
Patterns for Monitoring Scenarios to Handle State Based
Crosscutting Concerns

Mark Mahoney
Carthage College

Kenosha, WI
mmahoney@carthage.edu

Tzilla Elrad
Illinois Institute of Technology

Chicago, IL
elrad@iit.edu

ABSTRACT
This paper describes two patterns, Scenario Monitor and Bind
Completed Scenario to Event. The first allows scenarios to be
monitored. The second uses scenario monitoring to address state
based crosscutting concerns in traditional data transformational
systems. Crosscutting concerns are tangled with core application
concerns and scattered throughout a system. Core concerns are
monitored for scenarios that represent events of interest to a
crosscutting concern. When the monitored scenarios complete an
event is injected into a crosscutting state machine that may react
by introducing additional behavior. These patterns permit the
monitoring and subsequent behavioral reaction in a minimally
invasive way with loose coupling. No special tools or languages
are required. An example using the approach is presented.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Data abstraction, Domain-
specific architectures, Information hiding Languages (e.g.,
description, interconnection, definition), Patterns (e.g.,
client/server, pipeline, blackboard).

General Terms
Design.

Keywords
Design Patterns, crosscutting concerns, state based systems.

1. INTRODUCTION
Program monitoring is a technique that allows one to observe
sequences of events from program execution and react
accordingly. It has been actively used for profiling, testing, and
debugging software [16]. It can also be used for handling state
based crosscutting concerns. This paper documents a pattern for
program monitoring, Scenario Monitor, that allows one to add
behavior upon the completion of a scenario. An important
requirement this pattern satisfies is non-invasiveness. It allows
one to add or remove monitors without radically changing the
core application’s code or using specialized tools or programming

languages. Next, we describe another pattern, Bind Completed
Scenario to Event, that makes use of Scenario Monitor to react to
the completion of scenarios with additional crosscutting behavior.

A crosscutting concern is an aspect of a system that influences
many other core concerns. Crosscutting concerns cannot be easily
modularized using traditional decomposition techniques. Fault
tolerance, for example, is a crosscutting concern that affects many
parts of a system. However, fault tolerance code is typically
scattered throughout the system and tangled with the core
concerns interfering with their logical flow. The field of Aspect-
Oriented Software Development (AOSD) [1] addresses
crosscutting concerns by separating them from core concerns at
one level of abstraction and providing a means to weave them
back together at a lower level of abstraction. The woven product
is one step closer to an executable system. For humans analyzing
the system, the separation of concerns allows one to reason about
core and crosscutting concerns independently while understanding
how they affect each other.

Many core concerns exist that have no state based behavior. They
do not require any knowledge of the past in order to satisfy a
requirement. Occasionally, a crosscutting concern requires
knowledge of a core concern’s state in order to function properly.
Naturally, the state based crosscutting concerns should be built
using state machines and the non-state based core concerns should
not. Interaction between the two types of concerns is difficult
because behaviorally each is so different. We propose mapping
the dynamic aspects of a non-state based system (scenarios) to the
dynamic aspects of a state based system (events). This mapping
resolves the differences in the dynamic behavior of the concerns.

For example, consider a banking system with accounts that are
accessible from a bank teller, ATM, or online. From a security
standpoint, repeated transfers in a single day through an ATM or
online rather than through a bank teller requires that the
transaction be logged as suspicious activity. The core transfer
behavior is not state based and therefore should not be
implemented with state machines. The crosscutting security
logging concern, however, does require knowledge of the core’s
state. In particular, it needs to know how many transfers have
been attempted in a day and by what means the transfers took
place. A state machine can model this behavior and keep the
transfer and logging concerns separate. The purpose of the state
machine is to model the relevant state of the core. To promote
reuse and to reduce coupling the state machine should not have
direct access to the core concerns. The main problem this paper
addresses is how to weave the two separated concerns together
while maintaining loose coupling. Our approach uses a program
monitor to observe when certain scenarios occur, like a transfer

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, to republish, to post
on servers or to redistribute to lists, requires prior specific
permission. Preliminary versions of these papers were presented in a
writers' workshop at the 15th Conference on Pattern Languages of
Programs (PLoP).
PLoP'08, October 18-20, Nashville, TN, USA.
Copyright 2008 is held by the author(s). ACM 978-1-60558-151-4
.

from an ATM, and map those completed scenarios to events in the
logging state machine. The crosscutting state machine may then
react by introducing new behavior, like logging a transfer.

There are tools [16][6], specialized programming languages
[7][12][17], and frameworks [18] that can be used to accomplish
similar results. The tools and frameworks are typically
heavyweight and proprietary and may not be appropriate for
production software. The specialized programming languages
include new syntax and require a significant learning curve to
become proficient. We prefer an approach using standard object
oriented techniques with patterns so that all OO developers can
use it regardless of programming language or environment.

