
A Pattern Story for Combining Crosscutting Concern State
Machines

Mark Mahoney
Carthage College

Kenosha, WI
mmahoney@carthage.edu

 Tzilla Elrad
Illinois Institute of Technology

Chicago, IL
elrad@iit.edu

ABSTRACT

This paper describes a solution to a real world problem using a
combination of well-known patterns. The problem deals with
combining state machines that represent core concerns and
crosscutting concerns in a loosely coupled manner. The state
based behaviors are modeled with state machines and
implemented with the State Pattern[3]. The coordination between
the loosely coupled state machines is achieved with the
Interceptor Pattern[9][11]. The Abstract Factory Pattern[3] is used
to shield the original state machine developers from being aware
that their state machines are being combined in new and different
ways.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: Modules and interfaces,
Object-oriented design methods, State diagrams

General Terms
Design.

Keywords
Crosscutting Concerns, State Machines, Design Patterns.

1. INTRODUCTION
A pattern story describes the application of patterns to a specific
design. This paper tells the story of the design of an application
with core and crosscutting concerns. The concerns are state based
and the patterns describe how to combine state machines in a
manner that maximizes reusability and loose coupling.

Separating a software system into concerns is one way to deal
with the increasing complexity of constructing large systems.
However, not all concerns can easily be modularized. Some
concerns crosscut others. A crosscutting concern is one that is
scattered throughout a system and is tangled with other core
application concerns. Fault tolerance, for example, is a
crosscutting concern that is often tangled with many core
application concerns. Aspect-Oriented Software Development

(AOSD) [2] pro-vides a means to separate crosscutting concerns
so that they can be reasoned about in isolation. It also provides the
means to weave the crosscutting concerns into a set of core
concerns to form a functioning system.

State machines are an excellent way to model reactive behavior. A
state machine fully describes how an object or subsystem behaves
in response to stimuli. State machines can easily be transformed
into executable code using, for example, the State Pattern [3]. In
addition, heavyweight tools such as Telelogic’s Tau [13] can be
used to build massively state based systems. State machine
models typically do not cleanly separate the interaction between
core and crosscutting concerns. There is a tendency to tangle
concerns together in a single state machine. For example, in a
banking application there may be state behavior in depositing into
an account as well as separate state behavior for authentication
and authorization. Traditional state based design techniques tend
to mix these concerns together into the same state machine model
even though the authentication and authorization behavior may be
required in many other places in the system. A superior solution
would allow the two independent reactive behaviors to be
modeled separately and later be woven together. Each state
machine would then be reusable in different contexts.

Once a set of state based core and crosscutting concerns have
been separated into disparate state machines a mechanism is
required to specify how they will interact. This weaving
mechanism is currently not present in the most used state machine
modeling languages. Our goal is to use a combination of patterns
to create state based components that can easily interact in a
loosely coupled manner. The state based behavior is implemented
with the State Pattern [3] and the interaction between disparate
implementations of the State Pattern is accomplished with the
Interceptor Pattern [9][11]. The Abstract Factory Pattern [3]
provides loose coupling in the cooperating state machines.

Using this approach will benefit developers who have recognized
state based behaviors in the core and the crosscutting concerns.
Traditionally, reactive systems are modeled with a set of state
machines. Reactive systems tend to be embedded, distributed, or
real-time in nature. However, as the size of non-reactive
transformational systems get larger it is likely that some state
based concerns will appear. Our pattern is targeted toward
systems that are not entirely state based, but do have state based
core and crosscutting concerns.

The rest of this paper is organized as follows: Section two
describes the problem context, section three describes the forces,
section four describes the solution, section five describes the

Preliminary versions of these papers were workshopped at Pattern
Languages of Programming (PLoP) ’07 September 5-8, 2007,
Monticello, IL, USA. Permission to make digital or hard copies of all or
part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission. Copyright is held
by the authors. ISBN: 978-1-60558-411-9.

forces resolved by our solution, and section six describes related
work.

2. PROBLEM CONTEXT
Early in his career, the first author worked on wireless accessories
for two-way radios that police officers and firefighters carry for
communication. This section describes a simplified version of the
devices. A two-way radio can be in an Idle state, a Transmit state
(Tx), or a Receive State (Rx), see figure 1. Translation from a
state machine model to an implementation of the State Pattern [3]
is straightforward, see figure 2. An Abstract State class
(TwoWayStates) is created from which all Concrete States (Rx,
Idle, Tx) inherit. For each event in the state machine a method is
placed in the Abstract State class. The derived Concrete State
classes override the events that have meaning to them. A Context
class (TwoWayRadio) creates and maintains a reference to each
of the Concrete States and maintains a reference to the current
state. The con-text object handles all events by sending them to
the current state object.

