
Patterns for Monitoring Scenarios to Handle State Based 
Crosscutting Concerns 

Mark Mahoney 
Carthage College 

Kenosha, WI 
mmahoney@carthage.edu 

 
 
 

 

Tzilla Elrad 
Illinois Institute of Technology 

Chicago, IL 
elrad@iit.edu 

 
 

ABSTRACT 
This paper describes two patterns, Scenario Monitor and Bind 
Completed Scenario to Event. The first allows scenarios to be 
monitored. The second uses scenario monitoring to address state 
based crosscutting concerns in traditional data transformational 
systems. Crosscutting concerns are tangled with core application 
concerns and scattered throughout a system. Core concerns are 
monitored for scenarios that represent events of interest to a 
crosscutting concern. When the monitored scenarios complete an 
event is injected into a crosscutting state machine that may react 
by introducing additional behavior. These patterns permit the 
monitoring and subsequent behavioral reaction in a minimally 
invasive way with loose coupling. No special tools or languages 
are required. An example using the approach is presented.   

Categories and Subject Descriptors 
D.2.11 [Software Architectures]: Data abstraction, Domain-
specific architectures, Information hiding Languages (e.g., 
description, interconnection, definition), Patterns (e.g., 
client/server, pipeline, blackboard). 

General Terms 
Design. 

Keywords 
Design Patterns, crosscutting concerns, state based systems. 

1. INTRODUCTION 
Program monitoring is a technique that allows one to observe 
sequences of events from program execution and react 
accordingly.  It has been actively used for profiling, testing, and 
debugging software [16]. It can also be used for handling state 
based crosscutting concerns. This paper documents a pattern for 
program monitoring, Scenario Monitor, that allows one to add 
behavior upon the completion of a scenario. An important 
requirement this pattern satisfies is non-invasiveness. It allows 
one to add or remove monitors without radically changing the 
core application’s code or using specialized tools or programming 

languages. Next, we describe another pattern, Bind Completed 
Scenario to Event, that makes use of Scenario Monitor to react to 
the completion of scenarios with additional crosscutting behavior. 

A crosscutting concern is an aspect of a system that influences 
many other core concerns. Crosscutting concerns cannot be easily 
modularized using traditional decomposition techniques. Fault 
tolerance, for example, is a crosscutting concern that affects many 
parts of a system. However, fault tolerance code is typically 
scattered throughout the system and tangled with the core 
concerns interfering with their logical flow. The field of Aspect-
Oriented Software Development (AOSD) [1] addresses 
crosscutting concerns by separating them from core concerns at 
one level of abstraction and providing a means to weave them 
back together at a lower level of abstraction. The woven product 
is one step closer to an executable system. For humans analyzing 
the system, the separation of concerns allows one to reason about 
core and crosscutting concerns independently while understanding 
how they affect each other. 

Many core concerns exist that have no state based behavior. They 
do not require any knowledge of the past in order to satisfy a 
requirement. Occasionally, a crosscutting concern requires 
knowledge of a core concern’s state in order to function properly. 
Naturally, the state based crosscutting concerns should be built 
using state machines and the non-state based core concerns should 
not. Interaction between the two types of concerns is difficult 
because behaviorally each is so different. We propose mapping 
the dynamic aspects of a non-state based system (scenarios) to the 
dynamic aspects of a state based system (events). This mapping 
resolves the differences in the dynamic behavior of the concerns. 

