
The relation between design patterns and schema theory
Christian Kohls

Knowledge Media Research Center
Konrad-Adenauer-Str. 40

72072 Tuebingen - Germany
+49/7071/979-103

c.kohls@iwm-kmrc.de

 Katharina Scheiter
University of Tuebingen

Konrad-Adenauer-Str. 40
72072 Tuebingen - Germany

k.scheiter@iwm-kmrc.de

ABSTRACT

Patterns capture the design knowledge of experts. But how is this
expertise represented by the expert? When we mine for patterns,
what is the ground in which we seek? Are there patterns in our
head? And if so, how do the patterns in our head relate to the
design patterns in the real world and the patterns we document?
This paper tries to give some answers by referring to the
principles of psychological schema theory. Schemas are some sort
of patterns in our heads. A special type of schema, the problem
schema, has many features in common with design patterns. The
paper will discuss how schemata are organized in memory, how
they are activated and constructed. At the end, we will discuss
implications for the mining of patterns.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design – Methodologies

General Terms
Design, Human Factors, Documentation, Theory

Keywords
Design Patterns, Schema Theory, Frames, Scripts, Mental Models

1. Motivation
Because design patterns are derived from real world designs it is
assumed that the patterns are true as well [1]. The trouble is to
ensure that a pattern has been captured in the right way. There is
no automatic or formal procedure to mine a pattern. Patterns are
fuzzy, and people may have different patterns in their head. To
illustrate this, consider the concept of a “lecture” as a pattern.
Most people understand what is meant by “lecture” and have their
individual ideas what is meant by the term. The exact and
intrapersonal essence of context, forces, problem, and solution is
hard to capture, however. Some individuals may focus on a
lecture’s organizational issues, others may be more concerned
about didactics. The point is that people have different patterns in

their heads. As a result, the documented patterns would not only
vary in style but also in content depending on the authors who
wrote the pattern. Therefore it is necessary to distinguish between
the patterns in the real world, the patterns in the mind of an
individual and the documented patterns. This relation has been
acknowledged in the pattern community, although its implications
have rarely been discussed. Gabriel [2] distinguishes between real
world and documented patterns: “A pattern, then, is both
something in the world – the configuration found in excellent
artefacts – and a literary form, that is, the written description of
the physical configuration and why it should be build.” The fact
that patterns are part of the human mind is outlined by Vlissides
[3]: “[…] people have had patterns in their heads for as long as
there have been heads. What’s new is that we’ve started naming
the patterns and writing them down.” This relation of pattern
occurrences is illustrated in figure 1.

Figure 1. Real World, Mental, Documented Patterns.

Note that the concept of a “real world pattern” refers to the
regularities in the structure of “real forms” in the world. It does
not make any statement about the nature of reality, that is whether
these “real forms” exist in an objective reality or in a
socially/individually constructed reality. We only use the word
“real” to explicitly distinguish between sensible things in the
outer world and the things in our mind – the models in the world
and our mental models. Pattern languages have already been
considered as mental models that a designer has [4]. We are
confident that schema theory offers further explanations of how
patterns are represented in the mind and how they are acquired.
Like patterns, a problem schema “allows problem solver to group
problems into categories in which the problems in each category
require similar solutions” [5]. A problem schema, too, captures
the invariant parts of a problem and has slots that can be filled

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission. A preliminary version of this paper
was presented in a writers’ workshop at the 15th Conference on Pattern
Languages of Programs (PLoP). PLoP ’08, October 18–20, 2008,
Nashville, TN, USA. Copyright 2008 is held by the author(s). ACM
9781605581514.

with the specific properties of the problem (i.e. schema
instantiation). As in patterns, there is a generic solution procedure
attached to the problem representation, which is executed to
produce a solution to the problem [6]. Linking schema theory to
the pattern concept allows explaining many of the difficulties of
finding the right level of abstraction, granularity, and detail in
identifying the patterns.

2. Introduction to Schema Theory
“The captain asked the passengers to fasten the seat belts.

They were ready to take off.” Now, after reading the previous
sentences did you have the image of an airplane at the airport in
your mind? How is that as the text never mentioned an airplane or
an airport? Obviously the propositions in the text allowed you to
infer a situation that is more complex and richer in its details. This
comprehensive situation is an interrelation of events and entities,
and is stored in an internal data structure that can be activated by
recognizing its typical features. Such data structures, or schemas,
are mental representations in an individual’s mind. Very different
types of information can be stored in schemas, including physical
objects, plans and strategies, behaviour patterns, or design
knowledge. A schema bundles all the experiences within one
class, that is, distinct experiences with similar features, and offers
a generalized or abstracted representation. This process has been
termed schema abstraction [7] or schema induction [8] in the
respective psychological literature. It is characterized by
extracting features that are shared by the experiences within a
class and that are thus relevant to the schema as well as by
abstracting away from irrelevant or superficial variations of these
experiences. Thereby the resulting generalized representation
allows one to integrate even slightly different new experiences
within the same data structure.

In the following we will summarize the various aspects and
flavors of schema theory while being aware that different research
groups have quite different assumptions how schemas are
achieved and function. Thus, schema theory is rather a theoretical
framework that is specified in several ways.

2.1 Scientific origins of schemas
The term “schema” goes back to the old philosophers Plato and
Aristotle [9]. In Plato’s dialog The Meno, for both concrete and
abstract concepts, a schema refers to the essential commonalities
for example in music or shapes, or even in what makes up a brave
man. Similarly, Aristotle speaks of form (or schema) when he
means the essence or nature of the thing, that is, which basic
properties and characteristics make an object distinct. In that
sense the meaning of schema is already similar (if not equal) to
our understanding of what a pattern is, since patterns always try to
capture the core and invariants of concepts. For example, POSA-5
refers to the patterns an experienced expert can draw on as
‘solution schemes’: “Expert architects and developers can draw
on a large body of these ‘solution schemes’ to address design
problems that arise when developing new systems and
maintaining existing ones” [10].

In this discussion we pay attention to how these schemas or
patterns are represented in our mind. For Kant, a schema was the
link from empirical information to the pure categories or concepts
that he believed were given a-priori in the mind. Every perceived
stimulus had a relation to an ideal concept, for instance the

perceived chair can only be interpreted as a chair if it is linked to
the idea of a chair. This linkage is done through schemas, which
are representations of the perceived phenomenon. While
psychologists sustain the idea that perceived information is linked
to pre-existing knowledge in the mind, they no longer believe that
this knowledge is given a-priori. Rather their interest focuses on
the processes of how schemas are acquired, applied, stored and
manipulated in memory. The term was established in psychology
by Bartlett [11], much research has been done by Piaget
[12,13,14] and Rumelhart and Norman [15]. Schema theory has
been introduced to education by Gick and Holyoak [7], VanLehn
[6], and Sweller, van Merriënboer, and Paas [16]. In the
educational context, problem schemas are seen as the pivotal
mental structure that is constructed by learning from examples
and that guides problem solving in scholastic domains like
mathematics or physics.

2.2 Schemas as structural units
A schema is a structural unit that represents a concept,

situation, event, plan, behaviour etc. in a generalized form, that is,
it contains an abstract representation of multiple instances of the
same kind. In schema theory this unit is an internal data structure
in the memory that organizes an individual’s similar experiences.
It is used to recognize similar and discriminate dissimilar new
experiences, access the essential elements of the commonality
(both verbal and nonverbal components), draw inferences, create
goals, develop plans and utilize skills procedures, or rules
accordingly [9]. For example, the schema of a CAR is a
generalization of all the cars a particular individual has seen or
experienced before. Though it does not contain all the details of
any car seen, it contains the essentials, the core features and
properties shared by (almost) all cars. If an individual sees an
object that shares the same elements and relations as stored in his
or her CAR schema, the individual will recognize it as a car. As
such, the car appears as a gestalt, an encapsulated unit that
appears as a whole form, in which the configuration of
components is in full harmony. Gestalt theory is ubiquitous in
schema theory and pattern theory. Both Bartlett [17] and Piaget
[18] have been inspired by gestalt theory. Alexander explains our
perception of whole forms with reference to gestalt psychologists
[19] as well as when he talks about wholeness [20]. In POSA-5
[21], the “quality without a name” [22] is a synonym for
wholeness in the pattern concept summary. This quality arises if a
design is coherent as a whole. It is based on the view of gestalt
psychologists that the sum is more than its parts (thus, it creates
emergent features).

To get a better understanding of what holds a schema together as
a unit, in the following, three structural features of schemas will
be outlined. First, schemas are constructed based on variables and
their associated values, whereby second, choosing precise
variable values will lead to a concrete instantiation of a schema.
Third, schemas can be used to represent declarative as well as
procedural knowledge.

2.2.1 Variables and variable values
In schema theory, the building blocks of schemas are thought of
as variables (sometimes called slots or attributes [23]). Each
variable can take a (constrained) range of values (or slot fillers or

attribute values) as input. The possible space of variable values
reflects the range of experiences a person has had with a specific
concept and determines what new experiences will be
immediately accepted as belonging to this concept, that is,
without further need of modifying the existing schema. In some
cases, especially if a schema is highly specific, a constant may be
used as a filler rather than a range of variable values. For instance,
for many people a car always has four wheels, whereas for others,
who have had a broader range of experiences, the attribute
‘number of wheels’ may take values from 3 to many. As will be
outlined in section 5, learning in schema theory often refers to
modifying the variable values by either extending or constraining
their possible range.
The variables that make up a schema are often interrelated, which
is also why the configuration of their variable values is not
independent. Imagine a DRIVING schema, where the CAR is a
variable value as one can drive other vehicles than cars. The
DRIVING schema may have other variables, such as driving
style, street type, or target. Each of the variables may contain
different values, for example the variable slot street may contain
highway, country road, or jungle road. If one drives on a jungle
road the options for driving styles are reduced as the ground does
not allow speed rallies. Hence, variables are constrained by each
other, and a specific configuration of some variable values
implies that certain values are more likely for other variables.
These constraints and probabilities for the occurrence of specific
variable values are an implicit part of the schema structure. They
have two important functions [15]:
1. The range of valid objects for a variable slot is given.
2. If specific information about the variable is missing, it is
possible to make guesses taking the probabilities into account.