Figure 1. State Machine of a Two-Way Radio

Figure 2. State Pattern Implementation for a Two-Way Radio

Imagine a state machine for a wireless accessory (perhaps using a
technology like Bluetooth) that connects to the two-way radio
wirelessly and includes both a speaker and a microphone to
transmit and receive audio. The wireless accessory can be in an
Idle state, a Connecting state, and an Audio state, see figure 3.
The classes for the State Pattern implementation are shown in
figure 4.

Figure 3. State Machine for Two-Way Radio Accessory

Figure 4. State Pattern Implementation for a Two-Way Radio

Accessory

The control of the wireless accessory is a crosscutting concern
because it must inter-act with the two-way radio in many different
ways and in many different contexts. For example, when the two-
way radio is in the ‘Idle’ state and a ‘receive’ event is received the
wireless accessory must enter the ‘Audio’ State to transmit the
two-way radio’s audio to the speaker on the accessory. Similarly,
when the two-way radio’s battery falls below a certain threshold
an audio alert is sent to the accessory and re-quires an audio
connection. There are many times when the two-way radio’s
audio needs to be sent to the accessory.

3. FORCES
The forces influencing a solution to this problem have to do with
the fact that the application is not entirely state based. Many of the
requirements can be described as data-transformational in nature.
Since the system is not entirely state based it doesn’t make sense
to use specialized tools [13][14] to create state machines. Using
such tools might not even be possible in an embedded application
environment. Rather, the solution should use standard Object-
Oriented techniques to address the combination of state based
concerns.

Ideally the solution will also allow the disparate state machines to
be loosely coupled. Each state based concern should be reusable
in different contexts. The two way radio, for example, should not
be directly tied to the accessory because not every radio will have
an accessory. Similarly, the audio accessory might be used with
devices other than a two-way radio, like a cell phone. The
combined state machines should not directly reference each other,
rather, an intermediary should bind the state machines together.

Such an approach will be more complex but will allow for greater
reuse.

4. SOLUTION
One can think of a state machine as the behavioral interface to a
class, feature, or reactive subsystem. It is a metaphor for the
subsystem. When the cooperating subsystems are also state based
a method is required to compose them together. However, a
desirable quality is to reduce coupling between the subsystems’
state machines. In our previous work [7][8] we describe using
state machines to implement reactive systems with crosscutting
concerns. Each of the concerns is modeled with a state machine.
The state machines can be used in isolation but they can also be
brought together to share broadcast events. The events in the
cooperating state machines are bound to each other to affect one
another. Figure 5 shows two state machines with bound events.

Figure 5. Combined State Machines with Event Bindings

For incoming audio, the ‘receive’ event in the two-way radio state
machine is bound to the ‘connect’ event in the accessory state
machine. The ‘receive complete’ event is bound to the
‘disconnect’ event. A similar approach is taken for outgoing
audio. The primary benefit of this approach is that because neither
state machine directly refers to the other, each one is reusable in
different contexts. Only the weaving developer is aware of the
interactions. One can imagine a developer creating complex
systems by composing state machines from a library and simply
specifying the bindings in a non-invasive manner.
In order to provide a means to combine independent state machine
models and generate an executable system from them we propose
using the State Pattern [3], the Interceptor Pattern [11] [9], and
the Abstract Factory Pattern [3]. The State Pattern is used to
create an executable implementation of a state machine while the
Interceptor Pat-tern is used to coordinate the binding of events in
different state machines. The Abstract Factory pattern is used to
achieve obliviousness in the core state machine models.

The Interceptor Pattern [11] [9] allows one to monitor what an
application is doing and add services transparently to a
framework. We use Interceptor to monitor a core state machine
and inject bound events into other state machines. The description
from Bosak [9] varies slightly from pattern described in the
POSA2 book [11], the structure of the pattern is shown in figure
6.

