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ABSTRACT 

Analog to digital converters (ADC) are widely used real-time data 
acquisition systems. This paper presents a pattern language for 
sampling data from analog to digital converters (ADC) by 
presenting commonly used best practices and providing advice on 
avoiding specific pitfalls in designing ADC data 
sampling/acquisition firmware. From the classification presented 
in the paper a user can potentially come up with 15 designs to 
sample ADCs. The paper first presents seven core patterns 
followed by three composite ones that the authors have seen being 

successfully applied in their domain and work experience.   

Categories and Subject Descriptors 

D.3.3 [Programming Languages]: Language Contructs and 
Features – abstract data types, polymorphism, control structure.;  
D.2.11 [Software Architectures]: Patterns 

General Terms 

Algorithms, Measurement, Design, Languages. 

Keywords 

Analog to digital converters (ADCs), Sampling, Design Patterns, 
Pattern Language. 

1. INTRODUCTION 
A real time data acquisition system may at times need to acquire 

data from an analog signal and convert the signal to a digital 
format. The hardware device that performs this conversion is 
called the analog to digital converter (ADC). The ADC converts 
analog signals to discrete digital numbers. The digital output may 
be in binary or two’s complement.  ADCs are used virtually in all 
applications where an analog signal has to be processed, stored, or 
transported in digital form. ADC implementation ranges from 
direct conversion ADCs to Sigma-Delta ADCs. There are several 
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types of ADCs available, each satisfying a particular purpose 
[WIKI07, Staller05]. As such, the choice of the type of ADC is 
dependent on application requirements. 

Data acquisition through an ADC can be divided into several 

categories. The first level of classification is based on the number 
of analog signals being sampled. If two or more analog signals are 
being sampled then the question arises if they are all sampled at 
once (simultaneous) or sequentially (i.e. one at a time).  In either 
of these cases the periodicity (if any) is the next basis of 
distinguishing between the various ADC sampling techniques. 
The periodicity at which the analog signals are being sampled 
(simultaneously or discreetly) can be fixed, quasi-periodic or non-
periodic. When the periodicity is fixed, a hardware device such as 

a timer is usually used to triggering the ADC, while a quasi-
periodic sampling is usually soft triggered. The non-periodic 
triggering of the ADC is typically random usually, as a result of 
some external event. Both multi-channel and single-channel ADC 
sampling techniques can have the aforementioned sub-
classifications based on the periodicity of the sampling.  Finally at 
the firmware implementation level a sequential or table driven 
sampling approach can be used to distinguish between applied 

ADC sampling techniques. Figure 1 summarizes the above 
classifications. 

Based on Figure 1, there are seven core basic patterns that are 
talked about in section 3. These seven patterns for a generative 
pattern language which can be used to develop 15 composite 
design patterns as explained next. The number of patterns that can 
be generated for multi-channel acquisition are 2 (simultaneous or 
discreet) x 3 (Periodic or Quasi-Periodic or Non-Periodic) x 2 

(Table driven or Sequential). This gives us 12 possible multi 
channel ADC sampling design patterns. Similarly the number of 
patterns that can be generated for single-channel acquisition are: 1 
(only one way to do it) x 3 (Periodic or Quasi-Periodic or Non-
Periodic) x 1 (only one way to do it) = 3 possible single channel 
ADC sampling design patterns. Hence the pattern language that 
we are presenting in this paper is a set of the above possible 
design patterns (12 + 3 = 15) that a reader/user can potentially 

choose from. What we describe in the paper are 3 of these 15 that 
we have seen most commonly in our domain and work experience 
in section 4. 

The patterns presented in this paper aim at providing general 
architecture specific guidelines for developing the firmware for a 
real time data acquisition with an ADC. The authors recommend 



keeping them in mind while using other published references 
[Kalinsky03, Kalinsky06, Bammi06, Bammi07] which may not 
necessarily be focusing just on ADCs. These patterns are elements 
of a pattern language being developed by the authors for 
developing real time data acquisition applications, which drive 

electronics in harsh environmental conditions while taking several 
measurements at the same time. Parts of this pattern language 
have been presented at some of the earlier PLoP conferences 
[Bammi06, Bammi07]. 