For example, there are different types of vehicles that can be
driven; that is, a car, a bus or a balloon are all valid values for the
DRIVING schema. However, one cannot drive a traffic light, an
invalid value for the slot. Also, the valid values are of different
likelihood. In the sentence “Bob was driving yesterday” the
concrete vehicle is not mentioned. However, it is more likely to
think that Bob was driving a car than to imagine Bob in a balloon,
although this is a valid option. In the same way, the introductory
example activated the schema of an AIRPLANE AT AN
AIRPORT because it is most likely that the information given
refers to that situation. There are other situations that could be
meant, for example a speedboat making a trip with tourists or a
child in a role play. Which values are probable is hence
determined by individual expectations based on one’s own
experiences, or heuristics.
Variables and constraints are fuzzy rather than exact. Not every
constraint has to be satisfied in order to accept a concrete instance
as being represented by a schema, but not too many constraints
may be violated either. For example, a car usually has four tires.
But if a tire is missing, it still remains a car. However, if the form
is too different from former experiences of what a car is, we will
no longer perceive a car.
To summarize, schemas are organizational structures of memory
that interrelate variables that frequently reoccur. A design pattern,
too, is a logical structure that consists of variables [24]. The
variables are highly interrelated and changing one design variable

to make it fit to the requirements of the design problem can cause
other variables to misfit (e.g., using high quality material to make
a machine robust may increase the production costs too much).
While the interrelations of variables within a pattern are strong,
the interrelation of variables between distinct patterns is loose
[25]. Hence, the configuration of variables within a pattern does
not affect other patterns and thereby reduces the complexity of the
design problem.

2.2.2 Schema instantiation
Filling the variable slots with exact values is called schema
instantiation and its result is a specific mental representation of
the abstract concept stored in the schema [26]. For example, while
the CAR schema consists of the abstract representation of all cars,
its instantiation refers to a specific car. Therefore, schemas also
have a generic component that allows the individual to derive
specific structures from the abstract structures. Not only can the
individual retrieve the images of cars one has seen in the past by
instantiating the slots with the right information, one can also
imagine new cars. Or, to use a plan as an example, once the child
has learned how to drink from a cup (it has acquired that schema),
it can transfer that knowledge to any other cup or cup-like
beverage containers. A schema understood in this way is not just
a collection of experienced objects but an object space that allows
you to recognize similar objects and mentally (re-) generate
objects. Likewise design patterns are not only generic but
generative as well. In the ways schemas form configuration
spaces, patterns define design spaces that include all the designs
that implement the pattern: “A pattern describes a coherent yet
infinite design space, not a finite set of implementations in that
space.” [27]
The generation space of schemas is defined by the variable slots
and their associated value constraints, including variables that are
mandatory (that is they nearly always occur) or optional. In a
specific configuration of the variables, objects that are
experienced (i.e. recognized) or have been experienced in the past
(i.e. retrieved from memory) are represented in the schema
instantiation. Since the variables slots have different probabilities
for their values, the object space implicitly includes a prototypical
representation of the object. This prototypical representation is
the schema instantiation in which all the slots are filled with
default values.
In the way schemas constrain the valid values, patterns capture
the invariants of good designs - that is the range of variable
configurations that form a solution to a problem in a context. “We
are interested in those links between variables which hold for all
forms we can conceive. Not only statistical correlation but also
causal relations” [28]. Because for any form the list of
characteristics is infinite, one has to extract the variables that
matter. The ones that are typical for the form, the ones that are
typing the form. “The pattern is an attempt to discover some
invariant features, which distinguishes good places from bad
places with respect to some particular system of forces.” [29]

2.2.3 Declarative and procedural knowledge
The data structures can capture declarative knowledge as well as
procedural knowledge. Some authors distinguish between scheme
(procedural knowledge) and schema (declarative knowledge), and

some translation errors have blurred this original differentiation
by Piaget. However, the selection, instantiation, modification,
creation and adoption of schemas apply equally for scheme and
schema. Thus, in the ongoing text we will refer to both types of
knowledge by the term schema.
Because schemas can represent both, objects or operations, a
schema that consists of sub schemas can include both declarative
and procedural knowledge. Both kinds of knowledge can be either
directly included in a schema or referred to by variables. Because
each schema has always optional external relations, it will point
to various types of associated knowledge. Of special interest is the
structure of problem and solution which will be discussed later.
By analogy, patterns capture declarative knowledge and try to
externalize procedural knowledge in their solution sections: “The
solution part of a good pattern describes both a process and a
thing: the ‘thing’ is created by the ‘process’.” [22]. Furthermore, a
pattern tells about a form not only what it is but also what it does
[24].

2.3 Interrelations among schemas
Every schema is embedded in a hierarchical network that reflects
the interrelations among schemas. These interrelations can take
two forms, namely, (1) part-of relations that reflect the fact that
each schema always is an ensemble of interrelated parts that co-
occur in a network, where each of the parts is a schema itself [15],
and (2) is-a-relations that introduce the idea of inheritance of
structures into schema theory. Both types of interrelations are
outlined in the following paragraphs.

2.3.1 Has-a/Part-of relations
The variables are the means of interrelated entities in schemas. A
set of networked variables builds up a schema, but each of the
variables represents a schema itself. For example, the CAR
schema has a set of strongly coupled sub schemas such as
WHEEL, TIRES, or MOTOR. A schema can be completely
decomposed into its sub schemas, and each of the sub schemas
has a part-of relation to the superior schema. Vice versa each
schema is always a sub schema of a larger context. The TIRE
schema for example can be part-of the CAR, but it can also be
part-of an AIRPLANE. Similar, a CAR can be part-of a
HOLIDAY TRIP or a DRIVE TO WORK. Thus, not only the
internal elements of a schema are variable but also its external
interrelations to superior schemas. In general, each schema A
consists of multiple sub schemas B1…Bn. The schema A,
however, is more than the sum of its sub schemas because it itself
defines additional structure concerning the way in which B1...Bn
interrelate. Also, each schema is part of a larger whole C. As a
general rule we can note that schemas can be embedded into other
schemas recursively.
Due to the aforementioned part-of relations activating a schema in
memory will give access to two types of information by means of
association. On the one hand, because the variable values of the
current schema are schemas themselves, further information on
these variable values can be retrieved from memory. On the other
hand, because a schema may itself be part of other schemas,
information on the latter can be accessed in memory.

Schemas can also be loosely coupled. For example, the schema
MAINTENANCE is associated with a car, but if one sees a car
one does not always think of maintenance. If, however, the car is
rusty or makes suspicious noise, the association with maintenance
is more likely; that is the variables condition and sound influence
the activation of the schema MAINTAIN CARS which consists at
least of the schemas CAR and MAINTENANCE. Hence, the
association between MAINTENANCE and CAR is
operationalized by the superior schema MAINTAIN CARS.
Strong coupling, as found by the subparts of a car, is also given
for CAR and DRIVING because both schemas are in most of the
cases slot fillers for the DRIVE CAR schemas.
This hierarchical organisation of schemas is considered by some
schema theorists as the complete cognitive structure of human
behaviour [30]. It is a means-end structure in which an initial state
is transformed into an end state by splitting up each problem into
sub problems. At each level of the hierarchy there are alternative
schemas possible to solve the problem. “Another scheme might be
a tentative plan for the solution of a problem, which is
characterized by the start conditions, an outline of the goal to be
reached, and some ideas of the route of subgoals by means of
which one will try to reach the goal” [31].

2.3.2 Is-a relations
This type of relations between schemas is given by different
levels of abstraction. One can have a schema of a DOG while
having a more specific schema of a POODLE, or a more general
schema of an ANIMAL. If a person perceives a poodle, it can be
represented by any of the three schemas appropriately. However,
the schemas vary in detail and generality. While the POODLE
schema only applies to a small subset of animals, it provides more
specific knowledge about poodles, for instance what color the fur
can have. The ANIMAL schema on the other hand applies to all
animals but comprises only information that is valid for all
animals. It is possible to switch the level of detail by which we
consider an object. We can see the poodle as a poodle, a dog, or
an animal. Schemas that are at the same level of abstraction,
however, are competing: a dog is either a poodle or a dachshund,
but never both. For any actual situation, schemas of different
levels of abstraction are valid, but for any level of abstraction
there will be one schema that is more appropriate than others.
Similar to inheritance in object oriented programming, the more
specific schemas inherit the properties and procedures of the more
general schemas. Although not explicitly stated in the literature
on schema theory, we can assume that multiple inheritance takes
place since concepts can overlap. For example, a family dog may
inherit the properties of dogs but also the properties of the schema
FAMILY. Furthermore, we can say that the type is an important
constraint for the variables of a schema. If a specific schema type
is accepted in a variable slot, then the specialized schemas are
valid as well. For example, in the DRIVE SCHEMA, there is the
slot STREET. STREET itself is a schema, and we can fill the slot
with any type of street, such as HIGHWAY, COUNTRY ROAD,
or JUNGLE ROAD. These streets differ in their specific
properties, for example surface materials, size or number of lanes,
but on a more abstract level they are all streets and share the
common properties of a street, for example the shape.
Alexander [32] observes: “Nature is always full of almost similar
units (waves, raindrops, blades of grass) – but though the units of

one kind are all alike in their broad structure, no two are ever
alike in detail. 1. The same broad features keep recurring over and
over again. 2. In their detailed appearances these broad features
are never twice the same.” Like schemas, patterns are always
generalizations leaving out the details. They abstract from
concrete forms; and concrete designs are instantiations of the
pattern. The level of abstraction is given by the number of
features and relations that are taken into account by a schema or
pattern. Like schemas, patterns can exist at all scales [33].

