
A Catalogue of Bug Patterns

for Exception Handling in Aspect-Oriented Programs
Roberta Coelho

DIMAp, Federal University of Rio
Grande do Norte, Natal, Brazil

roberta@dimap.ufrn.br

James Noble
Victoria University

of Wellington, New Zealand

kjx@mcs.vuw.ac.nz

Awais Rashid
Computing Department, Lancaster

University, Lancaster, UK and Ecole
des Mines de Nantes, France

awais@comp.lancs.ac.uk

Uirá Kulesza
DIMAp, Federal University of Rio

Grande do Norte Natal, Brazil

uira@dimap.ufrn.br

Arndt von Staa
Informatics Department, Pontifical

Catholic University of Rio de Janeiro
Rio de Janeiro, Brazil

arndt@inf.puc-rio.br

Carlos Lucena
Informatics Department, Pontifical

Catholic University of Rio de Janeiro
Rio de Janeiro, Brazil

lcena@inf.puc-rio.br

ABSTRACT

Aspects allow a developer to externally add new functionality to a

program. This additional functionality may also throw new

exceptions that will flow through the program execution until they

are handled. Moreover, aspects can also be used to handle

exceptions thrown by base code or even other aspects.

Unfortunately, exceptions thrown by aspects — or exceptions that

should be handled by them — may flow through the program

execution in unexpected ways leading to failures such as uncaught

exceptions or exceptions being caught by the wrong handlers. In a

previous empirical study we investigated the causes of such

failures in Aspect-Oriented programs. In this paper we present

causes of such failures as a catalogue of bug patterns for

exception handling in Aspect-Oriented programs.

Categories and Subject Descriptors

D.2.5 [Testing and Debugging]: Error handling and recovery.

Debugging aids.

General Terms

Aspect-oriented programming, exception handling, bug patterns,

dependable systems.

Keywords

Dynamic Analysis, Monitoring, Aspect-Oriented Programming.

1. INTRODUCTION

The term bug has often been used in computer science as a

synonym for fault or error, a specific construction in the program

code that may lead to a failure [1]. It can also be used as a

synonym for a code smell, a piece of code that does not represent

a fault by itself but that contributes to a difficult understanding of

the code, and as a consequence to the introduction of faults [1]. It

has been empirically observed that, due to the predictability of

people’s fallibility, many bugs often fall into known categories or

patterns [2] - as people tend to repeat similar mistakes. Bug

patterns are, therefore, recurring characteristics of program code

that may lead to failures.

Some bug patterns have been proposed to support the testing

and debugging of OO programs [3, 4, 5]. As good software design

skills involve knowledge of architectural and design patterns,

good debugging skills involve knowledge of bug patterns. Since

many bugs follow one of several patterns, once developers can

recognize these patterns, they will be able to diagnose the cause of

a bug and correct it more quickly, as well as learning to avoid

them.

Since the last decade, Aspect-Oriented Programming (AOP)

[11] has been increasingly used as a means to modularize

crosscutting concerns, such as persistence, distribution [15],

security and monitoring. A number of industrial-strength aspect-

oriented programming frameworks have been deployed (e.g.,

AspectJ [6], JBoss [7] and Spring [8]) and non-trivial applications

of AO industrial applications have been developed such as IBM

Websphere [9] and GlassBox [10].

On one hand, the AO constructs open a new realm of design

possibilities. On the other hand, the new AO constructs represent

new sources of bugs. There has been little work on cataloging bug

patterns in AO programs. Zhang and Zhao [12] detailed a list of

general bug patterns associated with the main AspectJ constructs.

These bugs, however, focus on the normal control flow of

programs, and do not consider potential problems related to the

exception handling code in AO programs.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. A preliminary version of

this paper was presented in a writers’ workshop at the 15th Conference

on Pattern Languages of Programs (PLoP).

PLoP ’08, October 18–20, 2008, Nashville, TN, USA.

Copyright 2008 is held by the author(s). ACM 978-1-60558-151-4

In a previous empirical study [13], we assessed the error

proneness of exception handling code of AspectJ programs, and

observed a set of recurring bugs on the way exceptions were

thrown and caught inside the AO systems. Such analysis was

based on the manual code inspections of a set of different releases

of three medium-sized systems — from different application

domains. Overall, this corresponds to 39 KLOC lines of AspectJ

source code, of which around 3.2 KLOC are dedicated to

exception handling.

This paper details the recurring bugs discovered during this

study. These bugs are presented as a catalogue of bug patterns

structured in two different categories: (i) bugs on scenarios where

aspects are used to catch exceptions — in these scenarios Error

Handling Aspects [18] are used to aspectize the exception

handling concern; and (ii) bugs on scenarios where aspect advice

throw exceptions while adding new behavior to specific points in

the program execution. Figure 1 illustrates the bug patterns

discovered in each category.

Throw without Catch

Path-dependent Throw

Exception Stealer

Fragile Catch

Residual Catch

when using Error

Handling Aspects
when aspects throw

exceptions

Bug patterns that can occur:

Figure 1: Catalogue of bug patterns.

The remainder of this paper is organized as follows. Section 2

presents some background on exception handling and AspectJ.

Section 3 describes a simple AO system that will be used to

exemplify the bug patterns. Section 4 details each of the bug

patterns presented in Figure 1. Finally, Section 5 presents some

discussions concerning the commonalities between the bug

patterns presented here. The bug patterns are structured using the

following form (borrowing some terminology from Allen [3]):

• pattern name;

• summary;

• symptoms;

• cause(s);

• cures and prevention; and

• related patterns (when necessary).

Although we present cures and preventions for the bug

patterns, the focus of this paper is on the bug patterns’ symptoms

and causes, which are useful to support debugging and testing

tasks. Due to some limitations of current AspectJ languages and

tool support for reasoning about exceptional flow, some of the

proposed solutions act as a palliative while better language and

tool support are proposed. Therefore, this paper allows developers

and testers of aspect-oriented applications to diagnose bugs in

exception handling code, and also designers of AOP languages

and static analysis tools to consider pushing the boundaries of

existing mechanisms to make AOP more resilient to such bugs.