Figure 6. Interceptor Pattern Structure

In this variation of the pattern an Interceptor interface describes an
object where behavior will be added before or after a call. The
Interceptor Interface looks like an object that the Intercepting
Point interacts within its domain. The core state machine’s
abstract state class will serve as the Interceptor interface in this
example because it is necessary to know when to inject events in a
crosscutting state machine. Concrete Interceptors implement the
interface to provide additional services. The Concrete Interceptors
will be responsible for notifying other state machines when
certain events are handled.
The Dispatcher is responsible for coordinating the different calls
to the Concrete Interceptors. It can accomplish this based on a
priority for Interceptors or using some other intelligent scheme.
Since some events are bound before, after, or in place of others
the dispatcher provides the granularity needed to inject events at
the right time. The Intercepting Point is associated with a
Dispatcher and sends all requests to it. The State Pattern’s context
object will refer to Dispatchers rather than concrete State objects
when binding occurs in those states. When a method from the
Dispatcher is called the Dispatcher will call the associated
methods of all the Concrete Interceptors associated with it.
State [3] and Interceptor [9][11] can be combined to allow
independent state machines to interact, see figure 7. In this case
the Abstract State from the State Pattern acts as the Interceptor
interface. It has all the methods of a Concrete State and will act as
a stand in when event binding is required. When combining state
machines a weaving developer will inherit from the Abstract State
class to create Concrete Interceptors. The State Pattern’s Context
object maintains a reference to the Dispatcher rather than the
Concrete State object. When a bound event occurs the event is
handled by the Dispatcher rather than the Concrete State object.
The Dispatcher then coordinates the injecting of events in another
state machine.

Figure 7. Combined State and Interceptor Patterns

To relate this approach to the example from above, the Two-Way
Radio and Accessory state machines can be combined to bind the
‘receive’ event in the Two-Way Radio state machine to the
‘connect’ event in the Wireless Accessory state machine, see
figure 8 and Listing 1.

Figure 8. Combined Two-Way Radio and Wireless Accessory

Implementation

public class IdleDispatcher extends Idle

{

 private List <TwoWayStates> interceptors;

 //...

 public void receive()

 {

 for(int i = 0;i < interceptors.size();i++)

 {

 interceptors.get(i).receive();

 }

 super.receive();

 }

 //similar for other events

 //...

}

public class IdleAudioInterceptor extends
TwoWayStates

{

 private TwoWayAccessory accessory;

 public IdleInterceptor(TwoWayAccessory a)

 {

 super(null);

 accessory = a;

 }

 public void receive()

 {

 accessory.connect();

 }

 public void transmit()

 {

 accessory.connect();

 }

}

Listing 1. Idle Dispatcher and Idle Interceptor
The key to making this an oblivious solution is using an Abstract
Factory in the State Pattern’s Context object to create State
objects. The State Pattern’s Context object uses a concrete factory
to create the Dispatcher and Interceptors rather than a Concrete
State class. The weaving developer is responsible for creating an
implementation of a Concrete Binding Factory along with the
Dispatcher and Concrete Interceptors, see figures 9 and 10 and
Listings 2, 3, and 4.

Figure 9. Abstract Factory Pattern

Figure 10. Sequence Diagrams for State Creation

public class TwoWayBindingFactory extends
TwoWayAbstract-Factory

{

 //...

 //...

 public TwoWayStates createIdle()

 {

 //create an idle dispatcher

 IdleDispatcher idleDispatcher = new

 IdleDispatcher(getContext());

 //add all interceptors

 idleDispatcher.addInterceptor(new

 IdleInterceptor(accessoryStatemachine));

 return idleDispatcher;

 }

 //...

 //...

}

Listing 2. Factory for Creating States

public class TwoWayRadio

{

 private TwoWayStates idle; //concrete idle state

 private TwoWayStates rx; //concrete rx state

 private TwoWayStates tx; //concrete tx state

 //current state in the state machine

 private TwoWayStates currentState;

 public void createStates(TwoWayAbstractFactory
factory)

 {

 //use the factory to create each of the states

 idle = factory.createIdle();

 rx = factory.createRx();

 tx = factory.createTx();

 //...

