Batch Lazy Loader

Ryan Senior
Source Allies Inc
4001 Ingersoll Ave
Des Moines, |IA

senior.ryan@gmail.com

ABSTRACT

Retrieve many related, Lazy Loaded objects simultaneously,
overcoming the performance degradation that can be asso-
ciated with the Lazy Load pattern (called ripple loading by
Fowler [1]).

1. MOTIVATION

Often times in Domain Models, not all of the relation-
ships associated to a particular object are needed all the
time. The Lazy Load pattern is often used to help improve
the performance of relationships in the model that are not
always needed. Lazy Loading improves the performance of
the application by delaying the retrieval of certain pieces
of data until it is needed. This will allow the program to
save resources if the data is not needed. There are, how-
ever, certain situations when the Lazy Load pattern can
severely degrade performance. The application may not al-
ways need instances of that object, so Lazy Loading may still
make sense. But for the few times that the Lazy Loaded ob-
jects are needed, the loading could cause major performance
problems. Typically these performance problems are due to
an excessive number of requests required to individually re-
trieve each Lazy Loaded piece of data. In the context of a
database, this could cause an excessive number of queries to
be executed (since a separate query would be required for
each Lazy Loaded association that was accessed).

To illustrate this example, let’s assume that there is an
application that maintains employee information for a com-
pany and generates paychecks for the employees of the com-
pany. There’s a lot of information associated to an employee,
their address, their time-card for a week, pay, etc. Let’s as-
sume that during most of the day to day operations of this
program, the address information is not used. This makes
the address association a good candidate for the Lazy Load
pattern. The class diagram would look something like Fig-
ure 1.

In this example, we’ll assume we’re using a simple Domain
Model. This Domain Model will be backed by a relational

Preliminary versions of these papers were workshopped tiérRe an-
guages of Programming (PLoP) '07 September 5-8, 2007, Melfdj IL,
USA. Permission to make digital or hard copies of all or partha work

for personal or classroom use is granted without fee proMidet copies are

not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguires prior specific
permission.

PLoP '07 Monticello, IL, USA

Copyright is held by the authors. 978-1-60558-411-85.00.

database and use a single table per class design. The core of
this database structure is the Employee table. The Salary
table contains a foreign key reference to the Employee table
and the Timecard table also contains a foreign key relating it
to the Employee table. In the Domain Model above, Salary-
Info and Timecards are accessed via an instance of the Em-
ployee class and are non-lazy. That means that when an Em-
ployee object is retrieved (i.e. a row in the Employee table is
retrieved from the database) then the associated SalarylInfo
instance and Timecard instance are also retrieved. The Ad-
dress relationship is Lazy Loaded, so the Address instance
won’t be retrieved until the getAddress() method on Em-
ployee is called. Suppose it’s the 15th of the month and it’s
paycheck time. The application must know where to send
the paycheck, so it will need address information for each
employee. The database is queried and a collection of five
hundred employees are retrieved. The application then pro-
cesses each employee’s time-card and pay. Once the amount
of pay is calculated, the getAddress() method is called to
get the address of the employee. Each time this method
is called, a query is sent to the database and the data is
retrieved for one address. So in our example, one query re-
trieves the five hundred employees, but then, five hundred
separate queries are executed to retrieve address informa-
tion. Executing five hundred queries will most likely be very
costly in the execution of the program when compared to the
single query that retrieves the five hundred employees. Also,
executing five hundred queries is probably not what the de-
veloper intended, but is a down-side of using the Lazy Load
pattern. One option to correct this problem is to disable
Lazy Loading of the address object. This would probably
be the easiest way to fix the problem, however there could be
a degradation of performance in the rest of the application.
Once Lazy Loading is disabled, every Employee read from
the database will also cause an Address to be read (along
with the SalaryInfo and Timecard instances). This would be
a waste of system resources in our situation because Address
is not needed most of the time. If disabling the Lazy Load-
ing of the information is not a good option, we can use the
Batch Lazy Loader pattern. The Batch Lazy Loader pat-
tern allows the existing portion of the application that uses
Lazy Loading to continue using it. In the cases that many
Lazy Loaded relationships are requested, batching the Lazy
Load calls into one, can significantly improve performance.
This allows the performance improvement of the Lazy Load
pattern while minimizing the drawbacks of the pattern due
to ripple loading.

Timecard

DomainObject

Salarylnfo

- beginDate : Date

- endDate : Date
- hoursWorked : double
- holidayHours : double

+ getlLazyloadedDomainObject()
+ getCurrentSalary() : SalaryInfo
+ getTimecardsFor{aStartDate : Date, anEndDate : Date)

- currentSalary : double
- salaryEffectiveDate : Date
- overtimeExempt : int

Lazy

Loaded

Address

- streetAddress : String
- city : String

- state : String

- zipCode : String

Figure 1: Class diagram of the Employee class and its associations.

2. SOLUTION

First create some flag to indicate that a Lazy Loaded Do-
main object is batch loadable (like the Address class in the
above example). This could be a property setting (in a con-
figuration file), an attribute in the source of the class, an
annotation or maybe an additional method call setting a
flag before retrieving the data. When loading an object
that references a Batch Lazy Loadable object, it is included
in a list. Though it is in this list, the batch loaded data
is not actually retreived from the source. Then, when any
one of the addresses are requested, the rest of the addresses
in the batch read list are also retrieved. There are two ap-
proaches to batch reading this information. Oracle’s Toplink
takes the approach of allowing developers to read in all of
the pending Lazy Loaded Domain objects when any one
of those Lazy Loaded objects are requested. In the Em-
ployee example above, all five hundred employee addresses
would be retrieved whenever the first Employee’s getAd-
dress() method was invoked. The first getAddress() method
invoked doesn’t have to be from the first Employee chrono-
logically, this is just the first time the getAddress() method
is called on any of the Employees loaded from the database.
In the above example, this could be the 1st record or the
10th or 30th etc. Another approach (the one used in Hiber-
nate) is to specify the number of records to batch retrieve.
Assuming the batch size is set to 100, when the first Address
of the first Employee is read from the database, a query will
execute retrieving one hundred addresses. When the 101st
employee and 101st address is accessed, a second query will
be initiated, bringing in the next one hundred records from
the database.