2.3.3 Hierarchic organization
Furthermore, the hierarchic organization of patterns is reflected in
pattern languages [34] and logically explained by set theory [35].
The relationships between patterns have been classified in various
ways. Noble [36] distinguishes between the primary relationships
that “a pattern uses another pattern, a pattern refines another
pattern, or a pattern conflicts with another pattern” and the
secondary relationships (i.e. used by, refined by, variants, variant
uses, similarity, combines, requires, tiling, sequence of
elaboration) which can be expressed in terms of the primary
relationships. Using a secondary relation adds more meaning to
the relation by making it less general, for example the relations
“next step” and “owner of” have certainly different meanings but
at the same time are both of the type “has-a”.
It is notable that in Alexander’s pattern language [34] the only
expressed relations are the uses/used by relations at the beginning
and end of each pattern. This type of relation delegates problem-
solution details to sub patterns and it shows that Alexander’s
emphasis is on the decomposition of complex problems. In fact,
some of his patterns are related in different ways. HOUSE FOR
SMALL FAMILY, HOUSE FOR COUPLE and HOUSE FOR
ONE PERSON describe different house types. On the one hand,
these patterns can be considered conflicting patterns [36]. On the
other hand, one could argue that they are different refinements of
an abstract pattern - because the houses are specialized solutions
addressing particular contexts.
Comparing the schema and pattern concept, the Has-a/Part-of
relations of schemas are uses relations in patterns, and the Is-A
relations in schemas are refines relations in patterns. So, what
about the conflicts relation? In a way, one could argue that
patterns never are in real conflict because different contexts
readjust forces for the same problem type and therefore require
specific solutions, e.g. the different house patterns all apply to
different contexts (families, couples or singles). Likewise the
problem of transportation calls for different solutions (e.g. car,
bus, train, plane) because of varying contexts and hence different
weights on the forces [37]. If the problem statement is to create a
website, the solution may look quite different depending on
whether one creates a news site, a university portal, or an online
community [38].
In addressing the same (core) problem, some pattern solutions can
be in competition [21]. Also, patterns can satisfy forces on
different scales [39]. In that sense patterns are in conflict, and
they compete for implementation. In schema theory the conflicts
relation is not an explicit relation type between schemas.
Nevertheless, it is assumed that schemas compete for activation
depending on their appropriateness as the next section shows.

3. Activation of Schemas
To understand a given situation and to plan an appropriate activity
means to select an appropriate configuration of schemas taken
from the currently available repertoire of an individual. The
selection of appropriate configuration of schemas to account for
the situation is called comprehension by Rumelhart and Norman
[15]. This configuration consists of schemas that can be
instantiated in a way that the current empirical data fits into slots
of the activated schemas. The process of activating the right
schemas is a complex pattern matching task in which memorized
schemas cooperate and compete. Schema activation is triggered
by the existence of relevant data. For example, the data “eyes”
and “nose” can activate the schema HUMAN FACE, because it
has the appropriate slots in which the given data can be properly
assimilated. However, on a more abstract level there are
competing schemas, such as ANIMAL FACE. Also, to activate a
more specific schema MALE or FEMALE FACE, further
information is needed. A name, “Sarah”, could clarify that the
schema FEMALE FACE should be activated. The three activated
schemas EYE, NOSE and FEMALE NAME hence cooperate to
activate the higher level schema FEMALE FACE. Schemas are
considered to be self evaluating. That is, for any given input
stimuli a schema can evaluate the likelihood that it can represent
the empirical situation. The process of calculating such a fitness
value, is executed by the schema itself – the algorithmic
knowledge to generate output values according to input values is
implicit given in the structure of the schema. To recognize the
situation, the schema that best matches the features of that
situation is selected. This is a fuzzy logic operation because the
variable slots of the schemas are assigned with probabilities. So,
if in the current stimuli some features are missing, unusual or
additional, a schema can still be appropriate to represent the
situation if in total the features match is better than in any other
schema. Some feature settings, however, are not tolerated. For
example, if the information “diameter of 5 cm” comes in, the
schema HUMAN FACE has to be discarded.

3.1 Bottom-up and top-down
The process of schema activation works both bottom-up and top-
down. Perceived information activates low level schema
candidates at the bottom of the hierarchy, which produce output
data on a higher level. For example, visual patterns activate
specific shape schemas in this bottom-up process. This compound
information is the input for higher level schema activation. If a
schema is found in which the configuration of basic spatial
objects is similar to those of an eye, this schema is activated and
the output data is “EYE”. This output data, again, is available in
the recognition process. In combination with further data, such as
“NOSE” and the word “Sarah”, the FEMALE FACE schema is
activated. From this schema, additional knowledge is inferred in a
top-down process. For example, the schema knows that lips, ears,
eyebrows etc. are most likely to co-occur. This knowledge can
then be used to further interpret the available data on lower levels.
In a comic drawing we can interpret a single line as a mouth if we
have the context information that we see a face. This inference
also helps to substitute missing information. If a text does not
mention a mouth explicitly, we derive a default assignment from
the MOUTH schema and fill the slot of the FACE schema. Hence,

we are likely to think of red lips, although green or blue lips are
possible (if a lipstick is used).
The context of concurrently activated schemas and the current
empirical perception are both input data. The later is encoded into
schemas on the lowest level. A specific combination of lower
level schemas makes it more likely for a specific schema on a
higher level to be activated. This is due to the interrelations of
variables. If the current lower level schemas are “better” slot
fillers for schema A than schema B, then schema A will be more
strongly activated than B. As a result, the activated schema A
raises expectations about further variables. That is, on a lower
level additional schemas become more likely to be found because
they are expected from A. For any schema X, the activation
depends on the available data. Positive stimulation can come from
lower levels (X has parts that are activated) and higher levels of
the hierarchy (X is part-of an activated schema). The strength of
activation influences other schemas in their own evaluation. If, for
some reason, the schema HUMAN FACE is denied (too many
mandatory parts may be missing), this has consequences for other
schemas that are already activated. The denial of the FACE
schemas is negative input for the EYE and NOSE schemas, hence,
they have to be re-evaluated. Maybe the shapes that first had been
perceived as eye and nose have a different meaning.

3.2 Activation triggers output
The evaluation of a schema yields a certain level of activation,
which in turn will affect the recognition of an observed object or
scene. Strong activation means the individual has recognized a
familiar situation. With its activation, all the interrelated variables
get weight. Some of these variables can be operations, actions,
and plans. Hence, the recognition of a certain situation also
activates elaboration, planning, and execution knowledge. Again,
this knowledge can be split up into sub schemas. To achieve a
required state (as defined by planning and execution knowledge),
the schema refers to lower-level schemas that have stored the
knowledge how to achieve that state. On the lowest level, the
schemas cause actions of the individual. Throughout this process,
the schemas are constantly re-evaluated and if at one point there
is a misfit, strategies have to be changed, that is errors have to be
corrected. The schema itself and the cooperation of schemas
(which are defined by the interrelation) can be improved by
continuous learning (tuning).

4. Problem Schemas
In problem solving, two situations can be distinguished, namely,
solving problems for the first time and handling recurrent
problems [6]. If a specific type of problem is encountered for the
first time, the problem solver does not have any knowledge (i.e.
problem schemas) available to solve this problem. Thus, one can
implement only problem solving strategies that do not require any
prior knowledge, that is, so called knowledge-lean problem
solving strategies. While these strategies may certainly fail in
particular if dealing with rather complex tasks, they are the only
ones available to the problem solver. On the other hand, if a
person has already acquired knowledge on solving problems of a
particular type, because the individual has made recurrent
experiences with this problem type – either by learning by doing
or studying illustrating examples – then knowledge-rich strategies
become available. These strategies rely on applying existing

problem schemas to the task at hand. Both problem-solving
strategies will be outlined in the following paragraphs.