 }

}

Listing 3. Creating States in the Context Object

TwoWayRadio radio = new TwoWayRadio();

TwoWayAbstractFactory radioFactory = new

 TwoWayBindingFactory(radio,
accessory);

radio.createStates(radioFactory);

Listing 4. Creating the Context Object

Figure 11. Sequence Diagram Showing the Two-Way Radio

Interact with an Accessory Through an Interceptor
Here the two state machines are linked by the Dispatcher and a
Concrete Interceptor used to bind ‘receive’ to ‘connect’. The
Two-Way Radio Binding Factory object creates the Dispatcher
and Audio Accessory Interceptor objects instead of the Concrete
Idle State using a provided implementation of the Context’s
Abstract Factory. The Two-Way Radio object treats the reference
to the Dispatcher as if it were the Concrete Idle state. When the
‘receive’ event occurs in the Idle state the Two-Way Radio
context object calls the Dispatcher’s receive() method, see figure
11. The Dispatcher then marches through all the Concrete
Interceptors for this event in this state and calls receive() on those
objects. The Idle Interceptor calls the Two-Way Accessory’s
connect() method to inject the event into the state machine and
then relies on the base class to do its normal processing by calling
Idle’s receive() method (with a call to super.receive())

5. FORCES RESOLVED
The Interceptor Pattern [9][11] is ideal for allowing developers to
add behavior into an existing system without requiring intimate
knowledge of the system and without changing the base system.
The Interceptor allows the State Pattern’s Concrete States to be
extended in such a way that they can inject events into other state
machines. When multiple state machines are combined the
Dispatcher handles the coordination of injecting events. The
Dispatcher may be built with a preference for handling certain
interactions above others.

Other patterns related to this one that were considered were
Decorator[3], Template Method[3], Chain of Responsibility[3],
and Interceptor Filters[15]. Interceptor is very similar to the
Decorator Pattern [3] but we were able to take advantage of
inheritance of the concrete states to simplify the dispatcher.
Interceptor provides more flexibility in the presence of multiple
crosscutting state machines. Interceptor has just the right
granularity to intelligently coordinate calls to multiple Concrete
Interceptors.
Template Method [3] proved to be an inferior solution because it
required all binding be done in one place. It is not easy to add and
take away crosscutting behaviors with-out affecting the other state
machines. Chain of Responsibility [3] proved to be an inferior
solution because the crosscutting concern state machines would
need to be aware of each other creating a tight coupling between
them. Interceptor Filters [15] proved to be an inferior solution
because it is slightly more complex than Interceptor. Interceptor
proved to be the simplest solution that worked.
The Abstract Factory Pattern [3] allows the State Pattern’s
Context object to be oblivious to whether concrete states are being
created or Interceptors to inject events in other state machines.
The weaving developer is responsible for creating
implementations of the Abstract Factory to create the correct
objects.
This approach works best for systems that are not predominantly
state based. In some telecommunication and avionic systems the
predominant decomposition technique is to break the system
down entirely into state machines. In a massively state based
system the overhead and complexity of the design would warrant
using a different approach. This method is designed for systems
that encounter state based concerns but are not defined by them.
Systems that are defined by massive state machines tend to have
special tools and languages to help create them[13][14].

6. RELATED WORK
In our previous work [7][8] we implemented a framework for
dealing with state based crosscutting concerns. This framework is
called the Aspect-Oriented Statechart Framework (AOSF). There
are classes in this framework for states, events, state ma-chine
containers, etc. This framework does not make use of any
patterns, is somewhat complex, and is language dependent. For
these reasons we are proposing a more straightforward solution
that still allows a developer to combine state machines in a
loosely coupled, reusable fashion.
Volter [12] describes a general method of achieving AOSD using
a patterns-based approach. In this work the use of interceptors,
proxies, and factories is used to de-scribe how to achieve some of
the same goals as AOP. We are extending that work a step further
by apply those principles directly to state based AOSD.
In Aldawud et. al. [1] a similar approach for handling state based
crosscutting concerns is addressed. In that work, different state
machines model different concerns. The state machines are
brought together in concurrent, orthogonal regions, however, the
broadcast events are explicitly hard coded between disparate state
machines making each model tightly coupled with each other and
not reusable in different contexts.
In the work of Prehofer [10] feature composition is addressed for
state based features. Each feature is modeled with a state machine
and combined using one of two different approaches. In the first

approach separate state machine models are combined in to a
single model containing all the behavior by binding transitions.
This leads to tangled state machine models that are hard to reason
about. In the other proposed approach a similar method combining
concurrent state machines is proposed with explicitly shared
broadcasted events. This eliminates the reusability of the state
machines in isolation or in different contexts. The author’s
implementation strategy did not use patterns and relied on a
language specific pre-processing tool.
In France et. al. [5] State Machine Pattern Specifications model
state machine interactions. The approach involves specifying
binding statements that compose state machines together. The
abstract state machines are not usable in isolation and the com-
posed state machines are tangled and difficult to reason about