 

2. Intended Audience and Scope 
The intended audience of this paper is beginning to intermediate 
level embedded software   engineers developing real time data 
acquisition applications involving ADCs. The technical scope of 
this work is limited to general design issues related to system 
development for proprietary embedded applications that are 
responsible for ADC data acquisition and processing in real time. 

The patterns presented here are by themselves not enough for a 

good design since a good design requires deep knowledge of the 
device under consideration and the specific hardware and a real 
time operating system (RTOS) on which the real time application 
will run. What this paper provides is some generic characteristics 
of a good design, which the authors believe are independent of 
specific hardware and RTOS issues. 

 

 

3.   Atomic ADC Data Sampling Choices 
This section describes the basic ADC design patterns that form the 
building blocks of the ADC firmware pattern language. These 
patterns can be combined in several ways to come up with 
different design to suit different requirements and constraints. 

Section 4 presents three such examples which are design patterns 
in their own right and have been generated from these basic 
atomic ADC design patterns. 

3.1 Discrete Sampling 

3.1.1 Context 
Real time systems may require ADC sampling. Designers have to 

choose from various sampling techniques to come up with a 

design which finds balance between a business/system’s 
requirements, complexity and development costs. 

3.1.2 Problem 
How to design ADC sampling firmware when one has to sample 
from multiple signals? 

3.1.3 Forces 
The design of an ADC sampling system depends on several 
factors one of them being whether to use one ADC per analog 
signal or use one ADC per several analog signal. The overriding 
factor here is normally cost. While the former option is easy to 
design but it is more costly due to increased level of hardware. 

3.1.4 Solution 
In the interest of reducing cost, use a single ADC device and 
multiplex the various analog signals to it. Sample one channel at a 
time (discreet sampling) and switch between them in an order that 

satisfies the system requirements. 

3.1.5 Resulting Context 
While complexity is increased due to use of one ADC device to 

sample multiple analog signals, the cost is reduced due to savings 
in hardware related costs. There are a few more implementation 
related details that remain to be sorted out. For example a decision 
needs to be made regarding whether to sample the multiple analog 
signals in a hard-coded sequential way or to use a more flexible 
but complex table driven approach. The Sequential Sampling and 
Table driven Sampling patterns attempt to answer this question. 

3.1.6 Related Patterns 
Discrete sampling in section 3.2, Sequential sampling (section 
3.6) and Table Driven Sampling (section 3.7) 

3.2 Simultaneous Sampling 

3.2.1 Context 
Real time systems may require ADC sampling. Designers have to 
choose from various sampling techniques to come up with a 
design which finds balance between business requirements, 
complexity and development costs. 

3.2.2 Problem 
How to design ADC sampling firmware when one has to sample 
from multiple analog signals?  

3.2.3 Forces 
The design of an ADC sampling system depends on several 
factors one of them being whether to use one ADC per analog 
signal or use one ADC per several analog signals. While the 
former option is easy to design it also increases complexity. 

3.2.4 Solution 
In the interest of reducing complexity, use one ADC device per 
signal that needs to be sampled. This way all the analog signals 
can be sampled simultaneously. 

3.2.5 Resulting Context 
The simultaneous sampling design while being more costly is 
straight forward to implement and reduces the sampling time. 

3.2.6 Related Patterns 
Sequential sampling in Section 3.1 
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Figure 1 : Classification of ADC Data Sampling Techniques 



3.3 Simultaneous Sampling 

3.3.1 Context 
Real time systems may require ADC sampling. Designers have to 
choose from various sampling techniques to come up with a 
design which finds balance between business requirements, 
complexity and development costs. 

3.3.2 Problem 
How to choose the periodicity of sampling while designing ADC 
sampling firmware? 

3.3.3 Forces 
Sometimes the timing constraints on the rate of sampling are very 
strict and may require sampling to occur with a certain guaranteed 
interval of time. 

3.3.4 Solution 
Use hardware based interrupt triggering for ADC sampling as this 
is the best way to guarantee that the timing of sampling will be 
consistent all else being equal. 

3.3.5 Resulting Context 
The required sampling interval is achieved using a hardware 

based trigger. This approach is more costly due to need of 
additional interrupt triggering hardware resources but it will make 
it possible to meet the strict timing constraints related to ADC 
sampling interval. 