4.1 Solving design problems for the first time
Problem solving based on applying knowledge-lean

strategies can be analyzed by considering two cooperating sub
processes, understanding and search. The understanding process
produces mental information structures that represent the problem
according to the understanding of an individual. Its major outputs
are two states, the current situation in which the problem arises as
the initial state, and the desired situation in which the problem is
solved as the final state. Solving the problem is a search process
in which the solution is calculated or found by taking moves in a
problem space. The problem space consists of (1) the initial
problem state, (2) operators that can change a problem state into a
new state, and hence allow moving in the problem space, and (3)
the goal state. Each state in the problem space can be reached by a
sequence of operator applications [6]. The difficulty of the
problem is correlated with the topology of the problem space[40],
though people may not be aware of how they step through the
problem space. States in the problem space could be formally
described by a state-representation language. For design
problems, this language could describe the modeled form of the
design and how it satisfies the given forces. If a state is found in
which the form balances all forces, this state represents one
solution. While looking for the solutions, the problem solver may
get a better understanding of the problem itself. Hence, some of
the insights gained are often changes of the problem space itself
[41, 42]. For design problems this could mean that during the
process of finding the right form, the designer finds additional
forces that have to be taken into account. A state in the problem
solving space corresponds to a set of assertions [6]. In the case of
the designer an assertion means that a particular configuration of
a variable has influence on the forces. Moving in the problem
space is to vary settings of design variables to see whether the
whole design better fits to the problem in the context. The
operations of the problem-solving process then are the
incremental changes to the assertions, that is the piecemeal
variations of form. The challenge is that each variation influences
more than one force and that some changes may lead to
undesirable results. Hence, the operations can lead to dead ends.
In that case, a backup-strategy can lead the designer back to a
state which is closer to the solution. One can then proceed with
another set of operations (that is change design variables).
Heuristics, or rule of thumbs, are often used by problem solvers to
decide which operations to apply in a state that satisfies certain
conditions related to the heuristic. Finding a good solution is not
random search. Rather, it is achieved by small transformation of
states in a problem-space. The transformations are chosen based
on experience of the individual. If the steps taken mean progress
towards the solution, then the path is continued and the applied
heuristic is strengthened. Finally, a solution state is reached.

Complex (design) problems can be decomposed into sub
problems of smaller granularity. The hierarchical decomposition
of artificial structures and problems is described by Simon [43]. It
is notable that Alexander has referred to some of the earlier works
of Simon [44] who has done much research on problem solving
and is often referred to in literature on problem schemas. That the
patterns in (software) design are likewise an approach to

decompose complex systems into a small number of recurrent
subsystems as described in Simon’s The Science of the Artificial
[45] is highlighted by Grady Booch [46].

4.2 Recurrent problems and solutions
If subjects recognize the stimulus of a familiar problem,

however, they do not seem to start the search process through the
problem space. Rather, they retrieve a ready-to-use solution
procedure and follow it. The knowledge unit that is available to
solve problems of similar classes is called a problem schema [6].
Problem schemas are more likely to be applied by experts of a
domain and allow for the implementation of knowledge-rich
problem solving strategies. They consist of both, knowledge
about the problem class (i.e. declarative knowledge) and the skills
to solve problems belonging to that class (i.e. procedural
knowledge). They are considered a specific form of schemas,
which have the same characteristics as have been discussed in the
previous sections about schemas. Thus, both parts of a problem
schema are composed of variables that can take different values,
which are used to represent a problem class’ relevant features as
well as operations to solve respective problems. Moreover, as
suggested by schema theory problem schemas are interconnected
in a hierarchical network by part-of and is-a relations.

The first part of a problem schema comprises knowledge of
the problem class and its constituent features, which is important
to recognize and activate the appropriate problem schema. In that
way, a problem schema serves to better understand the problem.
Experts usually have a better understanding of a given problem in
their domain in that they can represent the problem based on its
second order features rather than its first order features [47].
Second order features seem to be coherent with the structure of
the problem, in opposition to first order features, which are
coherent with the surface structure. The second order features are
the ones that allow deeper elaboration and understanding [9].
Once a problem schema is recognized and triggered, its solution
procedure can be applied to the representation of the problem.
The solution itself is a structure that has slots, which can be filled
by arguments that are taken from the problem representation. As
discussed in the previous sections, the slots allow for variations,
for ranges of acceptable values. This is important, as it allows to
adapt the generic parts of the problem schema to the specific
operands given in a problem.

4.3 Subdivisions of problem schemas
Marshall [9] who has researched problem schemas for

mathematical problem solving, suggests that a problem schema
consists of identification knowledge, elaboration knowledge,
planning knowledge and execution knowledge. Thus, she splits
the problem and the solution structures into sub structures.
Though this split up is plausible, it is rather arbitrary. Does every
problem schema require execution knowledge? Think again of the
car, which can be the solution to travel from A to B. Once we
realize that a car is a proper solution, what is the proper execution
knowledge? Do we have to know how to build a car, or only how
to drive a car? Is having a driving license a precondition to let the
car be a proper solution? What about asking a friend to drive?
There are other ways to subdivide problem and solution. In the

context of design patterns the problem is usually split up into the
core problem, the context, and forces (to be exact: the conflicting
forces are the problem and the configuration of forces is set by the
context). Each is an interrelated sub structure of the problem
structure. Indeed, one can further split up the context as there are
several types of contexts (available resources, required skills,
cultural habits etc.). The solution, too, has different sub structures,
including the form of the solution (a car), the process of creating
the solution (design and fabricate the car) and how to use the
solution (driving the car). This nature of problem schemas can be
summarized as follows:

1. A problem schema is a single schema that relates a problem to
a solution.

2. Both, problem and solution are sub schemas that are integrated
into the problem schema.

3. Both, problem and solution can be further sub divided into sub
schemas.

4. If the problem schema is activated, then it automatically
triggers the solution schema as a whole.

5.The solution schema activates its related substructures such as
planning, execution, elaboration, use forms etc.

The problem schema is the body, which integrates all the sub
structures into one schema. Each of the structures is an abstraction
of concrete instances in which the structures have been found.
Hence, each structure is a pattern. It is remarkable that in the
schema literature, the expression “pattern” is often used only for
the identification task, that is the pattern recognition. Of course,
the assigned procedures and plans are patterns as well as the they
capture the invariants of the solution. The combination of the
problem pattern and the solution pattern is captured in a problem
schema. Thus, the design patterns of an individual are equivalent
to problem schemas since design is considered to be a problem
solving task in the pattern community. To be more precise, design
patterns are a special case of problem schemas as there are other
types of problems.

Both, design patterns and schemas can have relations to other
concepts (patterns or schemas). By the combination of several
schemas/patterns, composed schemas/patterns result. Therefore,
the patterns of problems can be linked to the patterns of solutions.
Also linked can be the patterns of contexts, values, consequences,
execution knowledge, elaboration knowledge, forces etc. Since
each schema defines a configuration space, problem schemas
provide a linkage from a problem space to a solution space in the
very same way as design patterns intend to do.

Problem schemas apply to knowledge-rich rather than
knowledge-lean problem solving [6]. Similar, design patterns
apply to design problems that require a large body of information
and specialist experience that should be available to the designer
[24]. As with design patterns, problem schemas can be utilized in
combination to solve larger and complex problems. If a certain
combination of problem schema reoccurs, it is likely that this
combination establishes a new schema with the participating
schemas as variable slots. Which leads us to the question that has
been elegantly excluded so far: how are schemas acquired?

5. Schema Acquisition and Development
According to Piaget, schemas are created and adopted by two
interplaying processes: assimilation and accommodation.
Assimilation is the integration of external elements (perceived
stimuli and the data available from the output of other schemas)
into developing structures or intro already existing structures. In
the assimilation process, properties of the external element that
are incoherent with the activated schema will be ignored.
However, not every feature can be skipped. Thus, to integrate the
current stimulus, the existing structure has to change according to
the special properties of external elements. This process is called
accommodation. If a schema has assimilated many experienced
elements and the accommodation process has established a logical
structure that is capable of representing all of them, then the
schema becomes stable. It is in a state of equilibration in which it
is resistant against outliers and interferences.

5.1 Assimilation
Assimilation is the application of subjective schemas to

represent a perceived situation, or perceived objects. Which
schemas are appropriate to represent the situation has been
discussed in the section Activation of Schemas. Since schemas are
abstractions based on previous experience, the empirical
information of the currently perceived elements is unlikely to fit
completely to the activated schemas. In the assimilation process
the information is adopted so that it can be integrated to the
activated schemas, that is irrelevant features or superficial
variations are ignored. The structure of the perceived object is
altered so that it can be represented by schema instantiations.
This implies that our perception of things depends on our previous
experience and what we expect about situations. For this reason,
optical illusions let us perceive things that are not really there.
This fitting of perception to expectation does not only apply in
everyday situations but also in scientific scholarship, for example
new findings are tried to be harmonized with existing
mathematical concepts or specific models and theories.

The assimilation process can be expressed by this formula [48]:

 (T + I) -> AT + E

T is the existing structure, I is the integrated element (the
perceived stimulus), E are the eliminated components (the
structural parts of the stimulus that are ignored in favor of the
schema) and A is a coefficient > 1 that expresses the
strengthening and addition to the existing structure. As an
example consider the simple schema structures A and B (spatially
represented) and the example stimulus in figure 2.

Though the stimulus is not exactly represented by schema A - the
last component (variable) has a different position (value) - it
matches better with A than with B. Therefore, schema A is
activated and assimilates the stimulus. If the stimulus is fully
assimilated by A, then its minor difference is ignored. That is it
will not be stored permanently in memory; rather, the given
stimuli is represented by A. Assimilation is conservative and tries
to subordinate the environment into the organism [49]. How
exactly the specific experienced stimulus can be retrieved
(reproducing assimilation) depends on the specialization of
schema A. If A is a very specific schema then it prescribes a

detailed structure; hence, it has to be very similar to the perceived
stimulus in order to assimilate it (recognizing assimilation).

Figure 2: A stimulus is assimilated by the best fitting schema

and activates it.

However, if A is on a more abstract level, then it will accept a
wider range of stimuli. If the stimulus is assimilated by such an
abstract schema, less exact details are available for retrieval since
A generalizes over some features (generalizing assimilation). This
explains why story fragments that represent typical situations are
retrieved by subjects in terms of general information rather than
the specific information given in the text. For extraordinary
situations, however, subjects often remember the specific details
[11].