Throughout this article we assume that the reader is familiar with

AOSD terminology and AspectJ language constructs. Appendix I

presents brief explanation about AOSD terminology.

2. BACKGROUND

2.1 Exception Handling

Everybody hates thinking about exceptions,

because they’re not supposed to happen

Brian Foote

Exception handling is a technique for structuring the error

recovery code of a system in a way that errors can be easily

detected and handled. Most mainstream programming languages

provide constructs to signal the occurrence of an error (throw an

exception) and to associate a set of recovery measures with the

error, in order to deal with the problem (catch and handle the

exception).

When a program throws an exception, the programming

language’s exception handling mechanism is responsible for

changing the normal control flow of the computation within the

program to its exceptional control flow. Thus, when an exception

is thrown, the normal activity of a component is interrupted, and a

search for an appropriate handler begins. When the appropriate

exception handler is found, it is executed (the handler usually

define a set of actions to remedy the exception) and control

returns to the code that immediately follows the handler.

2.1.1 Exception Handling in AspectJ

AspectJ [6] is the most used aspect oriented programming

language. AspectJ incorporates the aspect-oriented software

development concepts into the Java programming language. The

main concepts are the following: (i) join points – well-defined

locations within the base code where a concern can crosscut the

application (e.g. method calls); (ii) pointcuts – a collection of join

points; and (iii) advice – a special method-like construction

defined on aspects which are used to attach new crosscutting

behaviors along the pointcuts. In AspectJ, as in Java, exceptions

are represented in a hierarchical structure, on which each

exception is an instance of the Throwable class (see Figure 2).

Throwable

Exception Error

RuntimeException

Figure 2: Exception Hierarchy in Java

Exceptions are either checked (extends Exception) or

unchecked (extends RuntimeException) (see Figure 2).

Errors represent asynchronous exceptions that can be thrown by

Java platform and cannot be handled inside the program. A

checked exception must be declared in the signature of every

method that propagates it. Thus, the use of checked exceptions

allows the compiler to statically check whether or not handlers are

provided on the system to handle such exceptions. On the other

hand, the unchecked exceptions do not need to be declared in the

method signatures. As a consequence, there is very little that can

be checked at compile time.

One advantage of mapping the exceptions into the type system

is that handlers for one type of exception can also handle

exceptions of its subtypes. Unfortunately, this characteristic can

be the cause of some failures: a very general handler can catch an

exception even though it does not have sufficient contextual

information to handle it.

AspectJ reuses plain Java constructs to raise (throw

statement) and handle exceptions (try-catch-finally) and

to specify exceptions in method signatures (throws clause).

AspectJ also contains new constructs that enable aspects to throw

and handle exceptions, as follows:

• The Declare Soft construct: in AspectJ an advice can

only throw a checked exception if it is thrown by

“every” intercepted method [20]. To overcome this

limitation, AspectJ offers the declare soft

construct, which converts a given exception into a

specialized runtime exception, named

SoftException. The syntax is as following:

 declare soft : <someException> : <scope>;

 The <scope> is specified by a pointcut expression

which selects a subset of joinpoints in which the

<someException> will be wrapped in an instance of

SoftException.

• Handler Pointcut Designator: One of the well-

defined points during the execution of a Java program is

the execution of an exception handler. AspectJ provides

a pointcut designator that allows an aspect to advise the

places where specific exceptions are handled through

the handler pointcut designator [20].

• After and After Throwing advice: These kinds of

advice allow aspects to be invoked when an exception is

thrown by a method. This allows extra code to be

executed when an exception is signaled.

Figure 3 presents a code snippet showing the use of some of

these constructs. The ErrorHandlingAspect defines two

pointcut expressions: one that intercepts the execution of every

method defined in class Foo (line 2); and another that intercepts

the execution of every method defined in class Bar (line 3). The

after throwing advice (lines 4-6) catches every exception of

type E1 - that can be thrown during the execution of any method

of class Foo – it then throws an instance of exception E2 which

stores the original exception message. The around advice (lines 7-

13) catches any instance of exception E3 thrown by the execution

of any method defined in class Bar. It then performs a recovery

action to remedy the effects of the exception.

Figure 3: A simple exception handling aspect.

Besides being able of handling exceptions, through the use of

Error Handling Aspects similar to the one presented above, every

AspectJ advice has the ability to throw instances of any

RuntimeException. Although we used AspectJ to exemplify

the bug patterns the bug patterns described next can also be found

on systems developed in such languages, and AOP frameworks

that follow the same join point model as AspectJ (e.g., : CaesarJ

[14], JBoss AOP [7] and Spring AOP [8])

3. EXAMPLE

This section presents an illustrative example of an information

system, called Health Watcher (HW). Health Watcher is a web-

based information system that allows citizens to register

complaints regarding issues in health care institutions. This

system is structured according to the Layered architectural pattern

(see Figure 4). The GUI Layer comprises a set of Java Servlets

responsible for receiving user requests (ServletComplaint

and ServletEmployee in Figure 4). The Business layer

contains a set of domain specific classes and the system facade.

And finally the Data Layer contains the set of Data Access

Objects (DAOs) responsible for persisting system data.

As we can see in Figure 4, the HW system implements some

concerns as aspects:

(i) the Monitoring aspect is responsible for monitoring

the performance of every Servlet request;

(ii) the TransactionManagement intercepts a set of

methods defined by the Facade and by some DAOs,

adding the transaction management concern. In other

words, if an error occurs within the scope of a method

intercepted by the TransactionManagement

aspect, the aspect detects the error and executes a

transaction rollback.

1. public aspect ErrorHandlingAspect {

2. pointcut pointsToConvertExceptions() :
 execution(* Foo.*(..));
3. pointcut pointsToHandleExceptions() :
 execution(* Bar.*(..));

4. after() throwing (E1 e1) throws E2 :
5. pointsToConvertExceptions() {
 throw new E2(e1.getMessage());
6. }

7. void around():pointsToHandleExceptions(){
8. try{
9. proceed();
10. }catch(E3 exc){
11. recoverAction(exc);
12. }
13. }
14.
15. }

(iii) the ExceptionHandling aspect is responsible for

catching the exceptions thrown by the transaction

management aspect. It intercepts Servlet methods

and catches the exceptions thrown by the

TransactionManagement concern (instances of

TMException). When catching such exceptions the

exception handling aspect presents a pop-up message

describing the failure.

