from W3C. OWL defines a frame-based

knowledge representation language with axiomatic constructs for

logic-based expressivity that can be distributed over multiple files

in the World-Wide Web [33]. OWL includes vocabulary for

describing properties and classes that support the construction of

class taxonomies and relationships between class properties and

class instances. OWL Description Logic (OWL-DL) is founded on

decidable fragments of first order logic and axiomatic definitions

that can be used by reasoners to infer new facts and to check the

consistency of resulting ontologies [8]. OWL properties are

predicates that operate on subjects (domains) and map to objects

(range). Range values can be restricted through various axiomatic

class construction operators.

4.2 Ontology-Based Pattern Representations
Figure 5 shows a screen images from the OWL ontology editor

Protégé [44] displaying very early work in creating Web-based

ontologies for pattern forms. The figure shows a set of pattern

forms arranged in an inheritance hierarchy, including the Pattern

Forms in OWL (PFOWL – pronounced fowl) form, our ontology-

based pattern form derived from the PLML standard [21].

OWL is designed to be compatible with XML technologies. The

plm:, gof:, posa: and pfowl:, prefixes that appear in the left-hand

window of and elsewhere are XML namespace abbreviations [31].

These indicate that the constructs come from different OWL files

that can be distributed across the WWW and federated into a

single location for computational purposes (search, reasoning,

etc.). In our example, the namespaces represent common pattern

forms located in different files and federated through the OWL

import mechanism into our PFOWL file. The plm: namespace

defines our essential form (Problem AND solution AND (Forces

OR Context)), the Coplien form [15], and the “canonical” form

[6]. The gof: namespace the Gang of Four [25] form. Note that the

plm: namespaces build on each other by inheriting properties,

while the gof:GoF_Form starts from the base (empty) PLForm

(“Pattern Language” Form). The posa: namespace represents the

Pattern-Oriented Software Architecture [42] form. This form

inherits from the EssentialForm and adds new properties as

defined by the POSA form.

The EssentialForm pattern form properties (pattern form

attributes) are shown in the top-left window of Figure 5 (follow

1). This defines four main types of properties, Problem, Solution,

Forces and Context, along with the pattern name and author. The

UsabilityPatternCollection specializes the PFOWL form for use in

usability patterns (see 2). This form builds on the other forms

(note the namespaces – for example, hasImplementation comes

from the gof: namespace) to add a number of properties defined in

the PLML standard. In addition, the universal quantifiers restrict

the range of values for a property to a class. This enables

consistency checking and inferencing while allowing reuse of

concepts.

Note that each of the concepts representing pattern forms is

intermixed within the inheritance hierarchy. This is a degree of

flexibility not afforded with other computational formats such as

XML and provides a powerful distributed framework for defining

Figure 5. Pattern Forms in PFOWL.

and maintain ontologies. For example, another pattern collection

designer may want to create a hybrid form that adds inCollection,

hasKnownUse, and hasImplementation to the EssentialForm. This

can be easily done through an ontology editor that imports the

EssentialForm and PFOWL ontology files. The new pattern form

would be created by constructing a subtype of plm: EssentialForm

and adding the properties pfowl:inCollection, pml:hasKnownUse,

and gof:hasImplementation.

A key element of our approach to pattern representation is the

ability to federate distributed pattern collections. Pattern designers

retain local control over their patterns while continuing to use

pattern forms that are convenient for them. Federating distributed

pattern collections involves two distinct problems that are

addressed by Semantic Web technologies: 1) patterns can be

located on different machines distributed throughout the Web

while retaining unique identities; and 2) different pattern forms

can be used together as a unified whole to the extent that semantic

matches exist between attributes in the forms.

Due to space constraints and the objectives of this paper, we are

only able to provide this small glimpse into how OWL and

Semantic Web technologies can be utilized to federate

heterogeneous and distributed patterns. This continues to be

ongoing work and future papers will provide further details on

how this approach works and how it can be utilized to create an

infrastructure for creating semantically interconnected pattern

languages.

4.3 Related Work
Our ontology-based approach is similar in scope to some formal

approaches for specifying patterns. Previous research in this area

all build on formal specifications of object-oriented languages and

have focused on a subset of the GoF design patterns. LePUS

(LanguagE for Pattern Uniform Specification) uses first-order

logic to describe structural properties of design patterns [19]

through formula-based mechanisms and visual representations.

LePUS is based on „fragments‟, which are abstractions of design

elements, such as classes, patterns, methods, and code that contain

roles or slots which are filled by other fragments to produce an

interconnected architecture [22]. An extension of LePUS

(extended LePUS or eLePUS) broadened the range of patterns by

adding representations for intent, applicability, and collaborations

[39]. DisCo (Distributed Co-operation) uses a form of Temporal

Logic of Actions (TLA) [32] to formally describe constraint

interactions for reactive systems [34]. While LePUS efforts focus

on the static aspects of patterns, DisCo is primarily concerned

with the behavioral aspects. BPSL (Balanced Pattern

Specification Language) combines both approaches into a

language designed to specify the „solution‟ element of GoF design

patterns [47].