3.3.6 Related Patterns 
Quasi-Periodic Sampling (section 3.4) and Non-Periodic sampling 
(section 3.5). 

3.4 Simultaneous Sampling 

3.4.1 Context 
Real time systems may require ADC sampling. Designers have to 
choose from various sampling techniques to come up with a 
design which finds balance between business requirements, 
complexity and development costs. 

3.4.2 Problem 
How to choose the periodicity of sampling while designing ADC 
sampling firmware? 

3.4.3 Forces 
Sometimes the timing constraints on the rate of sampling may not 
be very strict and/or the cost of additional interrupt triggering 

hardware resource may be too costly based on the needs of the 
business. 

3.4.4 Solution 
The firmware designer can use software based triggers to schedule 
the ADC sampling. While this may not be the most reliable 
solution it is cost effective and especially attractive when the 
timing constraints on ADC sampling are not very strict. 

3.4.5 Resulting Context 
The need for scheduling ADC sampling is met and at the same 
time cost is kept under control as no new additional hardware 
resource is needed. 

3.4.6 Related Patterns 
Periodic Sampling (section 3.3) and Non-Periodic sampling 
(section 3.5). 

 

3.5 Simultaneous Sampling 

3.5.1 Context 
Real time systems may require ADC sampling. Designers have to 
choose from various sampling techniques to come up with a 
design which finds balance between business requirements, 
complexity and development costs. 

3.5.2 Problem 
How to choose the periodicity of sampling while designing ADC 
sampling firmware? 

3.5.3 Forces 
There can be certain applications where ADC data acquisition is 
triggered as a response to an event that is random in time 
(asynchronous). Sometimes ADC sampling needs to happen only 
when a particular event occurs and/or the cost of continuous 
sampling (periodic or quasi-periodic) may be too high in terms of 
system resources being used. 

3.5.4 Solution 
In this case ADC sampling can be triggered when an event of 
interest occurs. This by definition can happen without any specific 
frequency and as such continuous ADC sampling to monitor 
change of state may be a wasteful use of system resources. 

3.5.5 Resulting Context 
With event based sampling the use of system resources is 
optimized under conditions when continuous sampling delivers 
little or no value. Depending on the typical requirements of the 
application the random ADC sampling could be single channel or 
multi channel and sequential or table driven. Some of the possible 

scenarios are vending machines, which take an input form the 
user, operator controlled industrial equipment, some real time 
systems that are programmed to act a certain way when a 
particular even occurs etc. 

3.5.6 Related Patterns 
Periodic Sampling (section 3.3) and Quasi-Periodic sampling 
(section 3.4). 

3.6 Simultaneous Sampling 

3.6.1 Context 
Real time systems may require ADC sampling. Designers have to 
choose from various sampling techniques to come up with a 
design which finds balance between business requirements, 
complexity and development costs. 

3.6.2 Problem 
How to implement sampling of multiple analog signals? 

3.6.3 Forces 
Sampling of multiple analog signals needs to be done in a certain 
order. Hard coding of the channels and the sequence in which they 
will be sampled is a fairly straight forward, easy to implement and 

easy to understand approach. But it is also not flexible. The table 
driven approach in which the sequence of channels to be sampled 
and the frequency with which they need to be sampled can be 
changed or be chosen from amongst different strategies is much 
more complex to implement and sustain.  

3.6.4 Solution 
If the probability of change in system/business requirements is 
less and the concern for maintainability of the firmware by other 
software engineers in the future is high then the sequential 



sampling approach should be applied. In this approach each ADC 
channel is given a number and the sampling is done in a 
predetermined way that is hard coded in the code. More details 
related to implementation of this approach can be found in the 
Discrete Periodic Sequential Sampling pattern in section 4.1. 

3.6.5 Resulting Context 
This solution causes the complexity of the code to reduce and 
hence it is easy to understand and maintain by other engineers 
who would work in the project in future. 

3.6.6 Related Patterns 
Table driven sampling section 3.7 and Discrete Periodic 
Sequential Sampling pattern in section 4.1 

3.7 Simultaneous Sampling 

3.7.1 Context 
Real time systems may require ADC sampling. Designers have to 
choose from various sampling techniques to come up with a 
design which finds balance between business requirements, 
complexity and development costs. 