(iv) The AvoidUncaught aspect was defined to avoid

uncaught exceptions in the HW system. An uncaught

exception is any instance of a RuntimeException

that is not caught inside the system, and transparently

propagates back to the program entry point, causing the

Java virtual machine to terminate. To avoid such

exceptions this aspect intercepts the set of methods from

the GUI layer that receive user requests, and handles

every exception that was not caught inside the system.

To do so it uses a very general catch clause (catch
Exception).

Each one of these aspects will be used in different scenarios to

illustrate the bug patterns presented below. In this paper we do

not cover bug patterns that can arise from the interaction between

aspects.

4. THE CATALOGUE OF BUG PATTERNS

This catalogue of bug patterns is structured in two categories:

(i) bugs on scenarios when aspects are used to catch exceptions,

and (ii) bugs that can occur when aspects throw exceptions. This

catalogue is a useful source of information for debugging and

testing the exception handling (EH) code of AO systems. As it

shows which kinds of bugs are most likely to happen in the EH

code of AO systems, and therefore can help developers and testers

to avoid and detect tem. The list of bug patterns can also be used

to implement static checkers that could be used to automatically

locate faults or potential faults in the source code.

4.1 Bug Patterns that can happen when using

aspects to catch exceptions

Aspects can be used to modularize the exception handling

concern. In such scenarios the catch clauses defined in the base

code can be moved to aspects called Error Handling Aspects [18],

which are implemented using around and after throwing advices.

All the bug patterns presented next are related to the use of the

Error Handling Aspect pattern.

TransactionManagement
<<aspect>>

Data Layer

Hibernate Aspect Library

Performance Monitoring Concern

Transaction Management Concern

Legend:

M

T

Exception Handling of Transaction
Management Concern

H

S

FacadeBusiness Layer

ServletEmployee

GUI Layer

ServletComplaint

Aspects

TMException
HandlingAspect

<<aspect>>

ComplaintDAO EmployeeDAO

H

Employee
Complaint

Class or Aspect (when a stereotype

is specified)

Architecture Layer

Crosscuts

Association (UML relation)

UncaughtExceptions
HandlingAspect

<<aspect>>

R

Robustness ConcernR

PerformanceMonitoring
<<aspect>>

M

Figure 4. The architecture of HW system.

4.1.1 Bug Pattern: Exception Stealer

The Exception Stealer bug pattern happens when an aspect is

created to catch an exception, but some other catch clause

defined in the base code catches (or “steals”) the exception

before it gets to the right point where it should be caught - by

the aspect advice defined to handle it.

Symptoms

The symptom of this bug pattern is an Unintended Handler

Action [22]. Consider an exception thrown by a base code method

or an aspect advice, and which is supposed to be caught by an

Error Handling Aspect. This exception can be handled by mistake

by a catch clause in the base code – before the exception can

reach the correct handler. As a consequence, the exception will

not be adequately handled.

Causes

An exception could not be caught by an Error Handling

Aspect that was defined to handle it because a there is a catch

clause on a method in the call chain, between the method that

threw the exception and the method that should handle it. The

catch clause’s type is the same type or a supertype of the

exception that has been thrown. Figure 5 illustrates a scenario

where this bug pattern occurs.

Advice a1Advice a1Advice a1

Facade method

method crosscuts

exception propagation

Legend :

TransactionManagement
Advice

ExceptionHandling
Advice

catch (Exception exc)

EXEXEXEXEXEXEXEX

EXEXEXEXEXEXEXEX

catch (TMException exc)catch (TMException exc)catch (TMException exc)
catch (TMException exc)catch (TMException exc)catch (TMException exc)

advice

advice code

EXEXEX
EX

EXEXEX
EX exception instance

method call

DAO method

Servlet method

Figure 5: Schematic view of Stealer Exception bug pattern.

In this figure, an advice from TransactionManagement

aspect adds new functionality (related to the transaction

management concern) to a method from a DAO object. This

additional behavior will throw an instance of TMException

(an exception related to the transaction management concern) if

an error occurs within the scope of a transaction. An advice was

defined to handle the exception thrown by the

TransactionManagement aspect (see the

ExceptionHandling advice in Figure 5). This advice

intercepts the points in the base code (more specifically, a

Servlet method) where such exceptions should be caught. This

bug pattern occurs when the exception that should be caught by

the ExceptionHandling advice is caught by other catch

clause . In this example the “exception stealer” is the catch clause

inside a Facade method. As a consequence, the exception does not

reach the right point where it should be caught — the

ExceptionHandling advice — but will be handled by the

Facade instead.

We can observe that the advice defined to catch an exception

intercepts the correct point in the base code — where the

exception should be caught — which means that there was no

mistake in its pointcut expression. The exception could not reach

the right catch clause because it was stolen beforehand by a catch

clause in the base code. As we can see this same problem can also

happen in OO development: an exception may be prematurely

caught by an existing handler in the base code. During our

empirical study [13] we observed that the problem is aggravated

in AO systems because base code is supposed to be oblivious of

the aspects. Some AO development approaches rely on the

obliviousness property: the developer of the base code should not

need to know that the code will be affected by aspects [23].

Consequently, the application developer does not prepare the code

to deal with exceptions that may escape from aspects. Section 5

for discusses in more detail the influence of AO properties on the

bug patterns presented here.

Code Example

In the Health Watcher system the

TransactionManagement aspect may throw an instance of

TMException if something goes wrong within the scope of a

transaction:

 aspect TransactionManagement {

 public pointcut DAOperations():

 execution(public * *DAO(..)))…;

 void around() : dataBaseOperations()

 { ...

 //manage transactions

 if (status==0) {

 throw new TMException(cause_description);

 }

 ...