All of these formal methods are based on models of object-

oriented systems and therefore do not scale to other types of

patterns such as process or usability patterns. In addition, while

these approaches all have reasonable formal representations of

patterns, none have adequately examined the types of rigorous

reasoning enabled by their techniques, focusing instead on

representations only. Nor have they been particularly clear on why

the formal descriptions are needed and how the benefits of

formally defined patterns can be utilized to outweigh the obvious

costs of describing patterns using formal notations.

5. FUTURE WORK
A survey such as this one is only a representative example of the

actual data that exists. In our case, there are many patterns we

were probably not able to find, and absolute completeness will

run into a point of diminishing returns that will make further

efforts infeasible. Our central claim is that we have captured a

sufficient breadth and depth of the currently available patterns to

make valid statements about software pattern that have currently

been created.

Nonetheless, the data presented here is seen only as the beginning

of a dialog to both inform the community of existing patterns and

allow the community to tell us what collections and patterns have

been missed, need updating, etc. We plan to develop a simple

interface to the overall data built on OWL data and integrated into

a Wiki structure for collaborative editing. The objective would be

to continuously refine our knowledge of existing patterns by

drawing on the collective knowledge of the community while

providing a search-and-browse interface to explore pattern

collections and some of the data presented here.

The ontology-based pattern forms is in its formative stages. We

believe that Web-based ontologies have the potential to address

the challenges presented in this paper and will work to address

each of the challenges. Work will continue to both refine the

ontology and add pattern collections as instances in the federated

data. Some pattern collection owners have agreed to allow us to

represent their collections in our ontology. Through these efforts,

we will refine and build the ontologies to suit different patterns

and pattern forms while creating the added value of semantically

interconnected patterns.

Relationships between patterns in different collections currently

do not exist, much less semantic relationships. We will continue

to explore refinements to Noble‟s pattern relationship types [36].

In addition, relationship between pattern instances must be

researched and created. We hope to open a dialog with the

patterns community on this issue, which has barely been explored

thus far. Again, Wiki structures and cultivating a community

interested in creating inter-collection pattern relationships will be

critical to ensure accuracy and approach completeness.

6. CONCLUSIONS
The dual goals of pattern languages, to provide a common

vocabulary of succinct communication concerning design

problems and the creation of a systematic language for composing

holistic design problems, has the potential for significant impact

on software development practices. Unfortunately, significant

barriers exist for the realization of these goals. With over 2200

patterns available, no coordination between isolated pattern

collections, complex pattern variants and a lack of standards

(flexible or otherwise) for creating patterns, patterns risk being

lost in a babble of disconnected voices.

As an initial inquiry into the current state of software pattern

practices, we have surveyed published pattern collections to draw

conclusions on current challenges for taking patterns to the next

level as a viable software development practice. The good news is

that the body of knowledge collectively represented by patterns is

vast and increasing. The bad news is that it has reached the point

where it is difficult to find and select relevant design patterns,

particularly when the differences are subtle.

While a focus on tools has astutely been avoided in favor of

creating pattern content, the problem is reaching, or has already

reached, the point where we can no longer require software

professionals to read a couple of books on software patterns and

expect that their “cognitive toolbox” will sufficiently cover a

sufficient range of known patterns. Tools are needed, not just to

search for patterns, but to create an awareness of existing patterns,

browse pattern collections, collect relevant patterns for specific

efforts, create systematic pattern languages for design, etc.

7. ACKNOWLEDGMENTS
This research is funded by CCF 0613985 of the National Science

Foundation.

8. REFERENCES
[1] Agerbo, E., Cornils, A. 1998. How to preserve the benefits of

Design Patterns. OOPSLA '98, Vancouver, Canada, 134-143.

[2] Alexander, C. 1996. The Origins of Pattern Theory: the

Future of the Theory, and the Generation of a Living World.

OOPSLA 1996 Keynote Address, Available at:

http://www.patternlanguage.com/archive/ieee/ieeetext.htm.

[3] Alexander, C. 1979. The Timeless Way of Building. Oxford

Univ. Press, New York, NY.

[4] Alexander, C., Ishikawa, S., Silverstein, M. 1977. A Pattern

Language: Towns, Buildings, Construction. Oxford

University Press, New York, NY.

[5] Anderson, P., Dyson, P. State Patterns, 1998. In Pattern

Languages of Program Design 3, R. Martin, D. Riehle, F.

Buschmann, F., Eds. 125-142.

[6] Appleton, B. 2000. Patterns and Software: Essential

Concepts and Terminology. Available at:

http://www.cmcrossroads.com/bradapp/docs/patterns-

intro.html, Updated: Feb., 2000.

[7] Baader, F., Calvanese, D., McGuiness, D. L., Nardi, D.,

Schneider, P. P. 2003. The Description Logic Handbook.

Cambridge Univ. Press.

[8] Baader, F., Horrocks, I., Sattler, U. 2003. Description Logics

as Ontology Languages for the Semantic Web. In Lecture

Notes in Artificial Intelligence, vol. LNCS 2605, Springer,

228-248.