Besides the differentiation between reproducing, recognizing and
generalizing assimilation, Piaget distinguishes between simple
and reciprocal assimilation. Simple assimilation just means the
integration of external elements into an existing schema.
Reciprocal assimilation means that a schema integrates sub
schemas (has-a relations), or one schema assimilates another
schema and vice versa (is-a relation).

The integration of new data structures without changing the
existing schemas is referred to as accretion of knowledge by
Rumelhart and Norman [15]. Though they do not speak of
assimilation, the proposed process of accretion is very much alike.
It is also based on schema activation, or as the “natural side effect
of the comprehension process” [15]. In their model, the specific
situation or experience is stored in data structures, which are
instantiation of appropriate schemas. To retrieve information of a
particular experience, the instantiated schemas are used to
reconstruct the original experience. This instantiation allows the
storage of episodic knowledge while the schema contains the
generic structural knowledge. The model differs from Piaget’s
assimilation process in that specific data is stored separately in
instantiated data structures. Thereby it is better suited than the
Piaget model to explain how one can remember specific details
that are distinct from the generic structure. However, it does not
explain why specific information is lost (forgotten) or replaced by
generalized knowledge. The similarity to assimilation is that
existing schemas are required to interpret and memorize new
input, the new experience is associated with a configuration of
schemas, and that the structure of the schemas does not change.

The creation and evolution of schemas is credited to a different
process: accommodation [14], or tuning and restructuring [15].

5.2 Accommodation
If there was only assimilation, no learning would occur

because there would be no process of changing or restructuring in
the knowledge structures. Accommodation is the counterpart of
assimilation as it adopts the schemas to be coherent with the new
experience. If an external element is assimilated not all of its
special features can be discarded or ignored. So, the assimilation
schema has to be changed in a way that it can represent the
specific new experience as well as the older ones. The
requirement that older experiences of the same class must remain
representable limits the process of accommodation, however. This
limit is expressed by the term A in formula (T + I) -> AT + E .
The new schema structures are a cognitive adoption of former
schemas.

Analogous to assimilation, Piaget distinguishes between simple
and reciprocal accommodation. Simple accommodation happens
whenever a schema is activated. Reciprocal accommodation
happens if multiple schemas are assimilated by a superior schema,
and the coordination of the sub schemas is adopted.

Rumelhart and Norman [15], too, distinguish two types of schema
development: tuning is the evolution of existing memory
structures (that is of a single schema); restructuring is the creation
of new ones (e.g. create a new ensemble of co-operating schemas,
or copy an existing schema for modification).

Tuning only affects an adjustment of variables, their values
ranges, and probabilities for both values and co-occurrence of
values.

The constant and variable terms can be changed in four ways:

1. The accuracy is improved by having more differentiated
constraints.

2. The applicability is generalized by extending the range of
acceptable variable values.

 3. The applicability is specialized by limiting the range of
acceptable variable values, in the extreme by replacing it by a
constant.

4. Default values can be established if instances of the schema
happen to be frequently assigned with typical values. [15]

As an example, consider how a schema accommodates as a
number of similar stimuli are assimilated into the same schema
(figure 3).

Figure 3: Evolution of a schema by assimilation and

accommodation

The number of components (or variables) does not change in
the evolution process. However, the ensemble changes in a way
that the configuration space extends. The positions of the
components (i.e. the variable values) get a wider range. Some
configuration values are more probable because they occurred
more frequently (in the figure, the strongest memory trail is where
the stimuli overlap, thus marking a default but not a mandatory
configuration). Also, the relational structure does not change. The
schema remains one schema, and its interrelations do not change.

Another type of learning happens if the existing schemas are
restructured. In this process new schemas are created either
because the new experience does not fit to the currently available
schemas, or its organization is not satisfactory. Rumelhart and
Norman [15] name two types of schema creation as a result of
restructuring: patterned generation and induction.

A patterned generation is a creation of a new schema by copying
and modifying an existing one. As in the use of analogies, some
variables are left out, others are added and some are changed in
their values. For example, one can develop the schema of a
rhombus, by getting the information that it has the same
relationship to a square that a parallelogram has to a rectangle.
Since the old schema is first generalized and then specialized, the
logical structure of inheritance is implicitly given. One can say
that this type of restructuring concerns is-a relations.

The other form of restructuring is schema induction. As it
concerns the contiguity of schemas it will restructure has-a
relations. The co-occurrence of certain configurations of schemas
will generate a new schema that stores this formation. Though not
mentioned explicitly by Rumelhart and Norman [15], one can
assume that schemas can not only be created by composition of
sub schemas but that a schema can be decomposed into sub
schemas as well.

To illustrate the two types of restructuring, consider figure 4 in
which the schema evolution goes on by perceiving more stimuli.

Figure 4: Continued schema evolution

Although the new stimulus is not similar to the evolving schema,
it is assimilated by it because it matches this schema better than
the competing schema. However, the difference in the last two
stimuli require accommodations. The configuration space of the
evolved schema is not satisfactory for the experiences it
represents. Therefore, restructuring (or reciprocal accommodation
in Piaget’s terms) is required. The original schema can be copied
and modified according to the specializations.

Figure 5: Restructured as patterned generation.

Schema induction, on the other hand, would create new schemas
by composition or decomposition. In the example, this would
mean, that the schema is decomposed into three sub schemas
(figure 6) that can be aggregated into two macro schemas (figure
7).

Figure 6: Decomposition into three sub schemas.

Figure 7: Aggregation into two macro schemas.

In the model of Rumelhart and Norman [15], learning can occur
without accommodation. Accretion of knowledge stores the
special instances of experience separate from the schemas and
therefore does not tune or restructure the schema. In opposition,
in the schema model of Piaget assimilation cannot occur without
accommodation and vice versa because all knowledge is stored as
schemas in the memory. Assimilation always comes first and the
assimilation structures compete for activation. Accommodation is
subordinated and forced by the fact that the assimilated structures
must fit into the configuration space of the schema structures.

5.3 Equilibration
Not every new experience will completely reorganize the existing
schemas. For example, if one sees a car with three wheels, the car
can be assimilated by the CAR schema. However, the CAR

schema will not be accommodated in a way that cars with three
wheels are a common pattern. The reason is that with every
integrated experience the probabilities for certain configurations
are modified. If one has seen thousands of cars with four wheels,
the one car with three wheels will not change the schema
significantly, if at all. Such a stable schema is in an equilibrated
state. The schema structure, that is the variables, their constraints,
interrelations and occurrence probabilities, describes a
configuration space that is capable to represent all members of a
class even the extraordinary ones. Although schemas become
stable and equilibrated, this does not mean that there is no change
any more. One can assume that a schema is never fully
equilibrated because after thousands of hours of practice, an
individual can still improve his or her performance [50,51]. The
point is that the changes concern the automatization of existing
schemas rather than the construction of novel knowledge
structures.
Because the schemas are built upon the experiences of an
individual, no two persons will have exactly the same schema.
Though each person may have a schema of a CAR, these schemas
are not identical. They may be very similar but there are also
differences. A person that lives in North America may have
developed a different prototype of a car in mind than a European.
The reason is that people in North America have developed
different default values for the variables. Also, the first car one
has seen may play and important role since it was the initial
ground for the schema. Some people may know about how to
check oil and test the air pressures while others lack this
information. Some people may be concerned about environmental
issues when thinking of cars while others see cars as status
symbols rather than transport vehicles. So, even for cars there are
many different schemas that may have had developed among
individual peoples.

5.4 Related Theories
It is important to keep in mind that schemas are only a

conceptual model of human memory; there are no physiological
entities in the human brain that correspond to a schema. Rather,
schemas are the structural units we can become aware of. More or
less, other theoretical approaches such as categories [52], frames
[53], scripts [54, 55] or even mental models [56] refer to the same
memory structures but offer different explanations how the
structural units are stored, related, created and instantiated.
Categories are basic concepts (such as ANIMAL, DOG or CAT)
whereas schemas can also represent more complex mental
structures [57] and situations such as DOGS HUNTING CATS.
Scripts are schemas that contain specific sequences of events in
well-understood contexts, the classic example is the visit to a
RESTAURANT. Mental models, too, can be generated by the
interplay of appropriate schemas. What is common in all these
approaches is that they provide conceptual models of
classification. One can call the class of CARS either a schema, a
category, a script, a mental model, or a pattern – depending on the
theoretical framework you are in.

Neuroscience goes beyond conceptual models since it tries to map
conscious states to activity patterns of firing neurons. The fact
that neuroscientists, too, speak of patterns highlights the
importance of structural relation and co-occurrence of features in
stimulus. “…, human brains operate fundamentally in terms of

pattern recognition rather than of logic. They are highly
constructive in settling on given patterns and at the same time are
constantly open to error” [58]. Distant neurons will make synaptic
connections if their firing patterns are temporally correlated. The
synchronized firing creates neural clusters and patterns that
correlate with mental states of an individual – the mind emerges
[59]. The existing synaptic connections influence the activation
patterns that respond to a given stimulus while at the same time
the synaptic connections are modified themselves [60]. The
conscious mental state is represented by the “integrated pattern of
neural activity” [61] and this activity depends on both the current
stimuli and the individually developed brain structure formed by
former activation patterns. This mixing of the past with the
present stimuli to a phenomenal experience is conceptually
described as assimilation in schema theory. The altering of the
brain structure by strengthening synaptic connections between
temporally correlated firing neurons can be considered as
accommodation. Then, are the neural activity patterns instantiated
schemas and therefore the design patterns as we know them? Not
exactly because schemas and design patterns are located on a
macro level whereas neurons and synaptic connections are on a
micro level in a hierarchical network of activation patterns [62],
see figure 8. In the same way the physical object of a car can be
decomposed into its components and further into its molecular
structure, the schema of a CAR is decomposable into sub schemas
and finally into neural activity. In our conscious thinking we have
only access to the upper levels. The lower levels can be captured
by brain scans. However, today’s research is far from linking the
recorded brain activity to the actual conscious state. Due to the
complexity of dynamic systems this may never be the case. For
our enterprise, the mining of design patterns, we are interested in
the macro patterns, anyway.