For example, consider a banking system with accounts that are 
accessible from a bank teller, ATM, or online. From a security 
standpoint, repeated transfers in a single day through an ATM or 
online rather than through a bank teller requires that the 
transaction be logged as suspicious activity. The core transfer 
behavior is not state based and therefore should not be 
implemented with state machines. The crosscutting security 
logging concern, however, does require knowledge of the core’s 
state. In particular, it needs to know how many transfers have 
been attempted in a day and by what means the transfers took 
place. A state machine can model this behavior and keep the 
transfer and logging concerns separate. The purpose of the state 
machine is to model the relevant state of the core. To promote 
reuse and to reduce coupling the state machine should not have 
direct access to the core concerns. The main problem this paper 
addresses is how to weave the two separated concerns together 
while maintaining loose coupling. Our approach uses a program 
monitor to observe when certain scenarios occur, like a transfer 
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from an ATM, and map those completed scenarios to events in the 
logging state machine. The crosscutting state machine may then 
react by introducing new behavior, like logging a transfer. 

There are tools [16][6], specialized programming languages 
[7][12][17], and frameworks [18] that can be used to accomplish 
similar results. The tools and frameworks are typically 
heavyweight and proprietary and may not be appropriate for 
production software. The specialized programming languages 
include new syntax and require a significant learning curve to 
become proficient. We prefer an approach using standard object 
oriented techniques with patterns so that all OO developers can 
use it regardless of programming language or environment. 

The patterns discussed in this paper map scenarios to events in 
such a way that neither type of concern is directly coupled with 
the monitoring code. This makes all the concerns reusable in 
different contexts. Non-state based core concerns can be used with 
or without the state based crosscutting concerns, and state based 
crosscutting concerns can be used with different core concerns. In 
order to accomplish monitoring, decorator objects are created that 
wrap the monitored objects and track when certain messages are 
passed. The monitor is responsible for translating completed 
scenarios into events that are fed into a crosscutting concern state 
machine. 

The rest of this paper is organized as follows: section two 
discusses the Scenario Monitor and Bind Completed Scenario 
to Event patterns and how they can be used to track the state of a 
set of core concerns. Section three provides an example of using 
the pattern to handle a crosscutting concern. 

2. SCENARIO MONITORING FOR 
HANDLING EVENTS 
In our approach, a crosscutting concern developer models the 
relevant state of the core concerns with a state machine. Figure 1 
shows the state machine for the security logging concern from the 
introduction. The states represent periods of time in the core when 
the crosscutting logging concern reacts to events. Logging 
behavior is added on certain transitions in the state machine. 

Figure 1. Security logging state machine. 

The state machine in figure 1 is abstract in that the events are not 
directly bound to a core concern’s implementation. Transferring 
funds using an ATM, for example, is a complex core process that 
involves many objects interacting and can’t be mapped to a single 
method call. The fact that the state machine is abstract makes the 
crosscutting concerns reusable in many different contexts. We 
limit the mapping of events to the completion of scenarios. A 
scenario is an ordered set of messages (method calls) sent and 
received from objects in the system. Traditionally, scenarios are 
modeled with sequence diagrams [14]. 

Scenario monitoring is the crucial element in this approach. One 
of our goals is to allow scenario monitoring to occur without the 
use of special tools, programming languages or complex logics. 
Our target audience is the average OO developer working on 
systems where introducing new tools or complex logics would be 
impossible due to language incompatibilities, legacy 
environments, or insufficient formal background in Computer 
Science. We have developed a straightforward pattern that allows 
relatively complex scenario monitoring to occur in a non-invasive 
manner.  
Scenario monitoring is accomplished by breaking the problem up 
into two main parts:  

1. Decorators and Observers [4] that notify the monitor 
when specified object interactions take place 

2. Simple state machines used to track the progress of each 
active scenario  
 

The state machines listed in item two are used to track the 
completeness of a scenario and are different from the crosscutting 
concern state machines that introduce additional behavior 
(logging). Scenario monitoring state machines ensure that object 
interactions happen in the specified order. The Bind Completed 
Scenario to Event pattern describes state machines responsible for 
adding behavior to a set of core concerns. 