[9] Berners-Lee, T. 1998. Semantic Web Roadmap. W3C

Semantic Web Vision Statement. Available at:

http://www.w3.org/DesignIssues/Semantic.html.

[10] Berners-Lee, T., Fischetti, M., Dertouzos, M. L. 2000.

Weaving the Web: The Original Design and Ultimate

Destiny of the World Wide Web. Harper Business.

[11] Brooks, F. P. 1987. No Silver Bullet: Essence and Accidents

of Software Engineering. In Computer, 20(4), 10-19.

[12] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.,

Stal, M. 1996. Pattern-Oriented Software Architecture: A

System of Patterns. Wiley.

[13] Clemens, A. 2007. The Diemen Repository of Interaction

Design Patterns. Available at:

http://www.visiblearea.com/cgi-

bin/twiki/view/Patterns/Home, Updated: Aug. 18, 2007.

http://www.patternlanguage.com/archive/ieee/ieeetext.htm
http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html
http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html
http://www.w3.org/DesignIssues/Semantic.html
http://www.visiblearea.com/cgi-bin/twiki/view/Patterns/Home
http://www.visiblearea.com/cgi-bin/twiki/view/Patterns/Home

[14] Cline, M. P. 1996. The pros and cons of adopting and

applying design patterns in the real world. Communications

of the ACM, 39(10), 47-49.

[15] Coplien, J. O. 1996. Software Patterns. SIGS Press.

[16] Cunningham, W. 2006. Portland Pattern Repository.

http://c2.com/ppr/, Updated: Sept., 2006.

[17] Deng, J., Kemp, E., Todd, E. G., 2005. Managing UI pattern

collections. In Proceedings of the 6th ACM SIGCHI New

Zealand Chapter's Int'l Conf. on Computer-Human

Interaction (CHINZ '05), 2005, New Zealand, 31-38.

[18] Dietrich, J., Elgar, C. 2005. Towards a Web of Patterns. In

Proceedings of the Semantic Web Enabled Software

Engineering (SWESE), 2005, Galway, Ireland, 117-132.

[19] Eden, A., Yehudai, A., Gil, J. 1997. Precise specification and

automatic application of design patterns. In Proceedings of

the Automated Software Engineering Conference, 143–152.

[20] Eden, A. H., Hirshfeld, Y. 2001. Principles in formal

specification of object oriented architectures. CASCON '01.

[21] Fincher, S., CHI 2003 Workshop Report - Perspectives on

HCI patterns: concepts and tools (introducing PLML). In

Interfaces, 56, 26-28, Available at: http://www.bcs-

hci.org.uk/interfaces.html.

[22] Florijn, G., Meijers, M., van Winsen, P. 1997. Tool support

for object-oriented patterns. 11th European Conf. on Object

Oriented Programming (ECOOP’97), Springer-Verlag.

[23] Fowler, M. 1997. Analysis Patterns. Addison-Wesley.

[24] Gamma, E. 2002. Design Patterns Ten Years Later. In

Software Pioneers: Contributions to Software Engineering.

Springer-Verlag, New York, NY, 688-700.

[25] Gamma, E., Helm, R., Johnson, R., Vlissides, J. 1995.

Design Patterns: Elements of Reusable Object-Oriented

Software. Addison-Wesley, Reading, MA.

[26] Gruber, T. 1995. Towards principles for the design of

ontologies used for knowledge sharing. Int'l Journal of

Human-Computer Studies, 43, 907-928.

[27] Hahsler, M., 2005. A quantitative study of the adoption of

design patterns by open source software developers. In

Free/Open Source Software Development, S. Koch, Ed., Idea

Group Publishing, 103-123.

[28] Hillside. 2005. Patterns Library, http://hillside.net/patterns/.

[29] Iaria, P., Chenini, 1998. Refining the Observer Pattern: The

Middle Observer Pattern. Pattern Languages of

Programming (PLoP 98), 1998. Available at:

http://jerry.cs.uiuc.edu/~plop/plop98/final_submissions/.

[30] Kircher, M., Jain, O. 2004. Pattern-Oriented Software

Architecture, Volume 3: Patterns for Resource Management.

Wiley.

[31] Klein, M. 2001. XML, RDF, and Relatives. IEEE Intelligent

Systems, 15(2), 26-28.

[32] Lamport, L. 1994. The temporal logic of actions. ACM

Trans. Programming Languages and Systems, 16(3), 872-

923.

[33] McGuinness, D. L., van Harmelen, F. 2004. OWL Web

Ontology Language Overview. W3 Consortium. Available at:

http://www.w3.org/TR/owl-features/, Updated: February 10,

2004.

[34] Mikkonen, T. 1998. Formalizing Design Patterns. Int'l Conf.

Software Engineering, 115–124.

[35] Miller, E., Hendler, J. 2007. Web Ontology Language

(OWL). W3 Consortium. Available at:

http://www.w3.org/2004/OWL/, Updated: April 24, 2007.