Figure 8: Hierarchy of complex activation patterns [62].

Extended with a note at which levels pattern mining takes
place.

6. Implications
At the end of the equilibration process, an individual has
developed an ideal of the object in question. And in that, one has
developed an attitude towards the ideal object, giving the
individual the capability to judge whether the things or events in
questions are the way they ought to be – whether they just feel
right. This is true for non-design objects (such as trees), for
emerging situations and structures (such as sunsets or the
behaviour of animals in the woods), and for deliberately designed
objects (such as cars, or a software systems) certainly as well.
Having an ideal concept of a thing lets one judge the beauty of it.
It is therefore, that aesthetics matters [63] and that we should be

interested in creating beautiful code [64]and things. From a
philosophical perspective, Kant [65] argues that we perceive
objects as beautiful when they are good projections of the ideal
form. A less philosophical and more pragmatic realization of an
ideal form is expressed in the aforementioned statement that is
often heard as a judgement for design: “It just feels right!” In
other words, things are just the way they ought to be. However,
according to schema theory this ideal (or the prototypical
instantiation of a schema) is an individually constructed structure
and not a-priori given (as Kant has argued). The judgement
depends on our experiences and therefore it is grounded in
context. In a different time or a different culture the same
structure may be judged differently. For this reason we have to
reject the hypothesis that there always is a universal beautiful [66]
or timeless way [22] of creating and doing things. However,
within a culture and a specific period of time it is likely that
conventions and socially constructed patterns (the patterns in
artefacts of the time) lead to common judgements about what is
beautiful or not. While some forms loose their “quality without a
name” quickly as fashion comes and goes, there are other forms
which offer values across cultures and throughout history more
constantly.
What feels right or seems to be ideal depends on the fitness
between context and the solution form. Both context and our
understanding of the context can change. New technologies or
environmental developments can change the context and
rearrange the forces. New scientific findings lead to a better
understanding of the context and uncover new forces, i.e. not
polluting our planet is a force that is often ignored by many
industrial designs. To discover that a specific design can do harm
can make a once beautiful form look very ugly.
Things that we fully understand (or think to understand) can feel
intuitively beautiful. In this case the judgement depends on our
implicit design knowledge, stored in equilibrated problem
schemas that evolved from the experience of seeing things that
worked or not. In other cases, the elegance of design is less
obvious and we are required to evaluate the values, benefits and
consequences consciously. We have to reflect all the known facts
relevant to a design rather than depending on intuition alone [24].
For example, whether a software architecture has sustainable
values cannot be judged by only glancing at it. One has to
understand the forces and needs the expertise to know which
forms balance the forces. At this point the explication and
externalization of problem schemas in the form of patterns
becomes a helpful tool to reduce the complexity (allowing to
reason about more forces), to share information and to ensure that
the (mental) models of an individual are also shared by other
people.

6.1 Patterns as subjective structures
Patterns depend on schemas constructed by the individual. The
more experience an individual has, the more stable the schema of
that person get. If one has experienced 100 exemplars, one is
more likely to judge based on experience which parts of the
configuration are invariant and which change from exemplar to
exemplar. Likewise, an expert is aware of commonalities and
differences, the expert has many patterns, abstract and precise, in
her or his mind. “A man who knows to build has observed
hundreds of rooms, and has finally understood the ‘secret’ of

making a room with beautiful proportions” [67]. This expertise
allows the creation of new things by copying good designs. For
the domain of architecture, Alexander states [68]: “A pattern
language is really nothing more than a precise way of describing
someone’s experience of building.”
The recognition of patterns depends on the cognitive skills of an
individual. Even if you systematically analyze design artefacts
and define criteria to classify similarities of the objects, these are
individual judgements. Formalizing does not work because we are
not only interested in a pattern of form but in the pattern of form
as a solution; only as such it becomes design and has a meaning.
It resolves the forces of a problem in a specific context. There is a
difference between the form of a hammer, and the semantic of a
hammer as a tool that can be used in certain situations to solve a
physical problem. The semantic is something that goes further
than the form itself and it requires a human being to make a
meaning of the hammer. Therefore, an algorithmic approach must
fail. Alexander appreciates that fact when he dispenses from his
proposed Program as a method to find pattern diagrams and
realizes that the human capabilities allow finding the patterns in a
more natural way: “If you understand the need to create
independent diagrams, which resolve, or solve, systems of
interacting human forces, you will find that you can create, and
develop, these diagrams piecemeal, one at a time, in the most
natural way, out of your experience of buildings and design,
simply by thinking about the forces which occur there and the
conflicts between the forces.” (preface of 1971 edition of Notes
on the synthesis of form [24]).
This view is very coherent with schema theory. In the same way
that the interaction of assimilation and accommodation leads to an
equilibrated schema, the attempts of explication and
externalization are evolutionary processes. An implicit schema
emerges by experience and to be stable it has to properly
represent the object space it refers to. Based on implicit schema,
an individual can create an explicit mental representation of its
structure in the pattern format. For example, one can implicitly
know that a car is a good solution for a problem in various
situations. To consider a car in the dimensions of context,
problem and solution creates an explicit view on the car as a
design pattern. This view will be adapted several times to ensure
that it is coherent with the implicit schema it is based on. If a first
stable version is available in the mind, one can start the
externalisation process by writing the pattern. The written pattern
description again will be adapted piecemeal to be coherent with
the explicit mental view on the design pattern. Indeed, this
process is not a one way path. Writing the pattern will take
influence on the mental representation of the design pattern.
Reasoning about one’s own problem-solving strategies creates
new experiences. Thus, the implicit problem schemas may change
as well in this process.

6.2 Loss of information (and reality)
The trouble is that a lot of things can go wrong because our minds
may be powerful pattern recognition apparatus but they are not
perfect. First of all, in any transformation there is loss of
information. The richest in-form-ation is available in the
formation of a single design artefact itself. Even an objective
pattern (if we could grasp it) has to omit a lot of details because it
is an abstraction of all the artefacts that manifest the pattern.

While the (hypothetical) objective pattern forms a specific design
space of all designs of its class, the subjective schema of an
individual is only based on a finite subset of this class. This leads
to the slightly different ideas of cars and their uses depending on
where you live and several other factors. Furthermore, the mental
image of a single object (e.g. a car) is always only a projection of
the object itself. Likewise, the explicit mental pattern is a
projection of the implicit internal schema and the written
description is yet another projection. Each projection means loss
and sources for failures. While the loss of information can
simplify things and make them easier to handle, the danger is to
loose critical information, that is to ignore design elements that
matter. Failures are even worse because it means that an
individual has constructed a mental representation of a real world
pattern (or some parts of it) in a wrong way. These are matters of
the validity of a design pattern; one could judge the epistemic
value of a pattern description by “simply” testing whether the
designs of the real world actually manifest the proposed pattern or
not. This is a question for the scientists, and an interesting one
indeed: How to measure the correctness of a pattern?
One of the pitfalls in evaluating the correctness is individual
judge on whether a design is good or bad. The human mind builds
up schemas of all kinds of recurrent structures it perceives;
including horribly bad designs. The pattern community calls those
recurrent designs anti-patterns or dysfunctional patterns. “Some
patterns have recurrence but not quality. These are bad patterns”
[21]. But dysfunctionality is not always a matter of objective
judgement. Everybody agrees that software that can be easily
adapted to new requirements is better than software which lacks
this capability. But not everyone agrees that PowerPoint adds
value to the way people present information. It is a matter of
personal preference and the quality of presentations one has
experienced in the past. In fact, many of the patterns in “A Pattern
Language” are related to values that depend on individual
attitudes. For instance, not anybody may agree that a world
government, as proposed in the first pattern INDEPENDENT
REGIONS [34], is part of a good design. It may be, but people
have different judgements on that issue. Such differences are the
reason why different parties act in democratic systems.
In the pattern community, people often trust in validity, because it
is assumed that the pattern is written by an expert – and in design
expertise matters more than (laboratory) experiments. The
designer, however, is not satisfied by validity alone. Besides
validity the designer expects usefulness and generative qualities
from a pattern. A pattern can be scientifically valid by describing
the structure correctly and analyzing the consequences – benefits
and liabilities – adequately. However, the choice of the level of
abstraction, granularity, and details influences the usability for
designers. Indeed, some schemas only represent recurrent
structure in design but not design patterns since they do not
capture adequate solutions to problems. Some people see ideal
forms where there are none; this mild form of “platonic
schizophrenia” has been anticipated by the pattern community
[69].
As an example, let us reconsider the CAR pattern and see what
could go wrong with the pattern mining, both informally and
systematically. First, one could miss some important components
by saying that in essence a car is four tires, a steering wheel,
passenger seats, and a body. And indeed this configuration is a
recurring structure in proven design solutions (the cars) and

therefore formally a pattern candidate. The trouble is that this
four-component pattern is incomplete. It misses important parts
such as brakes, engine, fuel tank and many other things. Without
brakes, a car is hardly good design. One may implicitly know that
a car requires these components but fail to make this explicit.
Second, one could claim components as part of the pattern that
are actually not. If someone only observes cars with gear sticks,
that person may find that a stick is part of the car pattern. But
today, cars with sticks are only a variation, there are also
automatic cars. The same with trunks. A car without a trunk is
still a car, hence trunks are only an option. If the individual
observer only saw cars on streets, one could argue that streets are
part of the CAR pattern, too. But they are not: cars can exist
without streets and streets do not only serve cars. STREETS are
an independent pattern that happens to occur often in conjunction
with cars using it. Because it is so comfortable to drive on streets,
CARS ON STREETS is certainly another pattern. However, in
the mind of an individual, cars and streets may be an inseparable
unit. For this person, streets are always part of his CAR schema,
the pattern in mind. Third, finding an appropriate abstraction level
is a challenge. One has to question whether there is a general class
of cars, or, each specific car class should be treated as another
pattern. For example, although a race car and a family van share
many properties, there are significant differences. And what about
busses, trucks, or ambulances? These are all different patterns, but
they are all specialisations of the CAR pattern, too. Which
abstraction level works best depends on the granularity suitable
for the target group. If a pattern goes deep into the details,
documenting each class as a single pattern is worthwhile.
Otherwise one would have to include all the different variations
into one long description. On the other hand, if the variation is
only small, treating each variation as a new pattern leads to a
pattern explosion that fails to serve the original idea of design
patterns to communicate expert knowledge in an efficient way.