2.1 Scenario Monitor Pattern 
Name 
Scenario Monitor 
Context 
A complex Object-Oriented system is made up of many different 
objects sending many different messages to each other. Imagine a 
system that must react in a particular way to the occurrence of an 
ordered sequence of messages within the system. This set of 
messages is called a scenario. In a scenario each message has a 
sender and a receiver. If a single message is missing or received 
out of order then the scenario is not complete and no reaction 
occurs. 
In the simplest case a scenario is made up of a collection of 
sequential messages. Figure 2 shows several different sequence 
diagrams that contain sequential messages. Each sending point 
and receiving point is highlighted with a small circle. A series of 
messages are sequential if every sequential pair shares either a 
sending or receiving point.  A similar idea was presented in David 
Harel’s Play-Engine work [6].  
 

 



Figure 2. Sequential Messages 
A scenario might also be made up of disjoint sequences of ordered 
messages, see figure 3. In this case the two disjoint sets of 
messages can occur in any order as long as neither violates the 
sequential ordering required in each. The scenario can be 
considered satisfied with several different orderings of the 
messages. For example, the order ‘m1’, ‘m2’, ‘m3’, ‘m4’ satisfies 
the scenario as does the order ‘m3’, ‘m1’, ‘m4’, ‘m2’ because all 
the messages are handled and no violation of sequential ordering 
occurs.  
 

 
Figure 3. Scenario With Disjoint Sequences of Messages 

To complicate matters even further a scenario might be made up 
of mostly disjoint messages that rendezvous at one or more points, 
see figure 4. In this case, there are two sets of relatively 
independent messages. For the most part, messages from either set 
can occur in any order (as long as there are no violations of order 
in each collection). However, at the rendezvous point where C 
sends a message to M and X sends a message to M the two 
independent collections of messages join together and there is an 
order that must be adhered to. 
 

Figure 4. Scenario With Mostly Disjoint Sequences of 
Messages 

The most obvious use of scenario monitoring is for testing and 
debugging. Scenario monitoring can provide a trace of an 
executing system that can be used to verify that use cases are 
being completed. Scenario monitoring can also be used to debug a 
system where conventional debugging tools are not available.  
Perhaps a less obvious use of scenario monitoring is to deal with 
state based crosscutting concerns. The following pattern 
emphasizes the use of scenario monitoring in this context but this 
pattern can be applied in other contexts as well.  
Problem 
The difficulty is that some sort of scenario monitoring must occur. 
There are tools and languages [6][2][12] that might aid in this 
monitoring but they require a significant investment in acquiring 
and learning a proprietary technology. In addition, they cannot be 
used with existing and legacy systems without retrofitting the 
systems to these new tools and technologies. Ideally, scenario 

monitoring should occur using standard Object-Oriented 
languages and techniques such that the objects being monitored 
are loosely coupled to the monitor. Then, monitoring can be added 
and removed easily.  
Forces 
The difficulty in introducing scenario monitoring is to do so in a 
way that is minimally invasive to the objects being monitored. It 
would be easy to go into every class where monitoring is required 
and add code to those methods. However, this scatters the 
monitoring code and tangles the code from two competing 
concerns. Further, if the monitoring strategy was to change or 
monitoring was no longer required one would have to update or 
remove all the monitoring code. 
Monitoring a scenario is akin to tracing the state of a scenario. 
Therefore a state machine is an ideal way to monitor a scenario. In 
fact, this is not a new idea and there have been state based 
scenario monitoring algorithms introduced in the past 
[5][8][9][15]. In the simplest case when all messages are 
sequential a single state machine is an easy solution. The states in 
the state machine each represent the processing of a message. The 
states are connected by transitions where the next expected 
message is an event that will move the scenario forward. For each 
state, all messages beyond the next expected message are events 
that will take the scenario to an invalid state due to a violation of 
the order imposed by the scenario. A monitor should no longer 
track invalid scenarios.  
One difficulty, however, is resolving how disjoint scenarios are 
monitored. When a scenario is broken up into disjoint sets of 
sequential messages a single state machine can grow to be 
incredibly complex to handle all the different combinations of 
received messages.  
In the course of an executing system the same scenario might 
occur multiple times. It is possible that several instances of a 
scenario might be advancing with each one at a different state. For 
example, in figure 3 if the monitor recognizes that A sends the 
message ‘m1’ to B, then scenario monitoring should begin. If 
before that scenario is completed or invalidated the same message 
is sent again, this can be considered another instance of the same 
scenario. The scenario monitor must be able to manage multiple 
scenario instances and react appropriately when each instance 
successfully completes.  
Solution 
In the pattern a scenario is made up of Scenarios, Scenario 
Instances, and Scenario Fragments, see figure 5. A Scenario 
Fragment is a simple state machine. The state machine represents 
a collection of sequential messages sent synchronously where 
there is no possibility of delayed message reception. The first 
message in a Scenario Fragment has no required messages that 
must be handled before it. Every other message in a Scenario 
Fragment must come in a strict order specified when creating it. 
Figure 6 shows the state machine for one of the Scenario 
Fragments from figure 4. One could use the State Pattern [4] to 
implement Scenario Fragments but since each one models such an 
uninteresting state machine a state table based approach is clearer 
[13].  
 