 }

 }

The Error Handling Aspect called

TMExceptionHandling was defined to handle this exception

in the GUI layer (see Figure 4). It intercepts the execution of the

Servlet methods where the exception should be handled (see the

code snippet below).

aspect TransExceptionHandling{

 public pointcut servletRequestExec():

 within(HttpServlet+) &&

 (execution(* HttpServlet.do*(..)) ||

 execution(* HttpServlet.service(..)))…;

 void around():servletRequestExec()

 {

 try{

 proceed();

 }catch(TransactionException exc){

 //handle exception

 // present a pop-up message to the user...

 }

 }

However, the exception thrown by

TransactionManagment aspect could not reach the

Servlet methods where it should be handled, because the

exception was caught beforehand by a “catch all clause” defined

in the Facade class defined in the business layer (see the code

snippet below). This means that exceptions thrown by the

TransactionManagement aspect will not be adequately

handled within the application.

 public class Facade {

 ...

 public Complaint searchComplaint(String id)

 {

 try{

 ComplaintRepositoryRDB.getInstance()

 .search(id);

 }catch(Exception exc){

 //handle exception

 ...

 }

 }

Cures and Prevention

Ways to prevent this bug pattern are the following: (i) avoid

“catch all clauses” during development, (ii) replace them (when

possible) by specific catch clauses, (iii) create two (or more)

exception hierarchies: one for exceptions signaled by the base

program, and the other(s) for exceptions signaled by aspects.

However, definitely curing this bug pattern in the context of

evolving systems is still a challenge to current AO development

technologies.

Related Patterns

This bug pattern can be found in scenarios where the Error

Handling Aspect Pattern [18] is used.

4.1.2 Bug Pattern: Fragile Catch

The Fragile Catch bug pattern happens when an aspect is

created to catch an exception but due to a mistake on its

pointcut expression it does not intercept the correct point in the

program execution where the exception should be caught.

Symptoms

The Fragile Catch bug pattern occurs, an exception that

should be caught by an Error Handling Aspect will not be caught

by it. As a consequence, the exception will transparently

propagate back to the program entry point, and may either: (i)

become uncaught – if it reaches the program entry point without

being caught, causing the Java virtual machine to terminate; or (ii)

be mistakenly caught by an existing catch clause on the way to the

program entry point (a failure also known as Unintended Handler

Action [22]).

Causes

The fragility of the pointcut language and the number of

different and very specific join points to be intercepted by the

Error Handling Aspects are the causes that lead to this bug

pattern. Figure 6 presents a schematic view of the Fragile

Catch bug pattern.

Advice a1Advice a1Advice a1

Facade method

method

crosscutsexception propagation

Legend :

TransactionManagement
Advice

EXEXEXEXEXEXEXEX

EXEXEXEXEXEXEXEX

catch (TMException exc)catch (TMException exc)catch (TMException exc)

advice

advice code

EXEXEX
EX

EXEXEX
EX exception instance

method call

DAO method

Servlet method

uncaught exception

ExceptionHandling
Advice

 Figure 6: Schematic view of Fragile Catch bug pattern.

Let’s say that we had removed the “general” catch clause that

was defined in the Facade method (used to illustrate the previous

bug pattern). Thus, the exception thrown by the

TransactionManagement advice should be caught in the

Servlet method intercepted by the ExceptionHandling

aspect defined to handle it. However, due to a mistake on the

pointcut expression associated to the ExceptionHandling

advice, it does not intercept the Servlet method – where the

exception should be caught. As a consequence the exception will

flow throw back to the program entry point, until it is handled

somewhere or becomes uncaught - terminating the system.

Code Example

The code snippet below illustrates a very simple version of

this bug pattern. Due to a simple mistake in the pointcut

expression – (a typo in at line 5). The ExceptionHandling

aspect could not adequately handle the exception.

1.aspect ExceptionHandling{

2.

3. public pointcut servletRequestExec():

4. within(HttpServlet+) &&

5. (execution(* HttpServlett.do*(..)) ||

6. execution(*HttpServlet.service(..)))…;

7.

8. void around():servletRequestExec()

9. {

10. try{

11. proceed();

12. }catch(TransactionException exc){

13. //handle exception

14. // present a pop-up message to the user...

15. }

16.

17 }

This bug pattern usually happens an Error Handling Aspect

should intercept a very specific part of the base program, as

illustrated in the code snippet below:

// the pointcut defined on Error handling Aspect

1. pointcut getResource(String imageFile):

2. (call (public void

3. Class.getResourceAsStream(String))

4. &&(args(imageFile)));

// the pointcut should be

5. pointcut getResource(String imageFile):

6. (call(public java.io.InputStream Class.

7. getResourceAsStream(String))

8. &&(args(imageFile)));

Due to a subtle difference (a mistake on the method return

type) the Error Handling Aspect that contain the pointcut defined

at lines 1-4 will not handle the exception it was intended to

handle, triggering the bug.

This bug pattern can be seen as an application of the general

fragile pointcut problem to an exception handling scenario. In OO

systems since the catch clauses are directly added in the base

code, so this bug pattern can never be present.

Cures and Preventions

The only way to solve this problem is to correct the mistake in

the pointcut expression. This is not a long term solution, since the

required pointcut can change in any maintenance task. Currently,

AspectJ does not allow either a long term solution, nor a

prevention to this problem.

Related Patterns

This bug pattern can occur when applying the Error Handling

Aspect Pattern [18].

4.1.3 Bug Pattern: Residual Catch

The Residual Catch happens when a catch clause that was

aspectized (refactored to an Error Handling Aspect) is left in

the base code. As a consequence, the catch code will be

duplicated.

Symptoms

A residual catch clause is a catch clause that used to handle

exceptions before an AO refactoring. As a consequence, this

residual catch can mistakenly handle an exception that should be

handled by an Error Handling Aspect. This symptom is

characterized as an Unintended Handler Action, which is a kind

of failure on the exception handling code that is very difficult to

detect [22].

Causes

This bug occurs when the exception handling code that was

defined in the base code is refactored to an aspect. Usually, during

an AO refactoring whose goal is to aspectize the exception

handling concern, two main steps are performed. First, the

developers creates an Error Handling Aspect that should intercept

the point in the program execution where the exception should be

handled. Secondly, they remove the exception handling code (the

catch clause and its corresponding try) from the points in the

base code where the exception handling concern was aspectized.