6.3 The good news: patterns are shared
Finding a pattern at the right level of abstraction, granularity, and
detail seems to be very hard, in particular because each individual
constructs own patterns in mind. The good news, however, is that
these individually constructed patterns do not differ that much
when they are communicated. Otherwise an individual would not
know what is meant by the word “tree”. Though individuals have
different schemas of trees, there is a socially constructed meaning
of what a tree is.
In an experiment [70] we tried to find out whether people actually
find the same patterns in design. Based on three design patterns of
interactive graphics, 14 graphics were generated. The participants
were asked to group the graphics by their similarities concerning
the interaction form. The graphics had been chosen in a way that
they all varied in some features but also shared some features.
Hence, one could argue that all 14 graphics manifested the same
very abstract design pattern, or that each graphic manifested a
different very specific design pattern. The most interesting finding
was that the participants found similar patterns. Though different
levels of abstractions were chosen, the patterns of medium level
were chosen most frequently. Pattern groups with graphics that
shared the most significant features (second order features) were
found most often. However, some participants were totally misled
and grouped the graphics only according to their superficial

features (e.g. first order features such as style of illustration). The
frequency of a group chosen by the participants correlated with
the similarity of second order features. Groups based on first
order features were not chosen, or, only found by single
participants. Groups, however, that consisted of graphics similar
in second features, were chosen by up to 2/3 of all participants.
That is, of all the 16384 different grouping options, 2/3 of the
participants chose the same group. The most frequent groups, it
seems, were the ones in which the commonalities of the graphics
contained were most equilibrated. Here equilibration means that
the majority of significant features were invariant between the
graphics in such a group. Some participants, however, identified
groups that were less equilibrated, or were only equilibrated for
some features. Those participants were ignoring some features
that were judged to be relevant by the majority. Depending on
which features were accounted, the participants came to different
groupings. That shows that people do develop different schemas
based on the same experiences, but it also shows that some
schema configurations are more likely to occur than others.
Externalizing a pattern by writing it down, it becomes empirical
vulnerable as other people can comment on the pattern and
express their level of agreement or disagreement. Descriptions of
design patterns are a way to address differences in the constructed
patterns of an individual. Writer’s Workshops [71] and
shepherding processes [72] are established in the pattern culture
to get feedback from other experts; thus, they are a way of
reflection on whether the proposed pattern is coherent with the
pattern of other persons. The pattern description also helps people
who have difficulties in seeing the similarities in experiences to
focus on significant features.

6.4 Knowledge transfer
The goal of pattern writing is to share expert’s knowledge. In
schema theory it is assumed that knowledge is stored in structural
units, which are basically patterns in the mind of an individual.
The pattern format therefore seems to be an adequate vehicle to
capture these nuggets of wisdom. It is a form of representation
closest that is very close to the way knowledge is clustered and
discriminated in memory (according to schema theory). Patterns
can, therefore, efficiently guide the reader to construct one’s own
schemas. It is important to note that, of course, a schema itself
cannot be transferred. A pattern description only sketches the
schema, but the understanding and capability of applying the
pattern must be constructed by each individual. To support this
process, illustrative examples are needed. Constructing a stable
pattern requires experience. The more exemplars an individual
has perceived, the more stable the constructed schema will be. For
this reason, examples play an important role in documenting a
pattern since they can clarify the invariants and variations of
design. Although a pattern explicitly captures the core of design,
multiple examples are needed to induce a schema by a learner
[73] in order to explore the essential and core features. Alexander
points out that each person must have his or her own version of a
language in order to make it a living language: “A living language
must constantly be re-created in each person’s mind.” [74].
Pattern descriptions may speedup the creation of the schemas but
do not replace this process.

6.5 Outlook
Because schemas are actively constructed and depend on the
exemplars one has experienced, the schemas that represent the
patterns of the real world will be different structures for each
individual. The same is true for patterns. That there are different
views on the same patterns can be illustrated by pattern
descriptions of several authors that refer to the same pattern. The
Gang-of-Four patterns [39] have been re-written many times in
other books. There are programming language specific
descriptions [75], heavily illustrated versions [76], and even
patterns for dummies [77].
Besides different views on the same patterns, there are many
variations of a pattern, and a pattern can always be split up into
sub-patterns or be combined with other patterns to macro patterns.
None of these operations does harm to the validity of the resulting
patterns, however they may affect the usability. In understanding
how patterns are induced by individuals, one can find better
strategies of finding appropriate patterns to document. In the
competition of schemas, an appropriate level of abstraction and
granularity is usually activated: If one sees a car one will usually
think of a car and not of a vehicle or a specific car class. So, to
describe a car it is probably better to describe it as a CAR and not
as a variation of a VEHICLE.
Maybe the most important issue of this paper is to realize that the
patterns in real design, the patterns in our heads, and the pattern
descriptions are not the same. In spite of the practical nature of
patterns, a pattern is only a theory! Something that is made up by
our minds. A pattern does not exist as a real thing, because real
things can only manifest patterns. Patterns are design spaces and
schemas can be mental representations of such design spaces.
Pattern descriptions try to grasp the design space of a pattern. But
before we can start to describe a pattern we have to reason about
it in our mind. The quality of a pattern description depends
(besides writing skills) on the validity and adequateness of the
patterns in the heads of the contributors.
Seeing patterns as mini-theories, implies that the underlying
hypotheses can be true or wrong. There are different methods to
provide evidence for proposed patterns. The Writer’s Workshop
certainly is such a scientific method [78]. Interviews, observation,
and experiments might be further sources for evidence. An
interesting path for further research would be to defend the
epistemic creditability of patterns and consider how the pattern
community has established methods and processes to evolve
subjective pattern impressions into objective pattern descriptions.

7. Acknowledgement
We are grateful for the help and support of our shepherd, Fujino
“Terry” Terunobu. Terry has been great as a shepherd in showing
us directions and paths rather than ruling our writing. We felt that
by the inspirations and comments he gave to us, we improved the
text in ways that would not have been accessible otherwise. We
also want to thank all participants of the “Software & People”
Writer’s Workshop group at the PLoP 2008 in Nashville. Their
suggestions were very useful and the discussion was very lively
and delightful! This work has become more beautiful through
their help. Some of their comments have launched further
investigations; the outcomes will be presented in a successive
paper.

8. REFERENCES
[1] DeLano, D. E. (1998). Patterns Mining. In Rising, L. (1998).

The Pattern Handbook (pp.87-96). Cambridge: Cambridge
University Press.

[2] Gabriel, R. P. (2002). Writers' workshops & the work of
making things: patterns, poetry (p. 175). Boston: Addison-
Wesley.

[3] Vlissides, J. (1997). Patterns: The Top Ten Misconceptions.
Object Magazine. March Issue.

[4] Van der Veer, G. C., and Melguizo, M. C. (2002). Mental
Models. In J.A. Jacok, and A. Sears (Eds.). The Human-
Computer Interaction Handbook: Fundamentals, evolving
Technologies and emerging applications (pp. 52-80).
Lawrence Erlbaum & Associates.

[5] Cooper, G., and Sweller, J. (1987). Effects of schema
acquisition and rule automation on mathematical problem-
solving transfer. Journal of Educational Psychology (pp.
347-362). 79. 4.

[6] VanLehn, K. (1989). Problem Solving and Cognitive Skills
Acquisition. In Posner, M.I. (Ed..) Foundations of Cognitive
Science (pp. 527-579). Cambridge: MIT Press.

[7] Gick, M.L., and Holyoak, K.J. (1983). Schema induction and
analogical transfer. Cognitive Psychology (pp. 1-38). 15.

[8] Cummins, D. D. (1992). Role of analogical reasoning in the
induction of problem categories. Journal of Experimental
Psychology: Learning, Memory, and Cognition (pp. 1103-
1124). 18.

[9] Marshall, S. P. (1995). Schemas in problem solving.
Cambridge: Cambridge University Press.

[10] Buschmann, F., Henney, K., and Schmidt, D.C. (2007).
Pattern-oriented software architecture. Volume 5: On
patterns and Pattern Languages (p. 3). West Sussex: John
Wiley & Sons.

[11] Bartlett, F. C. (1932). Remembering: An experimental and
social study. Cambridge: Cambridge University Press.