 
Figure 5. 

 

 
Figure 6.  

 
A Scenario Fragment is defined by the messages and the order 
that the corresponding method calls have completed. Therefore, 
when defining a scenario one creates a sequence diagram and 
maps out both the method calls and the method returns. The order 
of messages in the fragment is taken from the order of method call 
returns. This is required to track only the messages that have been 
sent, received, and fully processed.  
In figure 7 a simple scenario is laid out. In this case the order of 
the calls is ‘m1’, ‘m2’, ‘m3’, and ‘m4’. However, the order that 
the methods complete their processing is ‘m3’, ‘m2’, ‘m4’, and 
‘m1’. Only after those methods calls have been sent and received 
in that order should the scenario be considered satisfied. The code 
that reacts to the scenario’s completion will find the monitored 
objects in a state where all the messages have been fully 
processed.  
 

 
Figure 7. 

 

A Scenario is made up of a collection of Scenario Fragments. It is 
possible that in a single Scenario there will be two or more 
fragments that have no objects in common. In this case the 
ordering between the two fragments is not important (although the 
ordering within each fragment must be maintained). For example, 
in figure 4 three separate Scenario Fragments are specified. This 
is highlighted in figure 8, which shows the same sequence 
diagram three times with different fragments highlighted. Each 
individual fragment has strict sequential ordering requirements. 
Notice, however, that there is some overlap between the messages 
in the different fragments. This overlap provides a way for 
disparate fragments to rendezvous. As long as all messages are 
received and no fragment order is violated the scenario is 
considered complete. 
 

 
Figure 8. 

A Scenario Instance tracks the state of a Scenario. It remembers in 
each of the Scenario Fragments what the last message handled 
was and notifies the Scenario when all the fragments are 
completed. Scenario Instances are needed because the same 
Scenario may be active multiple times where each instance is in a 
different state.  
Each Scenario object is notified when a monitored message is 
handled. The Scenario object responds by either creating a new 
Scenario Instance (if the event represents the first message in any 
Scenario Fragment) or feeds every Scenario Instance the event.  
Each Scenario Instance will check with all the Scenario 
Fragments for the Scenario and either ignore the event, move 
forward, or be in violation of the Scenario and be removed from 
monitoring. To handle the completion of Scenarios the Observer 