[36] Noble, J. 1998. Classifying relationships between object-

oriented design patterns. Australian Software Engineering

Conference (ASWEC), 98-107.

[37] Noble, J. 1998. Towards a Pattern Language for Object-

Oriented Design. In Proceedings of Technology of Object-

Oriented Languages and Systems, 28, IEEE Computer

Society Press, 2-13.

[38] PLoP, 2005. PatternLanguagesOfPrograms.

http://hillside.net/plop/.

[39] Raje, S., Chinnasamy, S. 2001. eLePUS-A Language for

Specification of Software Design Patterns. In Proceedings of

the 2001 ACM Symp. Applied Computing, 600–604.

[40] Rising, L. 2000. The Pattern Almanac 2000. Addison-

Wesley.

[41] Salingaros, N. A. 2000. The Structure of Pattern Languages.

Architectural Research Quarterly, 4, 149-161.

[42] Schmidt, D. C., Stal, M., Rohnert, H., Buschmann, F. 2000.

Pattern-Oriented Software Architecture, Volume 2: Patterns

for Concurrent and Networked Objects. Wiley.

[43] Snow, K., Marks, M., Hong, D., Dennis, T. 2006. Web

Patterns Project. U.C. Berkeley School of Information.

Available at:

http://harbinger.sims.berkeley.edu/ui_designpatterns/webpatt

erns2/webpatterns/home.php.

[44] Stanford University. 2006. Protégé Project. Stanford Medical

Informatics, http://protege.stanford.edu/.

[45] Studer, R., Benjamins, V. R., Fensel, D. 1998. Knowledge

Engineering: Principles and Methods. Data and Knowledge

Engineering, 25, 161-197.

[46] Sun Microsystems Inc. 2002. Core J2EE Patterns: Patterns

index page. Available at:

http://java.sun.com/blueprints/corej2eepatterns/Patterns/inde

x.html.

[47] Taibi, T., Ling Ngo, D. C. 2003. Formal Specification of

Design Patterns - A Balanced Approach. Journal of Object

Technology, 2(4), 127-140.

[48] Tidwell, J. 2005. UI Patterns and Techniques. http://time-

tripper.com/uipatterns/, Updated: May, 2005.

[49] UIUC, 2005. Pattern Stories Wiki. Univ. of Illinois at

Urbana-Champaign. http://wiki.cs.uiuc.edu/PatternStories.

[50] van Welie, M. 2007. Patterns in Interaction Design.

http://www.welie.com/patterns/index.php.

[51] Yahoo! 2007. Yahoo! Design Pattern Library.

http://developer.yahoo.com/ypatterns/.

http://c2.com/ppr/
http://www.bcs-hci.org.uk/interfaces.html
http://www.bcs-hci.org.uk/interfaces.html
http://hillside.net/patterns/
http://jerry.cs.uiuc.edu/~plop/plop98/final_submissions/
http://www.w3.org/TR/owl-features/
http://www.w3.org/2004/OWL/
http://hillside.net/plop/
http://harbinger.sims.berkeley.edu/ui_designpatterns/webpatterns2/webpatterns/home.php
http://harbinger.sims.berkeley.edu/ui_designpatterns/webpatterns2/webpatterns/home.php
http://protege.stanford.edu/
http://java.sun.com/blueprints/corej2eepatterns/Patterns/index.html
http://java.sun.com/blueprints/corej2eepatterns/Patterns/index.html
http://time-tripper.com/uipatterns/
http://time-tripper.com/uipatterns/
http://wiki.cs.uiuc.edu/PatternStories
http://www.welie.com/patterns/index.php
http://developer.yahoo.com/ypatterns/

APPENDIX A

Title Source
of

Patt.
Year

Patterns in Interaction Design http://www.welie.com/ 146 2005

"Analysis Patterns: Reusable

Object Models"
"Analysis Patterns: Reusable Object Models" 95 1996

"Designing Interfaces:

Patterns for Effective

Interaction Design"

http://www.mit.edu/~jtidwell/common_ground_onefile.html 94 2005

Ajax Design Patterns http://ajaxpatterns.org 70 2006

"Requirements Patterns and

Antipatterns: Best (and

Worst) Practices for Defining

Your Requirements"

http://www.tabletuml.com/RPandAP/default.aspx 69 2007

"Enterprise Integration

Patterns: Designing, Building,

and Deploying Messaging

Solutions"

http://www.eaipatterns.com/toc.html 65 2003

Yahoo! Design Pattern

Library
http://developer.yahoo.com/ypatterns/ 63 2005

"Agile Documentation: A

Pattern Guide to Producing

Lightweight Documents for

Software Projects"

"Agile Documentation: A Pattern Guide to Producing Lightweight Documents for

Software Projects"
55 2004

"J2EE Antipatterns" "J2EE Antipatterns" 52 2003

"Patterns of Enterprise

Application Architecture"
http://www.martinfowler.com/eaaCatalog/ 51 2002

"Object Oriented

Reengineering Patterns"
http://www.iam.unibe.ch/~scg/OORP/book.html 49 2002

A Generative Development-

Process Pattern Language
http://users.rcn.com/jcoplien/Patterns/Process/index.html 48 1995