The Residual Catch bug pattern occurs when a developer forgets

to perform the second step (or performs it incompletely), and as a

consequence there will two catch clauses for a single exception —

one defined in the base code and other on the Error Handling

Aspect. Figure 7 illustrates this bug pattern.

Facade method

method

crosscutsexception propagation

Legend :

AvoidUncaught
Advice

EXEXEXEXEXEXEXEX

catch (Exception exc)catch (Exception exc)catch (Exception exc)

advice

advice code

EXEXEX
EX

EXEXEX
EX exception instance

method call

DAO method

Servlet method

uncaught exception

catch (Exception exc)

catch (Exception exc)catch (Exception exc)catch (Exception exc)

Figure 7: Schematic view of Obsolete Catch bug pattern.

In HealthWatcher, the UncaughtExceptionHandling

aspect was created to catch every exception that was not caught

inside the system – ensuring the system is more robust by

avoiding the bad consequences of uncaught exceptions. Before

this aspect was created the robustness concern was tangled in

every Servlet method (as a set of catch(Exception

exc) clauses). After refactoring this concern to the

UncaughtExceptionHandling aspect a developer forgot

to remove the corresponding catch clauses from the base code.

The catch clause pointed out on the Figure is one such residual

catch clause, and it catch exceptions that should be caught by the

Error Handling Aspect. This residual catch clause should be

removed.

Facade method

method

crosscutsexception propagation

Legend :

PersistanceExceptionHandling

Advice

EXEXEXEXEXEXEXEX

catch (SoftExcepton exc)catch (SoftExcepton exc)catch (SoftExcepton exc)

aspect

advice code EXEXEX
EX

EXEXEX
EX exception instancemethod call

DAO method

Servlet method

catch (IOException exc)

catch (SoftException exc)catch (SoftException exc)catch (SoftException exc)

Persistance
Aspect

declare soft IOExceptiondeclare soft IOExceptiondeclare soft IOException

runtime exception (that
wraps another exception)EXEXEX

EX

EXEXEX
EX

Figure 8: Schematic view of Obsolete Catch bug pattern.

The residual catch bug pattern can also occur when using the

declare soft construct (only available in AspectJ language).

This construct is often used during an AO refactoring, when a

concern that can throw a checked exception is aspectized [15]. A

common AO solution is to convert a checked exception thrown by

the concern being aspectized into an unchecked

RuntimeException. This new exception should be caught

by an Error Handling Aspect at just those points where original

checked exception was caught. In the example illustrated below

the Persistence concern was aspectized, and the exceptions that

used to be thrown by it (i.e., IOException) where converted to

a specific RuntimeException1
. In this case, since the

exception type had changed, the residual catch will become dead

code — no exception will be handled by it. Unfortunately, after

more maintenance, dead residual handlers can come alive again,

and then cause failures [10].

Code Example

The code snippets below illustrate the scenario described

above. The Servlet doGet method used to handle instance of

IOExceptions before the persistence concern was aspectized.

1. public class ServlerEmployee extendes … {

2. public void doGet(HttpServletRequest req,

3. HttpServletResponse res){

4. try{

5. ...

6. }catch(IOException exc){

7. }

8.}

The persistence aspect converts the IOException on an

instance of a SoftException through the use of the declare soft

statement:

1. public aspect Persistence{

2.

3. declare soft: IOException : DAOScope();

4. ...

5.}

An Error Handling Aspect was defined to handle the

exception of the Persistence concern:

1. public aspect PersistanceExceptionHandling {

2.

3. public pointcut servletRequestExec():

4. within(HttpServlet+) &&

5. (execution(* HttpServlett.do*(..)) ||

6. execution(*HttpServlet.service(..)))…;

7.

8. void around():servletRequestExec()

9. {

10. try{

1 This AO refactoring is known to promote the unplugability of

aspects (another facet of obliviousness). If the IOException was

not converted to a RuntimeException the signatures of every

method potentially throwing the IOException would have to

include it in its throws clause.

11. proceed();

12. }catch(SoftException exc){

13. //handle exception

14. // present a pop-up message to the user...

15. }

16.

17 }

Cures and Prevention

During AO refactoring, every time an aspect is defined to

catch some exception type, the base code catch clauses for this

exception should be removed when possible (i.e., if they are not

responsible for handling any other exceptions). Specific tool

support (exception flow analyzers [13]) should help during this

task. AO refactoring tools should provide warnings to the

developer suggesting removal of residual catch clauses, or even

removing them automatically as part of refactorings.

Related Patterns

This bug pattern can occur when applying the Error Handling

Aspect Pattern [18].

4.2 Bug Patterns that can happen when

aspects throw exceptions

4.2.1 Bug Pattern: Throw without Catch

The Throw without Catch bug pattern occurs when an aspect

advice throws an exception but no handler is defined to catch it.

Symptoms

The developer detects an uncaught exception – an exception

that is not caught inside the system, and transparently propagates

back to the program entry point, causing the Java virtual machine

to terminate; or an exception that is mistakenly caught by an

existing handler – this scenario is also known as Unintended

Handler Action [22]. This is very difficult to diagnose since an

existing handler may swallow the exception without logging or

presenting any warning to the user.

Causes

This bug occurs when a method or AO construction, such as

an aspect advice, an intertype declaration or the declare soft

construction, throws an exception (or wraps and re-throws an

exception in the case of declare soft construct) and no catch

clause is defined to catch it, either in the base code or in an Error

Handling Aspect.

We can observe that even a very simple and naïve aspect (e.g.,

logging) may call a library that throws an undocumented

unchecked exception that impacts the execution flow of the

application. If such exception is not documented, a developer

cannot know that the aspect may throw an exception, and as a

consequence will not define a catch clause to handle the

exceptions that may flow from it. Figure 9 illustrates a scenario

where a monitoring aspect throws an exception that becomes

uncaught since no handler was defined to it.