[12] Piaget, J. (1952). The Origins of Intelligence in Children.
New York: International University Press.

[13] Piaget, J., and Inhelder, B. (1969). The psychology of the
child. New York: Basic Books.

[14] Piaget, J. (1971). Biology and Knowledge. Edinburgh:
Edinburgh University Press.

[15] Rumelhart, D. E., and Norman, D.A. (1978). Accretion,
tuning, and restructuring: Three models of learning. In J.W.
Cotton, and R. Klatzky (Eds.). Semantic Factors in
Cognition. Hillsdale, NJ: Lawrence Erlbaum Associates.

[16] Sweller, J., van Merriënboer, J. J. G., and Paas, F. G. W. C.
(1998). Cognitive architecture and instructional design.
Educational Psychology Review, (pp. 251-296). 10.

[17] Hesse, F. W. (1991). Analoges Problemlösen: eine Analyse
kognitiver Prozesse beim analogen Problemlösen.
Fortschritte der psychologischen Forschung, 8. Weinheim:
Psychologie Verlags Union.

[18] Scharlau, I. (2007). Jean Piaget zur Einführung. Hamburg:
Junius.

[19] Alexander, C. (1964). Notes on the synthesis of form (p.
117). Cambridge: Harvard University Press.

[20] Alexander, C. (2002). The nature of order, Book 1. The
phenomenon of life (p.79). Berkeley, Calif: Center for
Environmental Structure.

[21] Buschmann, F., Henney, K., and Schmidt, D.C. (2007).
Pattern-oriented software architecture. Volume 5: On
patterns and Pattern Languages. West Sussex: John Wiley &
Sons.

[22] Alexander, C. (1979). The Timeless Way of Building. New
York: Oxford University Press.

[23] Anderson, J. R. (1983). The architecture of cognition.
Cambridge: Harvard University Press.

[24] Alexander, C. (1964). Notes on the synthesis of form.
Cambridge: Harvard University Press.

[25] Alexander, C. (1964). Notes on the synthesis of form (p.64).
Cambridge: Harvard University Press.

[26] Rumelhart, D. E., and Ortony, A. (1977). The representation
of knowledge in memory. In R. C. Anderson, J. R. Spiro, and
W. E. Montague (Eds). Schooling and the acquisition of
knowledge. Hillsdale, NJ: Lawrence Erlbaum Associates.

[27] Buschmann, F., Henney, K., and Schmidt, D.C. (2007).
Pattern-oriented software architecture. Volume 5: On
patterns and Pattern Languages (p. 76). West Sussex: John
Wiley & Sons.

[28] Alexander, C. (1964). Notes on the synthesis of form
(p.108). Cambridge: Harvard University Press.

[29] Alexander, C. (1979). The Timeless Way of Building (p.
260). New York: Oxford University Press.

[30] Eckblad, G. (1981). Scheme theory: a conceptual framework
for cognitive-motivational processes. London: Academic
Press.

[31] Eckblad, G. (1981). Scheme theory: a conceptual framework
for cognitive-motivational processes (p.19). London:
Academic Press.

[32] Alexander, C. (1979). The Timeless Way of Building (p.
144). New York: Oxford University Press.

[33] Alexander, C. (1979). The Timeless Way of Building (p.
247). New York: Oxford University Press.

[34] Alexander, C., Ishikawa, S., and Silverstein, M. (1977). A
pattern language: towns, buildings, construction. New York:
Oxford University Press.

[35] Alexander, C. (1964). Notes on the synthesis of form (p.78).
Cambridge: Harvard University Press.

[36] Noble, J. (1998). Classifying relationships between object-
oriented design patters. Australian Software Engineering
Conference (ASWEC), pp. 98-107.

[37] Corfman, R. (1998). An Overview of Patterns. In Rising, L.
(1998). The Pattern Handbook (pp.87-96). Cambridge:
Cambridge University Press.

[38] Van Duyne, D., Landay, J. A., and Hong, J. I. (2004). The
Design of Sites. Boston: Addison-Wesley.

[39] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995).
Design Patterns: Elements of Reusable Object-Oriented
Software. Reading: Addison-Wesley.

[40] Newell, A., and Simon, H. A. (1972). Human Problem
Solving. Englewood Cliffs, N.J.: Prentice-Hall.

[41] Duncker, K. (1945). On problem-solving. Psychological
Monographs (pp. 1-113). 58 (270).

[42] Ohlsson, S. (1984). Restructuring revisited, II: An
information processing theory of restructuring and insight.
Scandinavian Journal of Psychology (pp. 117-129). 25.

[43] Simon, H.A. (1962). The architecture of complexity.
Proceedings of the American Philosophical Society (pp. 29-
39). 74.

[44] Alexander, C. (1964). Notes on the synthesis of form (p. 74).
Cambridge: Harvard University Press.

[45] Simon, H..A. (1964) The Science of the Artificial.
Cambridge, MA:MIT Press.

[46] Booch, G. (1998). Patterns. In Rising, L. The Pattern
Handbook. Cambridge: Cambridge University Press.

[47] Chi, M. T. H., Feltovich, P. J., and Glaser, R. (1981).
Categorization and representation of physics problems by
experts and novices. Cognitive Science (pp 121-152). 5.

[48] Piaget, J., Fatke, R., and Kober., H. (2003). Meine Theorie
der geistigen Entwicklung. Beltz Taschenbuch, 142.
Weinheim: Beltz Verlag.

[49] Piaget, J. (1975). Der Aufbau der Wirklichkeit beim Kinde.
Stuttgart: Ernst Klett.

[50] Crossman, E. R. F. W. (1959). A Theory of the acquisition of
speed-skill. Ergonomics (pp. 153-166). 2.

[51] Fitts, P. M. (1964). Perceptual-motor skill learning. In A. W.
Melton (Ed.). Categories of human learning. New York:
Academic Press.

[52] Kelly, G. M. (1982). Basic concepts of enriched category
theory. London Mathematical Society lecture note series, 64.
Cambridge: Cambridge University Press.

[53] Minsky, M. (1977). Frame-system theory. Thinking:
Readings in Cognitive Science. Cambridge: Cambridge
University Press

[54] Schank, R. C. (1975). The structure of episodes in memory.
In Bobrow, D. & Collins, A. (Eds.) Representation and
understanding (pp. 237-272). New York: Academic Press.

[55] Schank, R. C. & Abelson, R. (1977). Scripts, plans, goals
and understanding. Hillsdale, NJ: Lawrence Erlbaum
Associates.

[56] Gentner, D. & Stevens A.L. (1983).Mental models.
Hillsdale, NJ: Lawrence Erlbaum Associates

[57] Zimbardo, P. G., Gerrig, R. J., and Graf, R. (2004).
Psychologie. Pearson-Studium. München: Pearson.

[58] Edelman, G. M. (2006). Second nature: brain science and
human knowledge. New Haven: Yale University Press.

[59] Metzinger, T. (Ed.) (2000). Neural Correlates of
Consciousness. Cambridge, MA: MIT Press

[60] Lloyd, D. E. (2004). Radiant cool: a novel theory of
consciousness. Cambridge, Mass: MIT Press.

[61] Edelman, G. M. (2006). Second nature: brain science and
human knowledge (p.92). New Haven: Yale University
Press.

[62] Mainzer, K. (2008). Komplexita ̈t. Paderborn: UTB.
[63] Coplien, J. O. (1996). Software Patterns. New York: SIGS

Books.
[64] Oram, A., and Wilson, G. (2007). Beautiful code. North

Sebastapol, Calif: O'Reilly.
[65] Kant, I., and Erdmann, B. (1880). Immanuel Kant's Kritik

der Urtheilskraft. Leipzig: Voss.
[66] Alexander, C. (2002). The nature of order, Book 1. The

phenomenon of life. Berkeley, Calif: Center for
Environmental Structure.

[67] Alexander, C. (1979). The Timeless Way of Building (p.
222). New York: Oxford University Press.

[68] Alexander, C. (1979). The Timeless Way of Building (p.
207). New York: Oxford University Press.

[69] Marquardt, K. (2004). Diagnosis: Platonic Schizophrenia. In
Marquardt, K., Schütz, D. (Eds): Proceedings of the 9th
European Conference on Pattern Languages of Programs (pp.
88-108). Konstanz: Universitätsverlag Konstanz.

[70] Kohls, C. and Uttecht, J. G. (in press). Lessons learnt in
mining and writing design patterns for educational
interactive graphics. Computers in Human Behavior.

[71] Gabriel, R. P. (2002). Writers' workshops & the work of
making things: patterns, poetry. Boston: Addison-Wesley.

[72] Harrison, N.B. (2006). The Language of Shepherding. In
Manolescu, D., Völter, M., and Noble, J. (Eds.). Pattern
Languages of Program Design 5. Boston: Addison-Wesley.

[73] Quilici, J.L., and Mayer, R.E. (1996). Role of examples in
how students learn to categorize statistics word problems.
Journal of Educational Psychology (p.144-161). 88.

[74] Alexander, C. (1979). The Timeless Way of Building (p.
338). New York: Oxford University Press.

[75] Cooper, J. W. (2000). Java design patterns: a tutorial.
Reading, Mass: Addison-Wesley.

[76] Freeman, E., Freeman, E., Sierra, K., and Bates, B. (2004).
Head First design patterns. Sebastopol, CA: O'Reilly.

[77] Holzner, S. (2006) Design Patterns For Dummies. Hoboken:
Wiley Publishing.

[78] Gabriel, R. P. Writers’ Workshops As Scientific
Methodology. http://dreamsongs.com/Essays.html (accessed
August, 2008)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