UML Pattern Language http://www.ncc.up.pt/~zp/aulas/0607/es/geral/bibliografia/UML Pattern Language.pdf 46 2000

"Real-Time Design Patterns:

Robust Scalable Architecture

for Real-Time Systems"

 Addison Wesley Professional 44 2002

"AntiPatterns: Refactoring

Software, Architectures, and

Projects in Crisis"

 John Wiley & Sons 42 1998

WikiPatterns http://www.wikipatterns.com/ 42 2007

"Patterns for Effective Use

Cases"
 Addison Wesley Professional 32 2002

"Enterprise Solution Patterns

Using Microsoft .NET

Version 2.0: Patterns &

Practices"

 Microsoft Press 32 2004

"Remoting Patterns:

Foundations of Enterprise,

Internet and Realtime

Distributed Object

Middleware"

 John Wiley & Sons 32 2004

XML Design Patterns http://www.xmlpatterns.com/ 28 2000

Hypermedia Design Patterns

Repository
http://www.designpattern.lu.unisi.ch/index.htm 28 1997

Embedded Design Patterns http://www.eventhelix.com/RealtimeMantra/Patterns/ 28 2004

"Small Memory Software:

Patterns for Systems with

Limited Memory"

http://hillside.net/patterns/books/Details/056.htm 27 2001

A Pattern Language for

Pattern Writing
http://hillside.net/patterns/writing/patternwritingpaper.htm 26 1997

Experiences -- A Pattern

Language for User Interface

Design

http://www.maplefish.com/todd/papers/Experiences.html 26 2003

Data Access Patterns:

Database Interactions in

Object-Oriented

Applications"

http://helloworld.siteburg.com/content/databases/db2/0131401572_toc.html 25 2003

GoF Patterns http://www.vico.org/pages/PatronsDisseny.html 23 1995

Caterpillar's Fate: A Pattern

Language for the

Transformation from Analysis

to Design

http://c2.com/ppr/catsfate.html 21 1995

User Interface Design

Patterns
http://www.cs.helsinki.fi/u/salaakso/patterns/index.html 21 2003

Workflow Patterns http://www.workflowpatterns.com/patterns/index.php 21 2000

Patterns for System Testing "Pattern Languages of Program Design 3" 20 1997

Web Design Patterns Library http://harbinger.sims.berkeley.edu/ui_designpatterns/webpatterns2/webpatterns/home.php 20 2006

A Pattern Language for

Writers' Workshops
http://users.rcn.com/jcoplien/Patterns/WritersWorkshop/ 19 1999

"Patterns for Parallel

Programming"
 19 2004

"Microsoft Integration

Patterns"

http://download.microsoft.com/download/a/c/f/acf079ca-670e-4942-8a53-

e587a0959d75/IntPatt.pdf
18 2004

Patterns Systems for

Hypermedia
http://www-di.inf.puc-rio.br/schwabe//papers/PloP97.pdf 18 1997

POSA 1 Patterns http://www.vico.org/pages/PatronsDisseny.html 17 1996

POSA 2 Patterns
"Pattern-Oriented Software Architecture, Volume 2: Patterns for Concurrent and

Networked Objects "
17 2000

RAPPeL: A Requirements-

Analysis-Process Pattern

Language for Object-Oriented

Development

http://www2.umassd.edu/SWPI/ATT/pattern/rapel.html 17 1995

Understanding and Using the

ValueModel Framework in

VisualWorks Smalltalk

http://c2.com/ppr/vmodels.html 17 1994

An Input and Output Pattern

Language: Lessons from

Telecommunications

http://hillside.net/plop/plop98/final_submissions/P31.pdf 17 1999

New Clients with Old

Servers: A Pattern Language

for Client/Server Frameworks

http://citeseer.ist.psu.edu/156837.html 16 1995

Lazy Optimization: Patterns

for Efficient Smalltalk
"Pattern Languages of Program Design 2" 16 1996

Programming

EPISODES: A Pattern

Language of Competitive

Development

http://c2.com/ppr/episodes.html 16 1996

"Data Model Patterns:

Conventions of Thought"
http://www.tdan.com/i005fe03.htm 15 1995

"Core J2EE Patterns: Best

Practices and Design

Strategies"

http://java.sun.com/blueprints/corej2eepatterns/Patterns/index.html 15 2003

Prioritizing Forces in

Software Design
"Pattern Languages of Program Design 2" 13 1996

C++ Idioms http://www.laputan.org/pub/sag/coplien-idioms.pdf 13 1999

Capable, Productive, and

Satisfied: Some

Organizational Patterns for

Protecting Productive People

http://hillside.net/plop/plop98/final_submissions/P54.pdf 11 1999

SCRUM: A Pattern Language

for Hyperproductive Software

Development

http://citeseer.ist.psu.edu/397129.html 11 1999

"Use Cases: Patterns and

Blueprints"
http://www.awprofessional.com/articles/article.asp?p=353171&seqNum=2&rl=1 11 2004