3.7.2 Problem 
How to implement sampling of multiple analog signals? 

3.7.3 Forces 
Sampling of multiple analog signals needs to be done in a certain 
order. Hard coding of the channels and the sequence in which they 
will be sampled is a fairly straight forward, easy to implement and 
easy to understand approach. But it is also not flexible. The table 
driven approach in which the sequence of channels to be sampled 
and the frequency with which they need to be sampled can be 
changed or be chosen from amongst different strategies is much 
more complex to implement and sustain. But it is more flexible. 

3.7.4 Solution 
If the probability of change in system/business requirements is 
considerable and the concern for maintainability of the firmware 
by other software engineers in the future is not appreciable then 
the table driven sampling approach should be applied. In this 
approach for each ADC channel there is a specific entry in a table 
specifying its order in a sequence, the number of times it needs to 

be sampled before switching to the next channel in the sequence 
and other such possible sequences. More details related to 
implementation of this approach can be found in the Discrete 
Periodic Table Driven Sampling pattern in section 4.2 and 
Discrete Quasi-Periodic Table Driven Sampling pattern in section 
4.3. 

3.7.5 Resulting Context 
This solution causes the complexity of the code to increase but 
makes the design more flexible and open to future changes in the 
business requirements. 

3.7.6 Related Patterns 
Sequential sampling section 3.6, Discrete Periodic Table Driven 

Sampling pattern in section 4.2 and Discrete Quasi-Periodic Table 
Driven Sampling pattern in section 4.3 

4. FIGURES/CAPTIONS 
This section presents a group of three composite design patterns 
that are generated by using certain combinations of the seven 

basic patterns presented in previous section. These composite 
combinations have been called patterns as the authors have seen 
them being applied successfully over and over again in their 

domain and work experience. These are namely; Periodic 

Sequential Sampling, Periodic Table-Drive Sampling and 
Quasi-periodic Sampling. 

4.1 Discrete Periodic Sequential Sampling 

Pattern 

4.1.1 Context 
Often during real time data acquisition, it may be necessary for 

several analog signals to be read and converted to their digital 
representations. In such cases these multiple analog signals are 
read through the same ADC device but in a predetermined fashion 
so that the system knows which channel’s signal was just 
converted to digital format.  This pattern illustrates firmware 
implementation of data acquisition from an ADC device, which 
has several analog signals, multiplexed through it. 

4.1.2 Problem 
Usually multiplexed ADC devices use interrupt driven I/O. The 
sequence in which data is converted and read to/from the device 
need to be in a specific order with only one data line to be read at 
a time. Hence the problem is to accomplish periodic and interrupt-

driven data acquisition over an ADC multiplexed channel. How 
do we convert a parallel stream of values into serially accessible 
separate data elements in a periodic fashion? 

4.1.3 Forces 
The reading of the multiplexed channels from ADC has to be 
cyclic. After reading a particular channel the next data channel 
that needs to be read has to be set so it has enough time to 
stabilize before data is read from it the next time the ADC 
interrupt is generated. The state of the read/write to the data 
channel has to be saved from one interrupt to another so that the 
interrupt handler knows which data channel it is reading 

4.1.4 Solution 
The solution is to setup a hardware based interrupts, one for 
periodically starting ADC data conversion (“Start ADC data 
conversion “) and the other for signaling that the conversion is 

done and consequently data is ready to be read (“ADC conversion 
done”). The first interrupt can typically be clubbed with the 
system timer interrupt so that every time there is a system timer 
tick there is new conversion started on the ADC. Of course this 
scheme will work only when the ADC conversion time is always 
less than time between two consecutive timer ticks on the system 
clock. If it is more then the ADC conversion can be started every 
other timer tick or a similar scheme like that. 

Next, we use a switch statement in the interrupt service routine of 
the “ADC conversion done” interrupt. Some local static variables 
are used to preserve the state of the sequence in which the data 
channels have to be read. Figure 2 presents a flow chart of the 
multiplexed (MUX) ADC driver. The index variable in the 
flowchart is used for keeping track of the data channel to be read 
when the interrupt occurs. To ensure that it points to the next data 
channel that will be read at the next interrupt, it is incremented by 
one before exiting the interrupt service routine. When the index 

value reaches the total number of channels (n), a cycle of 
conversion is completed and it is reset to zero. This allows the 
first channel to be read during the start of a new cycle. In addition 
to tracking the next channel to sample, setting the next ADC 
channel that needs to be read in the ISR gives the next channel 
some time to stabilize before it ready for conversion.  