Pattern [4] is used. The Scenario acts as the subject and one or 
more observers are notified when a scenario successfully 
completes. The observers can then react to the completion of the 
scenario.  
So far we have not discussed in detail how Scenario objects are 
notified when a particular message is passed. To achieve this in a 
non-invasive way we use the Decorator [4] and Observer Patterns 
[4], see figure 9. Each object that receives a message in a 
monitored scenario will become wrapped inside a Decorator. Each 
sender in a scenario has its reference to the monitored object 
changed to a Decorator. The Decorator will store a reference to a 
monitored object and delegate the object’s responsibility to it. The 
Monitor Decorator class will store the name of the sender and 
receiver of the message to be used to create an event that specifies 
the names of the sender, the message, and the receiver. This 
combination of patterns is not totally original, in fact some AOP 
compilers and runtimes may use it. We are highlighting that many 
features available in AOP languages can also be accomplished 
using good OO design. 
The Decorator will also be a subject from the Observer Pattern. 
After each delegation the Decorator will inform all observers that 
the delegate has handled a particular message. The observers are 
Scenario objects that have registered interest in a particular 
message because it is part of one of the Scenario’s fragments.  
 

 
Figure 9. 

Several Decorator instances may exist for a single monitored 
object because a Scenario needs to know not only what message 
was sent but also who sent it. In figure 10 there are two scenarios. 
In the first an object of type A is sending the message m1 to an 
object of type C. In the next scenario an object of type B is 
sending the message m1 to the same object. Even though the 
receiver is receiving the same message the senders are of different 
types, therefore these are different scenarios. Both sending objects 
require distinct Decorators so that when the Decorator notifies the 
observers the observers know who the sender is. This information 
is stored in each MonitorDecorator and is passed to observers in 
the notifyAllObservers() method, see figure 11. These Decorators 
can be used by many different Scenario objects, all that is required 
is that each Scenario object register with the correct Decorator to 
be notified when a monitored message occurs. A hierarchy of 
decorators can be created if the same objects participate in many 
scenarios. 

 

  
Figure 10. 

 

                  
Figure 11. 

 
Forces Resolved 
The Decorator Pattern allows one to add behavior to an object 
dynamically. This allows monitored objects to remain unchanged 
and unaware that they are actively being monitored. This solution 
does require that someone do the wrapping of monitored objects 
into Decorators, but that code can be localized outside of any 
monitored class. Also, because we are using the Observer Pattern 
monitoring can be turned off as easily as it is turned on. 
Scenario Fragments represent simple state machines, one for each 
collection of sequential messages. Scenarios with disjoint 
collections of messages are handled by including a Scenario 
Fragment for each one. The overlapping of messages in the 
fragments guarantee that synchronization occurs between 



Scenario Fragments. As long as no individual fragment is 
violated, the scenario is not violated and a single complex state 
machine is avoided. 
The Scenario object creates and tracks Scenario Instance objects 
so that multiple occurrences of a scenario can be active and 
monitored at once. When a scenario is violated the Scenario 
object removes the Scenario Instance so that it is no longer 
monitored. Similarly, when a scenario completes the Scenario 
Instance is removed. 
This approach is somewhat complex and does require additional 
code to be created to set up monitoring. There is overhead when 
monitoring scenarios. Each scenario requires some memory to 
store the scenario specification along with the state of each 
scenario instance. Each monitored message involves notifying a 
monitor when the system could be executing the behavior 
associated with the message instead. This overhead might become 
overwhelming in a massively monitored system. However, no 
code inside the monitored objects needs to change and monitoring 
can be turned on and off relatively easily. 
Known Uses 
The Spring Framework [18] uses a similar collection of decorators 
to permit AOP 