POSA 3 Patterns "Pattern-Oriented Software Architecture: Patterns for Resource Management" 10 2004

G++: A Pattern Language for

Computer-Integrated

Manufacturing

http://citeseer.ist.psu.edu/134161.html 10 1995

The CHECKS Pattern

Language for Information

Integrity

http://c2.com/ppr/checks.html 10 1994

Selecting Locking Designs for

Parallel Programming
http://citeseer.ist.psu.edu/493802.html 10 1996

A Pattern Language for

Improving the Capacity of

Reactive Systems

"Pattern Languages of Program Design 2" 10 1996

Customer Interaction Patterns http://jerry.cs.uiuc.edu/~plop/plop98/final_submissions/P11/P11.htm 10 1999

"Java Testing Patterns" 10 2004

Patterns of Cooperative

Interaction
http://www.comp.lancs.ac.uk/computing/research/cseg/projects/pointer/patterns.html 10 2001

Process Patterns "Process Patterns" 10 1998

A Generative Pattern

Language for Distributed

Processing

"Pattern Languages of Program Design 1" 9 1995

Patterns for Evolving

Frameworks
http://st-www.cs.uiuc.edu/~droberts/evolve.html 9 1997

Tropyc: A Pattern Language

for Cryptographic Object-

Oriented Software

http://citeseer.ist.psu.edu/62190.html 9 1999

Finite State Machine Patterns "Pattern Languages of Program Design 4" 9 1999

"Analysis Patterns 2" http://www.martinfowler.com/ap2/index.html 9

Evolving Frameworks: A

Pattern Language for

Developing Object-Oriented

http://st-www.cs.uiuc.edu/users/droberts/evolve.html 9 1996

Frameworks

Patterns for Software

Architectures
http://citeseer.ist.psu.edu/shaw96some.html 8 1995

MOODS: Models for Object-

Oriented Design of State
http://www.soberit.hut.fi/tik-76.278/alex/plop95.htm 8 1996

Crossing Chasms: A Pattern

Language for Object-RDBMS
"Pattern Languages of Program Design 2" 8 1996

Transactions and Accounts http://c2.com/cgi-bin/wiki?TransactionsAndAccounts 8 1996

Some Patterns for Software

Architecture
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/vit/ftp/pdf/PLoP95.pdf 8 1996

Fault-Tolerant

Telecommunications System

Patterns

http://users.rcn.com/jcoplien/Patterns/PLoP95_telecom.html 8 1996

Accessing Relational

Databases
http://citeseer.ist.psu.edu/90550.html 8 1997

High-Level and Process

Patterns from the Memory

Preservation Society: Patterns

for Managing Limited

Memory

http://jerry.cs.uiuc.edu/plop/plopd4-submissions/P54.doc 8 1999

A Collection of History

Patterns
hillside.net/plop/plop98/final_submissions/P63.pdf 8 1999

Display Maintenance: A

Pattern Language
hillside.net/plop/plop98/final_submissions/P15.pdf 8 1999

More Process Patterns "More Process Patterns" 8 1999

A Pattern Language for Tool

Construction and Integration

Based on the Tools and

Materials Metaphor

http://www.riehle.org/computer-science/research/1994/plop-1994-tools.pdf 7 1995

Stars: A Pattern Language for

Query-Optimized Schemas
http://c2.com/ppr/stars.html 7 1994

Reusability Through Self-

Encapsulation
"Pattern Languages of Program Design 1" 7 1995

Partitioning Smalltalk Code

into ENVY/Developer

Components

http://c2.com/ppr/envy/ 7 1996

State Patterns http://citeseer.ist.psu.edu/396622.html 7 1997

The Selfish Class http://www.joeyoder.com/papers/patterns/Selfish/selfish.html 7 1997

Architectural Patterns for

Enabling Application Security
http://st-www.cs.uiuc.edu/~hanmer/PLoP-97/Proceedings/yoder.pdf 7 1999

Big Ball of Mud http://www.laputan.org/mud/ 7 1999

The Diemen Repository of

Interaction Design Patterns
http://www.visiblearea.com/cgi-bin/twiki/view/Patterns/Patterns_repository 7 2003