Figure 2: Discreet periodic sequential sampling pattern 

 

Figure 3 presents a sequence UML diagrams to explain the 
functioning of the pattern in more detail. It shows the sequence in 
which the interrupts happen and how they get handled. The 
interrupts are generated by the ADC resource when it s ready with 
the data to be read from it. This interrupt is handled by the 
handler, which implements the Discreet periodic sequential 
sampling pattern. The sequence diagram shows two cycles in the 

interrupt sequence, which leads to data being read by the driver 
twice from the N channels that are multiplexed through the ADC.  

Figure 3: ADC acquisition interrupt handler design pattern 

 

Figure 4 shows how the interrupt handler for the 
ADC_Data_Ready_Interrupt switched between different states 

depending on the “SensorMuxIndex” which is kept track by a 
local static variable in the ISR. Interrupt # N causes the ISR to be 
in “SensorMuxIndex_Nminus1” state. 

Figure 4: State Chart Diagram Presenting the Various States 

through which the Multiplexed ADC Driver Cycles During 

Data Acquisition 

 

The following code in Figure 5 presents a sample implementation 
of the pattern, where the total number of multiplexed ADC 
channels is 12. The handler for the timer interrupt that happens 
once every 10 msec has a dummy read call, which in turn starts 
the acquisition on the ADC.  When the ADC finishes the data 

acquisition it fires an ADC_Data_Ready_Interrupt , which is then 
handled by a routine that implements the pattern. The initial ADC 
channel, MUX_CHAN_0, is set in a ADCinit( ) routine which 
called during the initialization of MuxAdcDriver class. 

4.1.5 Resulting Context 
Data is read form the mux-ed channel in the desired sequence 
every time the concerned interrupt is handled. The switch 
statement and the local static index guarantees that the right ADC 
channel is read in the right sequence every time. This of course is 
going to be true if and only if the hardware keeps functioning 
without a problem. 

Another consideration to keep in mind is the jitter that can be 

caused by different processor implementations. Most 
microprocessors will vector to an interrupt after the current 
instruction has completed. If that instruction is an extended 
instruction then more CPU cycles will be needed before the 
instruction is completed as compared to a normal instruction. This 
then causes jitter in that the timing between the interrupt events 
and leads to varying of the interrupt processing from one 
execution to another. 

4.1.6 Related Patterns 
There should be only one ADC driver per ADC device and this 
can be ensured by using the Singleton pattern [GHJV94]. Also the 
application level code does not need to know about the low level 
details along with the instantaneous data being collected by the 
ADC driver. Usually it uses some averaged or filtered value and 

this functionality can be encapsulated in an Adapter class 
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ADC_Initialization

staticint index = 0;

SensorMuxIndex_0

ReadADC(index);SetNextADCChannel();

if(++index >= N) index = 0;

ADC_Data_Ready_Interrupt

SensorMuxIndex_1

ReadADC(index);SetNextADCChannel();

if(++index >= N) index = 0;

ADC_Data_Ready_Interrupt

SensorMuxIndex_2

ReadADC(index);SetNextADCChannel();

if(++index >= N) index = 0;

ADC_Data_Ready_Interrupt

SensorMuxIndex_N_minus_1

ReadADC(index);SetNextADCChannel();

if(++index >= N) index = 0;

ReadADC(index);SetNextADCChannel();

if(++index >= N) index = 0;

ADC_Data_Ready_Interrupt

ADC_Data_Ready_Interrupt

…

…

…
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staticint index = 0;

SensorMuxIndex_0

ReadADC(index);SetNextADCChannel();

if(++index >= N) index = 0;

ADC_Data_Ready_Interrupt
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ReadADC(index);SetNextADCChannel();

if(++index >= N) index = 0;

ADC_Data_Ready_Interrupt
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ReadADC(index);SetNextADCChannel();

if(++index >= N) index = 0;

ADC_Data_Ready_Interrupt
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ReadADC(index);SetNextADCChannel();

if(++index >= N) index = 0;

ReadADC(index);SetNextADCChannel();

if(++index >= N) index = 0;

ADC_Data_Ready_Interrupt

ADC_Data_Ready_Interrupt

…

…

…



[GHJV94], which provides an easy to use interface for accessing 
data from the ADC device. 