Facade method

method

crosscutsexception propagation

Legend :

EXEXEXExMEXEXEXExM

EXEXEXExMEXEXEXExM

advice

advice code

EXEXEX
EX

EXEXEX
EX exception instance

method call

DAO method

Servlet method

uncaught exception

Monitoring

Around Advice

Figure 9: Schematic view of Throw-without-Catch bug pattern

(scenario 1).

According to the AspectJ documentation [20], every time the

declare soft construct is used (i.e., an exception is softened

by an aspect) the developer should implement another aspect that

will be responsible for handling the softened exception. This

solution is very fragile, as (i) it is up to the programmer to define

a new aspect to handle the exception that was softened, and (ii) no

message is shown at compile time to warn a programmer if the

Error Handling Aspect is forgotten. Figure 10 illustrates a

scenario where the declare soft construct is used and no

catch clause was defined to handle the instance of

SoftException thrown by it.

Facade method

EXEXEXEXEXEXEXEX

DAO method

Servlet method

Persistance
Advice

declare soft IOExceptiondeclare soft IOExceptiondeclare soft IOException

method

crosscutsexception propagation

Legend :

advice

advice code

EXEXEX
EX

EXEXEX
EX exception instance

method call uncaught exception

Figure 10: Schematic view of Throw-without-Catch bug

pattern (scenario 2).

Code Example

The code snippet below was extracted from the Health

Watcher system. It shows an aspect that calculates and logs the

performance of each HTTP request; to do so it calls an OO library

to log the performance – this OO library throws a runtime

exception when the log file is too large. Since this exception is not

documented not handler was defined to it.

aspect PerformanceMonitorig {

 //Intercepts every servlet request operation

 public pointcut servletRequestExec():

 within(HttpServlet+) &&

 (execution(* HttpServlet.do*(..)) ||

 execution(* HttpServlet.service(..)))…;

 void around : calcPerformance()

 {

 …

 perf = calcPerformance();

 log (perf);

 }

 }

Cures and Prevention

In languages such as Java that support unchecked exceptions,

in order to know which exception may be thrown from a method,

developers must recursively inspect every method called by it.

Therefore, preventing this bug pattern involves: inspecting the

code (manually, or using an exception flow analysis tool [13]) and

checking if an exception handler was defined to handle the

exceptions thrown by an advice. There are two possible ways of

handling an exception thrown by an aspect: (i) application-

specific error handling; or (ii) error isolation.

According to the application-specific error handling strategy,

we can create an Error Handling Aspect that intercepts specifics

points in the code where the exception thrown by the aspect

should be handled. According to the error isolation strategy an

Error Handling Aspect is created to advise every aspect that may

signal an exception and catch the exceptions signaled by it. This

solution avoids the exceptions thrown by aspects from flowing to

the program execution. Such error-isolation aspects will capture

and log the exception for off-line analysis so that the main

application never sees the exception. One example of error

isolation is the GlassBox monitoring aspect library [10]. The

developers of GlassBox implemented an error isolation solution to

prevent exceptions flowing from the monitoring code to affect the

monitored application. The code snippet below illustrates a

handler aspect that implements the error isolation strategy.

1. public aspect ErrorIsolation {

2. ...

3. public pointcut scope() :

4. within(healthwatcher.aspects.*);

6. void around(): adviceexecution() &&

8. scope()){

9. try {

10. proceed();

11. } catch (Exception e) {

12. log(e);

13. }

14. }

15.}

 The ErrorIsolation aspect defines the scope of the

aspect via a pointcut expression that matches every element

defined on the aspects package of HealthWatcher – excluding any

aspects whose name follows the pattern “*AroundAdvice”.

This aspect intercepts every advice execution within the scope via

the adviceexecution designator that intercepts the execution

of every advice. The advice associated with this pointcut catches

every instance of Exception that may be thrown by any advice

execution.

This solution only works well for isolating the exceptions that

come from before and after advice, however, since around advice

may also contain a call to proceed() - that invoke the

intercepted method - when handling exceptions that escape from

around advice, we will also intercepting exceptions thrown by

base methods intercepted by the around advice. There is no easy

way to intercept executions thrown in around advice only —

excluding the execution of the intercepted method [24]. In this

solution, the exceptions thrown by the client application (calling

proceed) will be caught and handled as an aspect exception –

which may break the exception handling policy of the client

application.

To solve this problem, we can improve the previous solution

relying on a naming pattern to exclude the exceptions that come

from around advice to be swallowed. We can write specific

aspects whose name matches *AroundAdvice which will

include every around advices, and exclude this advices from the

ErrorIsolation scope() in the following way:

 public pointcut scope() :

within(healthwatcher.aspects.*)

&& !within(healthwatcher.

aspects.*AroundAdvice);

Relying on name patterns is a fragile solution, but is a palliative to

deal with such situation while AO languages and tools are

improved.

Related Patterns

The Error Handling Aspect pattern [18] can be used as one of the

ways of solving this bug pattern. As a consequence, the bug

patterns Late Binding Error Handling Aspect and Unmatched

Error Handling Aspect, related to the use of Error Handling

Aspect, may be introduced when solving the bug pattern

presented here.

4.2.2 Bug Pattern: Path-dependent Throw

The Path-Dependent Throw bug pattern occurs when the

exceptions thrown by a method depends on the path (in the

program call chain) from which this method is executed. This

bug pattern causes uncaught exceptions and unintended handler

actions in AO systems.

Symptoms

The developer detects an uncaught exception – the exception

thrown by an application method is not caught inside the system.

This may lead to a software crash; or an exception being

mistakenly caught by a handler — a scenario also known as

Unintended Handler Action [22], which is very difficult to

diagnose since a handler in the base code may swallow the

exception without logging or presenting any warning to the user.

Causes

This bug pattern usually happens when an aspect advice is

associated with a pointcut expression that includes any of the

scope designator used for scoping purposes (i.e., within,

withincode, cflow, cflowbelow). Due to these scope

designators, an aspect may or may not affect a method according

to the call chain — the calling path used to reach the method. As a

consequence, the same method will have different behaviors

depending upon how it is called, even if the arguments passed to

the method are always the same.

method

crosscutsexception propagation

Legend :

EXEXEXExMEXEXEXExM

EXEXEXExMEXEXEXExM

advice

advice code

EXEXEX
EX

EXEXEX
EX exception instance

method call

DAO method

uncaught exception

Transaction Management
Advice

Search Employee

ServletComplaint methodServletEmployee method

intercepted scope

 Figure 11: Schematic view of Path-Dependent Throw bug

pattern.