Implementation Patterns for

the Observer Pattern
"Pattern Languages of Program Design 2" 6 1996

Accountability and

Organizational Structures
"Pattern Languages of Program Design 2" 6 1996

Smalltalk Scaffolding

Patterns
"Pattern Languages of Program Design 4" 6 1999

Parallel Patterns for

Synchronization on Shared-
http://c2.com/ppr/mutex/mutexpat.html 6 1995

Memory Multiprocessors

Lifecycle and Refactoring

Patterns That Support

Evolution and Reuse

http://www.laputan.org/Lifecycle.html 5 1995

Discovering Patterns in

Existing Applications
"Pattern Languages of Program Design 1" 5 1995

Patterns for Encapsulating

Class Trees
http://citeseer.ist.psu.edu/riehle95patterns.html 5 1996

Decision Deferral and

Capture Pattern Languages
"Pattern Languages of Program Design 2" 5 1996

Organizational Patterns for

Teams
"Pattern Languages of Program Design 2" 5 1996

Object-Oriented Design

Patterns in Reactive Systems
http://citeseer.ist.psu.edu/426489.html 5 1996

A Pattern Language for

Developing Form-Style

Windows

"Pattern Languages of Program Design 3" 5 1997

The Points and Deviations

Pattern Language of Fire

Alarm Systems

http://www.cs.wustl.edu/~schmidt/PLoP-96/molin.ps.gz 5 1997

Patterns for Designing in

Teams
http://www.charlesweir.com/papers/teamwork.pdf 5 1997

Basic Relationship Patterns http://citeseer.ist.psu.edu/38872.html 5 1999

Creating Reports with Query

Objects
http://www.joeyoder.com/papers/patterns/Reports/ 5 1999

Patterns for Designing

Navigable Information Spaces
http://www.inf.puc-rio.br/~schwabe/papers/PLoP98.pdf 5 1999

Composing Multimedia

Artifacts for Reuse
http://hillside.net/plop/plop98/final_submissions/P38.pdf 5 1999

Patterns for Designing

Navigable Information Spaces
http://www-di.inf.puc-rio.br/schwabe//papers/PLoP98.pdf 5 1998

Patterns for Adding Search

Capabilities to Web

Information Systems

http://www-di.inf.puc-rio.br/schwabe//papers/Europlop99.pdf 5 1999

Patterns for E-commerce

Applications
http://www-di.inf.puc-rio.br/schwabe/papers/Europlop00.pdf 5 2000

The Risk Management

Catalog
http://members.aol.com/acockburn/riskcata/risktoc.htm 5 1996

Patterns for Generating a

Layered Architecture
"Pattern Languages of Program Design 1" 4 1995

Pattern-Based Integration

Architectures
"Pattern Languages of Program Design 1" 4 1995

Patterns of Events "Pattern Languages of Program Design 1" 4 1995

Organizational Multiplexing:

Patterns for Processing

Satellite Telemetry with

Distributed Teams

http://citeseer.ist.psu.edu/berczuk96organizational.html 4 1996

Improve Responsiveness in

Interactive Applications

Using Queues

"Pattern Languages of Program Design 2" 4 1996

Bridging Patterns: An Information and Software Technology, 48, pp 69-89 4 2005

approach to bridge gaps

between SE and HCI

Localized Ownership:

Managing Dynamic Objects

in C++

"Pattern Languages of Program Design 2" 3 1996

Evolution, Architecture, and

Metamorphosis
http://www.laputan.org/metamorphosis/metamorphosis.html 3 1996

Patterns for Logging

Diagnostic Messages
http://www.cs.wustl.edu/~schmidt/PLoP-96/harrison.ps.gz 3 1997

Business Patterns of

Association Objects

http://www.riehle.org/computer-science/programming/patterns/association-

objects/index.html
3 1997

Temporal Patterns http://www.hillside.net/plop/plop98/final_submissions/P09.pdf 3 1999

Design Patterns for Object-

Oriented Hypermedia

Systems

http://www.cs.colorado.edu/~kena/classes/7818/f99/patterns.pdf 2 1996

Default and Extrinsic Visitor "Pattern Languages of Program Design 3" 2 1997

A Pattern Language of

Transport Systems (Point and

Route)

www.cs.wustl.edu/~schmidt/PLoP-96/zhao.ps.gz 2 1997

Functionality Ala Carte "Pattern Languages of Program Design 1" 1 1995

Flexible Command

Interpreter: A Pattern for an

Extensible and Language-

Independent Interpreter

System

"Pattern Languages of Program Design 1" 1 1995

Half-object + Protocol

[HOPP]
"Pattern Languages of Program Design 1" 1 1995

The Master-Slave Pattern http://www.vico.org/pages/PatronsDisseny/Pattern%20Master%20Slave/index.html 1 1995

Account Number: A Pattern http://citeseer.ist.psu.edu/wake95account.html 1 1995

A Systems of Patterns "Pattern Languages of Program Design 1" 1 1995

Implementing Patterns http://www.codefarms.com/publications/papers/patterns.html 1 1995

Streams: A Pattern for "Pull-

Driven" Processing
"Pattern Languages of Program Design 1" 1 1995

The Pipes and Filters

Architecture
http://www.vico.org/pages/PatronsDisseny.html 1 1995

Client-Specified Self "Pattern Languages of Program Design 1" 1 1995

A Pattern for Separating

Assembly and Processing
http://citeseer.ist.psu.edu/berczuk95pattern.html 1 1995

Reactor: An Object

Behavioral Pattern for

Concurrent Event

Demultiplexing and Event

Handler Dispatching

http://citeseer.ist.psu.edu/schmidt95reactor.html 1 1995

Command Processor http://vico.org/pages/PatronsDisseny/Pattern%20Command%20Processor/index.html 1 1996