 

4.1.7 Known Uses 
MUX ADC Driver pattern has been widely used in 
Schlumberger’s real time data acquisition firmware, which 
involved dealing with ADCs [SLB]. 

 

4.2 Simultaneous Sampling 
Periodic sampling with constant periodicity is one case of the 

periodic sampling described in the Introduction section of this 
paper. As the title suggests, the timing of this type periodic 
sampling is constant. Once enabled, new data samples are 
produced every ∆T seconds. Periodic sampling describes A/D 
conversions that are synchronized to a timing event. 

4.2.1 Context 
Periodic sampling with constant periodicity is used in applications 
that require time synchronized data that are searching for a 
particular event, or where measurements are used to control a 
device.  

4.2.2 Problem 
There are situations where the signals to be acquired must be 
acquired according to a fixed timing interval. It may also be 
required that the signals be acquired in a particular known order 
especially where frequency or position measurements are 

concerned. In such cases a simple sequential approach as 
described in section 3.1 will not be enough. What do we do in 
such cases ? 

4.2.3 Forces 
The system must conform to a specified timing spec for the 
acquisition of the signals and their order. Further constraints for 
this type of acquisition maybe: 

• The channels are typically multiplexed. 

• The channels may or may not be acquired sequentially. 

• The data may have to be filtered or windowed. 

4.2.4 Solution 
The solution is contained in two separate parts. The first is to use 
hardware such as a timer to trigger the A/D conversion process; 
thus providing periodic sampling. The second is to use a table-

driven approach to select which channel is going to be acquired 
next and how many times the channel will be acquired. In this 
case a table is used to store the order of the acquisition of signals 
and the number of times they need to be acquired before moving 
to the next channel. 

The system is initialized such that interrupts are enabled and a 
timer is started. When the timer expires an A/D conversion is 
started and the timer is restarted. When the A/D conversion is 
complete an interrupt will be generated and the Interrupt Service 
Routine (ISR) reads the results of the conversion. The template 
for the implementation of the conversion complete ISR is handled 
has illustrated in the flowchart of Figure 6. 

4.2.5 Resulting Context 
Multiplexed A/D conversion is achieved with the constraint of a 
precise sampling time. In complex cases where a channel needs to 
be sampled several times before switching to another channel and 
the next logical channel is not the next physical channel then a 

table implementation is an efficient approach. The table approach 
provides a means to extend the number of acquisitions required 
for a particular channel before advancing to the next channel, 
typically used for over sampling acquired data. In this way a 
particular channel acquisition order can be defined and a periodic 
cycle time is achieved. 

As discussed in section 3.1.5, another consideration to keep in 
mind is the jitter that can be caused by different processor 
implementations. Most microprocessors will vector to an interrupt 

//This happens outside interrupt handler during device 
//initialization 

static int SensorMuxIndex = 0;  

//Interrupt handler implementing ‘MUX ADC driver’ pattern 

void MuxAdcDriver::MuxAdcInterruptHandler(void) 

{ 

…           …           …           … 

    if(irq_source & ADC_INT_AVAIL) //ADC data available 

    { 

 switch(SensorMuxIndex) 

 { 

     case 0: //MUX_CHAN_0 

  if(actel_stat & ADC_BUSY_PIN) 

      PreviousCHAN0 = Reg_ADC_DATA; 

  //Set next MUX channel after clearing 
previous 

  Reg_PORTF0 = ((Reg_PORTF0 & 
MUX_ADR_CLR) | MUX_CHAN_1);     

  break; 

     case 1: // MUX_CHAN_1 

  if(actel_stat & ADC_BUSY_PIN) 

      PreviousCHAN1 = Reg_ADC_DATA; 

  //Set next MUX channel after clearing 
previous 

  Reg_PORTF0 = ((Reg_PORTF0 & 
MUX_ADR_CLR) | MUX_CHAN_2);     

  break; 

…           …           …           … 

     case 11: // MUX_CHAN_11 

  if(actel_stat & ADC_BUSY_PIN) 

      PreviousCHAN11 = Reg_ADC_DATA; 

  //Set next MUX channel after clearing 
previous 

  Reg_PORTF0 = ((Reg_PORTF0 & 
MUX_ADR_CLR) | MUX_CHAN_0);     

  break;  

     default: 

  SensorMuxIndex = 0; 

  break; 

 } 

 if (++SensorMuxIndex >= 12) 

  SensorMuxIndex = 0; 

Figure 5: Sample code showing implementation of the ‘MUX 

ADC Driver’ pattern implemented in the 
ADC_Data_Ready_Interrupt  service routine 



after the current instruction has completed. If that instruction is an 
extended instruction then more CPU cycles will be needed before 
the instruction is completed as compared to a normal instruction. 
This then causes jitter in that the timing between the interrupt 
event and actually processing the interrupt varies from one 
execution to another. 