This can be implemented different ways depending on
the approach chosen above and how the data is being Lazy
Loaded in the application. One common thread between the
two options is the use of a type of Identity Map. An Identity
Map can be thought of as a cache for rows in a database ta-
ble. The Identity Map contains a series of data structures,
aimed at caching data retrieved from the database. Each
row is considered unique and stored in the structure. When
a row is requested that is already in the Identity Map, it
is just retrieved from the Identity Map instead of incurring
the overhead of retrieving it from the database again. When

an element is not in the Identity Map it is retrieved from
the database and then placed in the map. The usage of
the Identity Map pattern is slightly different in the context
of the Batch Lazy Loader. The concern isn’t the caching
of the records from the database, but the recording of ob-
jects that need to be Lazy Loaded. So this Identity Map is
populated with information about an instance of a class in
the Domain Model and it’s Lazy Loaded association. These
“to-be” Lazy Loaded references are stored in that map until
finally one of the Lazy Loaded instances is needed. Then
that map is queried for the instances of that Lazy Loaded
object that need to be retrieved and then the query is sent
for the data.

3. APPLICABILITY
Use the batch Lazy Loading pattern when:

e The Lazy Loaded object is not able to be loaded via a
non-lazy means (such as when performance demands
it)

e A large number of the same type of Lazy Loaded ob-
jects are needed and performance demands that they
be loaded in a more non-lazy fashion

4. STRUCTURE

The structure of this implementation will vary greatly de-
pending on how the Domain Model, Lazy Loading and ex-
isting Identity Maps are implemented. See Figure 2 for a
sequence diagram of the flow of events when using Batch
Lazy Loading.

Participants:

e Domain Object

— contains information related to an entity in the
domain model

— has a relationship to a Lazy Loaded object from
the domain model

e DataRetriever

: DomainObject : DataRetriever : QueryldentityMap : Database
| IazyLnadDumainDtﬁject{}: | |
| | getPendinglazyLoads(): | |
| f"'"'"'é';éé'c'dt'ééijﬂjdé'ri,r'{'}?"" |
I] Retreived records from Database Q
|

Figure 2: Class diagram of the Employee class and its associations.

— determines whether an object needs Lazy Loading
or is already in memory

— calls to the QueryldentityMap to determine if other
elements of the same type need to be loaded and
includes them in the query for the currently load-
ing object

— retrieves the Lazy Loaded data

e QueryldentityMap

— maintains a list of objects to Lazy Load may also

— contain a predefined number of objects to load at
a given time

5. COLLABORATIONS

e Application (or user) requests a Lazy Loaded Domain
Object

e DataRetriever consults the QueryldentityMap to ob-
tain objects to Lazy Load

e DataRetriever will need to collaborate with many classes
to retrieve data from the database

6. CONSEQUENCES

Using the Batch Lazy Loader pattern leads to increased
performance versus Lazy Loading of a large number of Do-
main Objects. Whenever attempting to improve the per-
formance in an application, it is crucial to get a bench-
mark. How long did a particular process or action take
when the Domain Objects were Lazy Loaded? How long
after Batch Lazy Loading them? The biggest performance
gains typically occur when there is significant overhead as-
sociated with requesting and/or retrieving the data. This
overhead could come from making the connection to the
remote source, compiling/interpreting the requested query
and/or the overhead of actually executing the query. In this
case, batching the calls together could incur that overhead
just once (or a few times), instead of many times.

There are also situations in which the Batch Lazy Loader
pattern can decrease performance. One such case is batch

retrieving a very large amount of data. Batch loading will
cause all of the Lazy Loaded Domain Objects to be in mem-
ory same time. This will require much more space than when
they were individually Lazy Loaded, which could put unnec-
essary strain on the application. Another case of degraded
performance would be if not all of the Batch Lazy Loaded el-
ements were used. If, for example, five hundred Lazy Loaded
elements were retrieved and only ten were used. Since most
of the data would be unused, it could degrade performance
and would defeat the purpose of the Lazy Load pattern.

7. IMPLEMENTATION

1. In Object to Relational Mapping tools, often there is
a flag or other indicator that sets a particular relation-
ship to be always batch loaded or not

2. Hibernate specifies the number of records to batch
Lazy Load in an XML configuration file

3. Toplink also allows notification that a Lazy Loaded
object should be batch loaded at runtime, through a
query parameter

4. Often the DataRetriever above is not a single class but
a group of classes that handle retrieving data

8. KNOWN USES

This pattern is used in many Object to Relational Map-
ping tools like Hibernate and Toplink.

9. RELATED PATTERNS

Domain Model - Batch Lazy Loader will often be used with
a Domain Model

Identity Map - Used to keep track of which elements to
batch Lazy Load

Lazy Load - Batch Lazy Loader is needed as a side affect
of the Lazy Load pattern

10. REFERENCES
[1] M. Fowler. Patterns of Enterprise Application

Architecture. Addison-Wesley, 2003.