2.2 Bind Completed Scenario to Event 
Pattern 
Name 
Bind Completed Scenario to Event 
Context 
During the development of a traditional data transformational 
system one or more state based requirements are discovered that 
need to monitor the state of the core concerns. In other words, 
some state based behavior is recognized but the state in question 
belongs to the part of the system that was built without using state 
based decomposition techniques. A state machine must be built so 
that additional behavior can occur during transitions between 
states but it should not interfere with the development of the non-
state based concerns. In particular the developers of the non-state 
based core should not have to instrument their code in order for 
the state based behavior to be added. Ideally, the state based 
behavior will be reusable in different contexts with different sets 
of core code. Further, it is not possible to add new tool support or 
change programming language because either the system is 
already in development or the cost associated with such tools. 
Problem 
How do we resolve two radically different types of interacting 
concerns using standard OO deign techniques while maintaining 
reusability and loose coupling?  
Forces 
Loose coupling is important in this pattern because each concern 
should be able to exist in isolation. It is likely that under certain 
situations the core concerns will exist without the crosscutting 
concerns and vice versa. For example, handling a crosscutting 
concern might be an additional feature that is provided at a 
premium. The standard version of the software might exist 
without such a feature. Similarly, a crosscutting concern that adds 
behavior might be useful in many different contexts. A state based 
security concern, for example, might be applicable in many 

different non-state based systems as long as a mapping can occur 
from the core to the crosscutting concerns. 
Solution 
The solution involves using the Scenario Monitor pattern (or some 
other scenario monitoring technique) to specify how the dynamic 
parts of the two concern types interact. In a data transformational 
system the dynamics are in the messages sent between objects. In 
a state based system the transitions between states represent the 
dynamic behavior. A mapping between these two is required to 
add additional behavior in a loosely coupled way.  
This pattern accomplishes this by mapping completed scenarios in 
the core concerns to events that are injected into a crosscutting 
concern state machine. The state machine can then react to the 
event and possibly add behavior on a transition (if one takes 
place).  
A mechanism is required for the scenario monitor to inject events 
into a state machine. If one uses the Scenario Monitor pattern this 
behavior exists because the Scenario is the subject in the Observer 
Pattern [4] and it is responsible for notifying all observers waiting 
for the completion of a scenario. The observers are objects that 
interact with state machines that react to the notification by 
injecting an event into the state machine. It is these interacting 
objects that bind the loosely coupled concerns together. It would 
be the responsibility of a weaving developer to bring together the 
core and crosscutting concerns and specify how the completion of 
a scenario is mapped to an event in a state machine. 
Forces Resolved 
This approach is superior to AOSD approaches because it 
provides all of the loose coupling that is present with specialized 
programming languages without having to adopt new tools or 
language extensions. One can use this pattern in any OO 
environment whether being created from scratch or several years 
(and releases) into the development process. 
In most AOSD technologies the weaving is done automatically 
with language extensions and a tool. In this pattern the weaving is 
done manually rather than with a tool. In order to avoid new tools 
it is up to a human to specify which completed scenario maps to 
which event in a state machine. In addition, there is overhead 
involved with the use of the Observer Pattern. 

3. EXAMPLE USING THE PATTERNS 
The following describes a set of requirements that we use to 
elucidate our approach (for a more complete description see [11]). 
The system is for a financial advisor that generates and sells 
reports to his customers about potential companies to invest in. 
The financial advisor gets some of his financial data from a much 
larger financial services organization referred to as the Investment 
Warehouse. 

3.1 Report Generating System 
Requirement R1: Financial Advisor Attempts to Sell Report 
A financial advisor requests an investment report from the Report 
Generating System to sell to his customer. If the Report 
Generating System does not have the requested report it will ask 
an independent Investment Warehouse for information in order to 
generate the report. The Report Generating System will then 
generate a report and send a summary to the financial advisor. 
The financial advisor shows the customer the summary and tries 



to sell it to her. If the customer wishes she may purchase the full 
report. If that happens the report will be stored by the system and 
presented to the customer. When a customer requests a report that 
already exists, the Report Generating System will pull the report 
from storage and display a summary to the customer. If the 
customer chooses to purchase the report it will be presented to 
her. 
In the early design phase the Sequence Diagrams in figures 12 and 
13 are created.  
  

 
Figure 12. Financial Advisor Attempts to Sell Report 

 

 
Figure 13. Financial Advisor Attempts to Sell Report (Report 
Already Exists). 