Figure 6: Example Flowchart for Periodic Sampling 

 

4.2.6 Related Patterns 
There should be only one ADC driver per ADC device and this 
can be ensured by using the Singleton pattern [GHJV94]. Also the 
application level code does not need to know about the low level 
details along with the instantaneous data being collected by the 

ADC driver. Usually it uses some averaged or filtered value and 
this functionality can be encapsulated in an Adapter class 
[GHJV94], which provides an easy to use interface for accessing 
data from the ADC device. 

4.2.7 Known Uses 
Multiplexed A/D conversion with constant periodicity has been 
employed on projects in Schlumberger [SLB]. 

4.3 Simultaneous Sampling 

4.3.1 Context 
The most common approach for performing A/D conversion is to 
employ a hardware trigger, usually resulting in periodic sampling.  
Using a hardware trigger is especially desirable when there a 
system has timing constraints, which requires sampling be done at 
specific time intervals. When the A/D conversion process is 

completed, the output of the ADC is read and the ADC is 
configured for the next conversion process. For multi-channel 
conversion, the general sampling method employed is the 
sequentially driven.  

This pattern describes an alternative to the periodic sampling that 
provides the flexibility that is lacking in periodic sampling. 

4.3.2 Problem 
When the ADC is used for sequential multiplexing data 
acquisition, it is generally desirable to sample each channel at the 
same rate. This requires that the start of the conversion process is 
pre-determined and triggered by hardware say for example by a 
timer. In the event that such hardware resource is unavailable, and 
the ADC data acquisition does not need to be sampled at specific 
timing interval, then an alternative means of performing the A/D 

conversion process is required. 

4.3.3 Forces 
Other tasks in a system may generate interrupts that may result in 
significant variation in time interval between consecutive 

samplings. 

4.3.4 Solution 
The solution presented here uses software to trigger the A/D 

conversion process. In this case, the ADC will, at initialization be 
configured for soft-trigger. After the ADC is initialized and setup, 
the start of conversion (SOC) can be initiated when required, 
usually as a function call. The code template in Figure 7 illustrates 
the SOC in an infinite loop, in which ADC starts a conversion 
every time control returns to the start of the infinite for loop. If the 
loop is never exited, then the sampling is categorized as periodic 
sampling with the exception that the conversion process is 

software triggered. In general however, the loop will be exited as 
a result of some random event (such as an interrupt), thus, the 
periodicity of the A/D process is classified as quasi-periodic 
sampling. 

Figure 7: Code template for Software ADC Start of 
Conversion Trigger 

void main(void) 

{ 

          adcInitialization(); 

          . 

          . 

          for(; ; ) 

         { 

             startAdcConversion(); 

             while(!converted); 

             process_result(); 

         } 

} 

 

When the ADC has completed the conversion, the system needs to 
be notified so that the output of the ADC can be read and the 

ADC configured for the next conversion process.  The ADC’s end 
of conversion (EOC) can be determined either by software polling 
or could be interrupt-driven. Software polling incurs the overhead 
of wasting processor time; tying down the processor thus, 
preventing it from performing other tasks [Minasi93, Rusling97]. 
Therefore, to avoid the penalty of software polling, and to meet 
our application requirements, we have employed the use of an 
interrupt to signify the end of an A/D conversion process. When 



EOC interrupt is generated, the output of the ADC is read in the 
interrupt service routine (ISR) and the ADC is configured for next 
set of analog signal(s) to be digitized. The configuration of the 
ADC for the next conversion process is table-driven. The table-
driven approach has already been discussed in the periodic table-

driven sampling pattern. The flowchart in Figure 8 provides a 
high-level representation of the end of conversion ISR. 