When the list of exceptions that can be thrown by a method

varies according to the scope within which it is executed (that is,

the method call chain from which it was called) we say that this

method suffers from the Path-Dependent Throw bug pattern. This

bug pattern makes understanding the exceptional behavior of a

method very confusing. As a consequence, exceptions thrown by

such methods can easily remain uncaught or are caught by

unintended handlers. Figure 11 presents a schematic view of this

bug pattern.

 In this figure, the TransactionManagement advice adds

a new functionality to a method from a DAO object, but only

when the method is called from the SearchEmployee method,

when SearchEmployee was itself called by a method defined

on the ServletComplaint — i.e., the advice is associated

with a pointcut expression that contains a dynamic scope

delimiter. This scope is represented in gray lines in Figure 11.

Therefore, this additional functionality, and the new exception

(TMException) that comes with it, will be part of the DAO

method when it is called from the call path: Servlet

Complaint � Search Employee. When it is called on the

call path Servlet Employee � Search Employee �

DAO method, it will not throw an instance of TMException.

We can observe that even if the DAO method arguments are the

same, the set of exceptions thrown by it will differ.

Code Example

The code snippet below illustrates a scenario where this bug

pattern can occur. We add the LayerArchitecturePolicies

aspect to HW — this aspect is responsible for checking

architectural policies, such as: the methods defined by the system

Facade can only be accessed by Servlets. The code snippet below

illustrates this aspect:

 1.aspect LayerArchitecturePolicies {

 2.

 3. pointcut designPolicy (Facade fcd):

 4. this(fcd) && call(void Facade+.*())

 5. && !within(HttpServlet+.*);

 6.

 7. before(Facade fcd) : designPolicy(fcd) {

 8. String info = fcd.getCurrentContext();

 9. throw new DesignViolationException(info);

 10. }

 11.}

In this example, the pointcut expression defined in the

LayerArchitecturePolicies aspect intercepts the

execution of any method defined in the Facade class, but only

when it is not executed within a Servlet. As a consequence, the

advice associated to it only affects and throws a

DesignViolationException if it is called from a method

that is not defined on a Servlet.

In our illustrative example, another aspect (i.e.,

TransExceptionHandling) is calling a method defined on

Facade class in order to prepare the error message to be presented

to the user. The developer did not know that such method call

would violate a design policy (and that, as a consequence, an

exception would be thrown). The developer did not define a

handler to the exception thrown in this context and so the

exception will not be caught inside the system: it may become

uncaught or be mistakenly caught by an existing handler.

 1. aspect TransExceptionHandling {

 2. …

 3. void prepareErrorMessage(Exception ex){

 4. System.out.println(“Error on “ +

 5. Facade.getInstance().getApplicationName()”+

 6 ex.getMessage());

 7. }

 8.

 9. }

Finally, we can observe that in AO systems aspects may

modify any method’s well-established behavior, and may create a

situation where the exceptions that a method throws may depend

on the control-flow path used to reach the method (e.g., which

clients are calling it).

5. DISCUSSIONS

This bug patterns catalogue presents some causes of the most

common failures on the exception handling code in AO programs:

• Uncaught Exceptions: exceptions thrown and not

caught inside the system, that it may lead to a software

crash; or

• Unintended Handler Actions: exceptions being

mistakenly caught by wrong handlers. This failure is

very difficult to diagnose since a handler in the base

code may swallow the exception without logging or

presenting any warning to the user.

Moreover, analyzing the characteristics of the bug patterns,

we can observe that some bugs can also happen in object-oriented

systems. However, we had observed that some AO properties

(quantification and obliviousness) pose specific pitfalls to the

development of the exception handling code in AO systems,

which further aggravates the failures mentioned above.

The quantification property of aspects allows programmers to

write statements with the following form: “In program P,

whenever condition C happens, perform action A”. AspectJ

supports this property by means of pointcuts and advice. An

advice can be of two types —call and execution — that intercept

the call and execution of a set of join points respectively. Call and

execution advice have different impact on the exception behaviour

of modules. The exception advice affects the exceptional

behaviour of the advised methods, while the call advice affects the

exceptional behaviour of the advised module’s caller.

Such impact can also be influenced by static scopes such as

within and withincode — which delimit the classes or

packages into which aspects will inject new behavior – and

dynamic scope constructs (i.e., cflow and cflowbelow) which

allow an aspect to effect (or not) a specific point in the code

depending on the information available on the runtime execution

stack. The main consequence of the quantification to the

exception handling model of AO systems is that the exceptional

behaviour of modules may vary depending on where they are

used. Therefore, the same module can raise different sets of

exceptions depending on which class called it or even if it is

called within a specific call path. Consequently, it will be more

difficult for the module’s user to prepare the code to handle the

exceptions that the module can throw.

The obliviousness property establishes that programmers of

the base code – the classes which will be affected by the aspects –

do not need to be aware of the aspects which will affect it.

Obliviousness means that programmers do not need to prepare the

base code to be affected by the aspects [23]. Since (in AspectJ at

least) there are no mechanisms to protect base code from

exceptions that will flow from the aspects added behavior, the

exceptions thrown by aspects may be erroneously caught by

modules from the base code, or become uncaught. Moreover,

there are aspect oriented constructs that allow aspects to add new

behaviors on modules at load time – which can make this kind of

problems even more difficult to diagnose since it is not easy to

reason about the effect of aspects on the exception flow of

programs during system execution.

6. ACKNOWLEDGMENTS

We would like to thank our shepherd Fernando Castor Filho

for his insightful suggestions that helped us a lot to improve this

catalogue of patterns. We also would like to thank the PC member

Paulo Borba who kept track of our discussions and also

contributed to the ideas presented here. Finally we thank the

members of the PLoP 2008 writers’ workshop for their comments

on this paper: Steven Hill, Nobukaza Yoshioka, Takao Okubo,

Hironori Nashizaki, Eduardo Fernandez, David Pearce, Brian

Foote, Amir Raveh, Yuji Kobayashi, Robert Hanmer.