The Proxy Design Pattern

Revisited
"Pattern Languages of Program Design 2" 1 1996

Shopper "Pattern Languages of Program Design 2" 1 1996

Detachable

Inspector/Removable cout: A

Structural Pattern for

Designing Transparent

http://citeseer.ist.psu.edu/201036.html 1 1996

Layered Services

Backup Pattern: Designing

Redundancy in Object-

Oriented Software

"Pattern Languages of Program Design 2" 1 1996

Reflection http://www.vico.org/pages/PatronsDisseny/Pattern%20Reflection/index.html 1 1996

Half-Sync/Half-Async: An

Architectural Pattern for

Efficient and Well-Structured

Concurrent I/O

http://www.cs.wustl.edu/~schmidt/PDF/PLoP-95.pdf 1 1996

Resource Exchange: A

Behavioral Pattern for Low-

Overhead Concurrent

Resource Management

"Pattern Languages of Program Design 2" 1 1996

The Client-Dispatcher-Server

Design Pattern

http://www.vico.org/pages/PatronsDisseny/Pattern%20ClientDispatcherServer/index.htm

l
1 1996

Active Object: An Object

Behavioral Patterns for

Concurrent Programming

http://citeseer.ist.psu.edu/lavender96active.html 1 1996

Null Object http://www.cs.oberlin.edu/~jwalker/nullObjPattern/ 1 1997

Manager http://www.cs.wustl.edu/~schmidt/PLoP-96/sommerlad.ps.gz 1 1997

Product Trader http://www.riehle.org/computer-science/research/1996/plop-1996-product-trader.pdf 1 1997

Type Object http://citeseer.ist.psu.edu/133930.html 1 1997

Sponsor-Selector http://cns2.uni.edu/~wallingf/patterns/sponsor-selector.html 1 1997

Extension Object http://citeseer.ist.psu.edu/160815.html 1 1997

Acyclic Visitor http://www.objectmentor.com/resources/articles/acv.pdf 1 1997

Recursive Control http://citeseer.ist.psu.edu/181638.html 1 1997

Bureaucracy http://www.riehle.org/computer-science/research/1996/europlop-1996-bureaucracy.html 1 1997

Acceptor and Connector http://www.cs.wustl.edu/~schmidt/PDF/Acc-Con.pdf 1 1997

Bodyguard http://ei.cs.vt.edu/~cs6704/bodyguard.ps 1 1997

Asynchronous Completion

Token
http://www.cs.wustl.edu/~schmidt/PDF/ACT.pdf 1 1997

Object Recovery http://www.cs.wustl.edu/~schmidt/PLoP-96/silva.ps.gz 1 1997

Serializer http://www.riehle.org/computer-science/research/1996/plop-1996-serializer.pdf 1 1997

Double-Checked Locking http://www.cs.wustl.edu/~schmidt/PLoP-96/DC-Locking.ps.gz 1 1997

External Polymorphism http://citeseer.ist.psu.edu/181874.html 1 1997

Abstract Class http://st-www.cs.uiuc.edu/~hanmer/PLoP-97/Proceedings/woolf.pdf 1 1999

Role Object http://st-www.cs.uiuc.edu/~hanmer/PLoP-97/Proceedings/riehle.pdf 1 1999

Essence hillside.net/plop/plop98/final_submissions/P10.pdf 1 1999

Object Recursion http://www.industriallogic.com/patterns/P21.pdf 1 1999

Prototype-Based Object

System
"Pattern Languages of Program Design 4" 1 1999

Abstract Session: An Object

Structured Pattern
http://www.doc.ic.ac.uk/~np2/patterns/session.ps.gz 1 1999

Object Synchronizer http://citeseer.ist.psu.edu/216930.html 1 1999

Proactor http://www.cs.wustl.edu/~schmidt/PDF/proactor.pdf 1 1999

Feature Extraction: A Pattern

for Information Retrieval
http://micro-workflow.com/PDF/plop98.pdf 1 1999

Identify the Champion: An

Organizational Pattern

Language for Program

Committees

http://hillside.net/plop/plop98/final_submissions/P07.pdf 1 1999

	SOFTWARE PATTERNS IN PRACTICE
	SURVEYING SOFTWARE PATTERN COLLECTIONS
	Method
	Patterns and Pattern Collections
	Scale and Availability of Software Patterns
	Types of Software Patterns
	Variants and Duplicates
	Pattern Relationships
	Pattern Forms
	Pattern Publishing Mediums

	TOWARDS PATTERNS AS A UNIFIED BODY OF KNOWLEDGE
	Six Challenges for Federating Software Patterns
	Electronic Accessibility
	Lack of Standard Pattern Forms
	Inter-Pattern Relationships
	Software Pattern Validation
	Tracking Software Pattern Variants and Duplicates
	Updating Software Pattern Knowledge

	UTILIZING INTERCONNECTED SOFTWARE PATTERNS
	Web-Based Ontologies
	Ontology-Based Pattern Representations
	Related Work

	FUTURE WORK
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES
	APPENDIX A