Figure 8: Flowchart for an A/D End-of-Conversion Interrupt 
Service Routine 

Configure for Next Input Channel

Read ADC Results

Last Input? Yes
Reset input counter to first input in 

sequence

No

Return

Increment input counter

 

4.3.5 Resulting Context 
Quasi-periodic sampling provides a flexible means for 
performing A/D conversion in the absence of hardware resources. 
Due to the unknowns of other events in a system, the sampling 
time intervals for this approach may vary. If the latter is a 
concern, we suggest not using the quasi-periodic sampling 
pattern in systems that require high timing interval precision for 
A/D conversion process.  

4.3.6 Related Patterns 
The previous two patterns are similar to this as they all lend 
themselves equally well to either sequential or table driven 
approach but differ in the fact that they use a hardware based 
trigger. There should be only one ADC driver per ADC device 

and this can be ensured by using the Singleton pattern [GHJV94]. 
Also the application level code does not need to know about the 
low level details along with the instantaneous data being collected 
by the ADC driver. Usually it uses some averaged or filtered 
value and this functionality can be encapsulated in an Adapter 
class [GHJV94], which provides an easy to use interface for 
accessing data from the ADC device. 

4.3.7 Known Uses 
Multiplexed A/D conversions using the quasi-periodic sampling 
pattern have been employed on projects in Schlumberger [SLB]. 

 

 

5. A Guide to Selecting an ADC Sampling 

Solution 
The following table in conjunction with the design level 
classification presented in the introduction section serves as a 
guide for selecting the most appropriate solution at each level of 
the classification. 

Table 1. Design guide to selecting ADC sampling solution 

Design 
Issue Level 

Solution When to use 

Number of 
ADCs to 
use 

One ADC per 
Signal 

 

One ADC for 
two or more 
signals 

Limited hardware resource 

 How to 
acquire data 

Simultaneous 
When several signals need to be 
sampled at the same pre-
determined time 

Discrete  

Choice of 
periodicity 

Periodic Fixed sampling period required 

Quasi-
periodic 

No hardware resource to 
perform fixed sampling 
No constraint on when sampling 
is performed 

Non-periodic 
When another event results in 
need to perform analog to digital 
conversion 

Order of 
signal 
sampling 

Sequential Order of acquisition is fixed 

Table-driven 
Varying order of acquisition 
Repeated sampling of a specific 
signal(s). 

 

6. The Hardware Angle 
It is difficult to write a paper on embedded system design without 
addressing the various hardware issues involved. The patterns 
presented in this paper have been implemented on various ADC 

devices. The Discrete Periodic Sequential sampling pattern was 
implemented on a 16 bit successive approximation ADC with 16 
channels of multiplexed data. The Discrete periodic table driven 
sampling pattern was implemented on a sigma delta ADC. The 
Discrete quasi-periodic table driven sampling pattern was 
implemented on a pipelined 12-bit ADC module with built-in 
sample-and-hold. 

7. Pattern Thumbnails 
This section summarizes the patterns discussed in the table below. 

 

Table 2. Summary of patterns presented in this paper 

Pattern 

No. 
Pattern Intent 

1 Discrete Sampling 
A pattern for sampling one signal at 

a time. 

2 
Simultaneous 

Sampling 

A pattern for sampling multiple 

signals at a time. 

3 Periodic Sampling 
A pattern for hardware based 

interrupt driven ADC sampling. 

4 
Quasi-Periodic 

Sampling 

A pattern for software based 

interrupt driven ADC sampling. 

5 
Non-Periodic 

Sampling 

A pattern for event based interrupt 

driven ADC sampling. 



6 Sequential Sampling 
A pattern for sequentially hard coded 

ADC sampling 

7 
Table Driven 

Sampling 

A pattern for ADC sampling that is 

more flexible and more complex 

than Sequential sampling. 

8 
Discrete Periodic 

Sequential Sampling 

A pattern for sequentially sampling 

an ADC device in a periodic fashion 

9 

Discrete Periodic 

Table Driven 

Sampling 

A pattern for sampling an ADC 

device in a periodic fashion using the 

table driven approach. 

10 

Discrete Quasi-

Periodic Table 

Driven Sampling 

A pattern for sampling an ADC 

device using the table driven 

approach in a periodic fashion with 

variable periodicity 
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