7. REFERENCES

[1] S. Wagner, F. Deissenboeck, M. Aichner, J. Wimmer M.

Schwalb. An Evaluation of Two Bug Pattern Tools for Java, 2008

International Conference on Software Testing, Verification, and

Validation, 2008, pp. 248-257.

[2] P. Louridas. Static Code Analysis. IEEE Software 23(4), p.58-

61, 2006.

[3] E. Allen. Bug Patterns In Java. APress, 2002.

[4] Y. Nir, E. Farchi, and S. Ur. Concurrent bug patterns and how

to test them. In International. Parallel and Distributed Processing

Symposium, IPDPS 2003.

[5] FindBugs™ - Find Bugs in Java Programs. On site:

http://findbugs.sourceforge.net/bugDescriptions.html

[6] http://www.eclipse.org/aspectj

[7] http://www.jboss.org/jbossaop/

[8] http://www.springframework.org/

[9] A. Colyer, A. Clement, “Large-Scale AOSD for Middleware”,

Proc. AOSD Conf., 2004, ACM, pp. 56-65.

[10] Glassbox Inspector. https://glassbox-inspector.dev.java.net/

[11] G. Kiczales; J. Lamping; A. Mendhekar; C. Maeda; C.

Lopes; J. Loingtier; J. Irwin. Aspect-Oriented Programming. In:

Proceedings of the European Conference of Object-Oriented

Programming (ECOOP’97), Springer-Verlag, 1997, p.220-242.

[12] S. Zhang; J. Zhao. On Identifying Bug Patterns in Aspect-

Oriented Programs. In: Proceedings of the Computer Software

and Applications Conference (COMPSAC 2007), 2007, p.431–

438.

[13] R. Coelho, A. Rashid, A. Garcia, F. Ferrari, N. Cacho, U.

Kulesza, A. von Staa, C. Lucena, Assessing the Impact of Aspects

on Exception Flows: An Exploratory Study, ECOOP 2008.

[14] M. Mezini; K. Ostermann. Conquering Aspects with Caesar.

In: Proceedings of the Proceedings of the 2nd International

Conference on Aspect-oriented Software Development, Boston,

Massachusetts, ACM Press, 2003, p.90-99

[15] S. Soares; P. Borba; E. Laureano: Distribution and

Persistence as Aspects. In: Software: Practice and Experience,

Wiley, vol. 36 (7), (2006) 711-759.

[16] F. Buschmann; R. Meunier; H. Rohnert; P. Sommerlad; M.

Stal. Pattern-Oriented Software Architecture, Volume 1: A

System of Patterns. Wiley, 1996.

[17] T. Massoni; V. Alves; S. Soares; P. Borba. PDC: Persistent

Data Collections pattern. In: Proceedings of the In First Latin

American Conference on Pattern Languages of Programming —

SugarLoafPLoP, University of Sao Paulo Magazine - ICMC,

2001, p.311–326.

[18] F. Filho, A. Garcia, C. Rubira, The Error Handling Aspect

Pattern, SugarLoafPlop 2007.

[19] A. Garcia; C. Rubira. A Comparative Study of Exception

Handling Mechanisms for Building Dependable Object-Oriented

Software. Journal of Systems and Software, 59 (6), 2001, p.197-

222

[20] A. Colyer, et al. Eclipse AspectJ: Aspect-Oriented

Programming with AspectJ and the Eclipse AspectJ Development

Tools. Addison-Wesley, 2004.

[21] J. Goodenough. Exception Handling: Issues and a Proposed

Notation. Communications of the ACM, 18(12), p.683–696,

1975.

[22] R. Miller; A. Tripathi. Issues with Exception Handling in

Object-Oriented Systems. . In: Proceedings of the European

Conference on Object Oriented Programming (ECOOP’97),

Springer, 1997, p.85–103.

[23] R. Filman, T. Elrad, S. Clarke, M. Aksit, Aspect-Oriented

Software Development, Addison-Wesley, 2005.

[24] C. Clifton G.T. Leavens, J. Noble. MAO: Ownership and

Effects for More Effective Reasoning about Aspects. In:

Proceedings of the European Conference on Object Oriented

Programming (ECOOP), Springer, 2007, p.451-475.

8. APPENDIX A - Aspect Terminology

This appendix contains a brief overview of the terminology

associated with aspect-oriented software development. We have

used the terminology described by Kiczales et al [11] and adopted

by aspect-oriented programming languages, such as AspectJ. We

present below the main terms that are usually considered as a

conceptual framework for aspect-orientated design and

programming.

Aspects. Aspects are modular units that aim to support improved

separation of crosscutting concerns. An aspect can affect, or

crosscut, one or more classes and/or objects in different ways. An

aspect can change the static structure (static crosscutting) or the

dynamics (dynamic crosscutting) of classes and objects. An aspect

is composed of internal attributes and methods, pointcuts, advices,

and inter-type declarations.

Join Points and Pointcuts. Join points are the elements that

specify how classes and aspects are related. Join points are well-

defined points in the execution of a system. Examples of join

points are method calls, method executions, exception throwing

and field sets and reads. Pointcuts are collections of join points

and may have name.

Advices. Advice is a special method-like construct attached to

pointcuts. Advices are dynamic crosscutting features since they

affect the dynamic behavior of classes or objects. There are

different kinds of advices: (i) before advices - run whenever a join

point is reached and before the actual computation proceeds; (ii)

after advices - run after the computation “under the join point”

finishes; (iii) around advices run whenever a join point is reached,

and has explicit control whether the computation under the join

point is allowed to run at all.

Inter-Type Declarations. Inter-type declarations either specify new

members (attributes or methods) to the classes to which the aspect

is attached, or change the inheritance relationship between

classes. Inter-type declarations are static crosscutting features

since they affect the static structure of components.

Weaving. Aspects are composed with classes by a process called

weaving. Weaver is the mechanism responsible for composing the

classes and aspects. Weaving can be performed either as a pre-

processing step at compile-time or as a dynamic step at runtime.