7. CONCLUSION
The State Pattern is ideal for creating implementations of state
based behavior from a state machine. The problem with the it,
however, is there is no easy way to combine state machines while
keeping them loosely coupled and reusable. Our contribution is to
provide a language/framework independent approach to loosely
coupled state machines. Loosely coupled state machines can be
reused in different contexts. Further, because no new languages or
frameworks are required this approach can be used in legacy
systems with no additional tool support.
We have described an approach to state based Aspect-Orientation
that involves only the use of well-known patterns. The State
Pattern is used for implementing state based behavior. The
Interceptor Pattern coordinates event binding between state
machines. The Abstract Factory permits core concern developers
to be oblivious to additions made to their state machines. A
concrete example was given describing use of the combination of
patterns.

8. ACKNOWLEDGMENTS
We would like to thank Michael Weiss for helping us through the
shepherding process with several iterations of useful and
insightful comments. In addition, we would like to thank the ‘Fu
Dog’ group at the writer’s workshop at PLOP ’07 for providing
excellent feedback.

9. REFERENCES
[1] Aldawud, O., Elrad T., Bader A.. “Aspect-oriented

Modeling- Bridging the Gap Between Design and
Implementation”. Proceedings of the First ACM
SIGPLAN/SIGSOFT International Conference on Generative
Programming and Component Engineering (GPCE).
Pittsburgh, PA. October 6–8, 2002, pp. 189-202.

[2] AOSD web site: http://aosd.net.
[3] Gamma, Helm, Johnson, Vlissides; Design Patterns,

Elements of Reusable Software Design, Addison-Wesley
1995.

[4] Filman R.E., Friedman, D.P. “Aspect-Oriented Programming
is Quantification and Obliviousness”, Workshop on
Advanced Separation of Concerns, OOPSLA 2000, October
2000, Minneapolis.

[5] R. France, D. Kim, S. Ghosh, and E. Song, "A UML-Based
Pattern Specification Technique," IEEE Transactions on
Software Engineering, vol. 30, pp. 193-2006, 2004.

[6] Kiczales, G. et al., Aspect-Oriented Programming. Proc.
European Conf. Object-Oriented Programming, Lecture
Notes in Computer Science, no. 1241, Springer-Verlag,
Berlin, June 1997, pp. 220–242

[7] Mahoney, M., Elrad, T. A Pattern Based Approach to
Aspect-Orientation for State Based Systems, Workshop on
Best Practices in Applying Aspect-Oriented Software
Development (BPAOSD ' 07) at the Sixth International
Conference on Aspect-Oriented Software Development
(AOSD 2007). March 2007. Vancouver, BC.

[8] Mark Mahoney, Atef Bader, Tzilla Elrad, Omar Aldawud,
Using Aspects to Abstract and Modularize Statecharts, The
5th Aspect-Oriented Modeling Workshop in Conjunction
with UML 2004 Lisbon, Portugal, October 2004

[9] Bosak, R., Daily Development Blog.
http://dailydevelopment.blogspot.com/2007/04/interceptor-
design-pattern.html. April 2007

[10] C. Prehofer, Plug-and-Play Composition of Features and
Feature Interactions with Statechart Diagrams, International
Workshop on Feature Interaction in Telecommunications and
Software Systems, Ottawa, Canada, June, 2003, IOS Press

[11] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.
Pattern-Oriented Software Architecture - Patterns for
Concurrent and Networked Objects Volume 2. Wiley and
Sons Ltd., 2000

[12] Volter, M. Patterns for Handling Cross-Cutting Concerns in
Model-Driven Software Development, In 10th European
Conference on Pattern Languages of Programs (EuroPlop
2005), Irsee, Germany, July 2005

[13] Telelogic Tau, http://telelogic.com
[14] ILogix Rhapsody, http://telelogic.com
[15] Core J2EE Patterns - Interceptor Filters, Core J2EE Pattern

Catalog,
http://java.sun.com/blueprints/corej2eepatterns/Patterns/Inter
ceptingFilter.html