3.2 Crosscutting Billing Concern 
Imagine the financial advisor has the option of becoming a 
franchisee of the Investment Warehouse or a pay-as-you-go 
customer. If the financial advisor becomes a franchisee, he is 
charged a relatively high flat yearly rate for access to financial 
services information. A pay-as-you-go customer is charged per 
access to the Investment Warehouse. The financial advisor has 
negotiated an additional term in the contract. The Investment 
Warehouse will only charge the financial advisor once when he 
accesses data the first time a report is sold. If the financial advisor 
does not sell the report, or the report is already in his database of 
sold reports, he is not charged for the data access.  
To keep costs down the financial advisor would initially like to be 
a pay-as-you-go customer but would like the flexibility to switch 
to a franchisee. If he switches he would like to keep his existing 
Report Generating System in place. The main difference is that a 
franchisee does not need to handle billing.  
The state machine in figure 14 describes how normal franchisees 
are charged for access to the Investment Warehouse’s data. The 
requirement is to charge $10 for the first 5000 accesses in a 
month, $5 for the next 5000 accesses in a month, and charge 
nothing for more than 10000 accesses in a month. 



Full Price

Discount Price

Free

H

hits = 0

access data 
[hits == 5000] / bill $10; hits++

access data 
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Figure 14. ‘Access Data’ State Machine 

The problem is determining when a billable access has been 
performed. The only time a billable access occurs is when a new 
report is actually purchased. One cannot simply bill after 
accessing the data from the Investment Warehouse because there 
is no charge unless the customer purchases a report. Further, one 
cannot simply bill after the customer purchases a report because 
they may be purchasing a report that already exists. The billing 
system needs to know the state of the transaction.  
The important states to the billing concern are Idle, Pending 
Purchase New Report, Pending Purchase Existing Report, and 
New Report Purchased. The important events are when a new 
report is generated, when an existing report is requested, when a 
report is purchased, and when a report is abandoned. The state 
machine in figure 15 describes these states and events. 
  

 
Figure 15. ‘Billing’ State Machine 

Using a variation of sequence diagrams described in [11] one can 
capture the scenarios of interest, see figure 16. The models specify 
which scenarios map to events in the state machine using the 
event-op operator. The semantics of this model are that when the 
scenario in the Combined Fragment of the sequence diagram 
completes the event specified in the event-op operator will be 
injected into the state machine. This decouples the crosscutting 
concern’s required state information (specified in figure 15) from 
a particular implementation.  
Using the Scenario Monitor Pattern from above, an 
implementation can be created that will treat the completed 
scenarios as events in the crosscutting concern state machine. 
Billing can then occur by combining the state machines using the 
approach in [10]. In that work state machines can be combined 

and events from one state machine are bound to events in another. 
In this case the ‘purchase’ event from the Billing state machine of 
figure 15 is bound to the ‘access data’ event from the Access Data 
state machine from figure 14.   
 

 
a. New Report Event 

 
b. Purchase Event 



 
c. Report Exists Event 

Figure 16. Specification of bindings between Sequence 
Diagrams and events. 

4. CONCLUSION 
History sensitive crosscutting concerns are difficult to implement 
when the history lives in the core implementation. We have 
provided a way to monitor the core concerns and create events 
that can be used by a crosscutting concern state machine. This is 
done in a non-invasive manner without using any proprietary tools 
or programming languages. We combined simple design patterns 
to create a new Scenario Monitor Pattern. 
The primary benefit of our approach is the loose coupling between 
core and crosscutting concerns. The specification of binding 
between the core and crosscutting concerns is at a higher level of 
abstraction than other approaches. The consequences are that 
developers can specify state based behaviors required for 
crosscutting concerns in an abstract way that is reusable in 
different contexts. Crosscutting concern developers can 
emphasize the state based nature of concerns without requiring the 
core concern developers to create a state machine model- they are 
oblivious. 
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