The patterns discussed in this paper map scenarios to events in
such a way that neither type of concern is directly coupled with
the monitoring code. This makes all the concerns reusable in
different contexts. Non-state based core concerns can be used with
or without the state based crosscutting concerns, and state based
crosscutting concerns can be used with different core concerns. In
order to accomplish monitoring, decorator objects are created that
wrap the monitored objects and track when certain messages are
passed. The monitor is responsible for translating completed
scenarios into events that are fed into a crosscutting concern state
machine.

The rest of this paper is organized as follows: section two
discusses the Scenario Monitor and Bind Completed Scenario
to Event patterns and how they can be used to track the state of a
set of core concerns. Section three provides an example of using
the pattern to handle a crosscutting concern.

2. SCENARIO MONITORING FOR
HANDLING EVENTS
In our approach, a crosscutting concern developer models the
relevant state of the core concerns with a state machine. Figure 1
shows the state machine for the security logging concern from the
introduction. The states represent periods of time in the core when
the crosscutting logging concern reacts to events. Logging
behavior is added on certain transitions in the state machine.

Figure 1. Security logging state machine.

The state machine in figure 1 is abstract in that the events are not
directly bound to a core concern’s implementation. Transferring
funds using an ATM, for example, is a complex core process that
involves many objects interacting and can’t be mapped to a single
method call. The fact that the state machine is abstract makes the
crosscutting concerns reusable in many different contexts. We
limit the mapping of events to the completion of scenarios. A
scenario is an ordered set of messages (method calls) sent and
received from objects in the system. Traditionally, scenarios are
modeled with sequence diagrams [14].

Scenario monitoring is the crucial element in this approach. One
of our goals is to allow scenario monitoring to occur without the
use of special tools, programming languages or complex logics.
Our target audience is the average OO developer working on
systems where introducing new tools or complex logics would be
impossible due to language incompatibilities, legacy
environments, or insufficient formal background in Computer
Science. We have developed a straightforward pattern that allows
relatively complex scenario monitoring to occur in a non-invasive
manner.
Scenario monitoring is accomplished by breaking the problem up
into two main parts:

1. Decorators and Observers [4] that notify the monitor
when specified object interactions take place

2. Simple state machines used to track the progress of each
active scenario

The state machines listed in item two are used to track the
completeness of a scenario and are different from the crosscutting
concern state machines that introduce additional behavior
(logging). Scenario monitoring state machines ensure that object
interactions happen in the specified order. The Bind Completed
Scenario to Event pattern describes state machines responsible for
adding behavior to a set of core concerns.

2.1 Scenario Monitor Pattern
Name
Scenario Monitor
Context
A complex Object-Oriented system is made up of many different
objects sending many different messages to each other. Imagine a
system that must react in a particular way to the occurrence of an
ordered sequence of messages within the system. This set of
messages is called a scenario. In a scenario each message has a
sender and a receiver. If a single message is missing or received
out of order then the scenario is not complete and no reaction
occurs.
In the simplest case a scenario is made up of a collection of
sequential messages. Figure 2 shows several different sequence
diagrams that contain sequential messages. Each sending point
and receiving point is highlighted with a small circle. A series of
messages are sequential if every sequential pair shares either a
sending or receiving point. A similar idea was presented in David
Harel’s Play-Engine work [6].

Figure 2. Sequential Messages
A scenario might also be made up of disjoint sequences of ordered
messages, see figure 3. In this case the two disjoint sets of
messages can occur in any order as long as neither violates the
sequential ordering required in each. The scenario can be
considered satisfied with several different orderings of the
messages. For example, the order ‘m1’, ‘m2’, ‘m3’, ‘m4’ satisfies
the scenario as does the order ‘m3’, ‘m1’, ‘m4’, ‘m2’ because all
the messages are handled and no violation of sequential ordering
occurs.

Figure 3. Scenario With Disjoint Sequences of Messages

To complicate matters even further a scenario might be made up
of mostly disjoint messages that rendezvous at one or more points,
see figure 4. In this case, there are two sets of relatively
independent messages. For the most part, messages from either set
can occur in any order (as long as there are no violations of order
in each collection). However, at the rendezvous point where C
sends a message to M and X sends a message to M the two
independent collections of messages join together and there is an
order that must be adhered to.

Figure 4. Scenario With Mostly Disjoint Sequences of
Messages

The most obvious use of scenario monitoring is for testing and
debugging. Scenario monitoring can provide a trace of an
executing system that can be used to verify that use cases are
being completed. Scenario monitoring can also be used to debug a
system where conventional debugging tools are not available.
Perhaps a less obvious use of scenario monitoring is to deal with
state based crosscutting concerns. The following pattern
emphasizes the use of scenario monitoring in this context but this
pattern can be applied in other contexts as well.
Problem
The difficulty is that some sort of scenario monitoring must occur.
There are tools and languages [6][2][12] that might aid in this
monitoring but they require a significant investment in acquiring
and learning a proprietary technology. In addition, they cannot be
used with existing and legacy systems without retrofitting the
systems to these new tools and technologies. Ideally, scenario

monitoring should occur using standard Object-Oriented
languages and techniques such that the objects being monitored
are loosely coupled to the monitor. Then, monitoring can be added
and removed easily.
Forces
The difficulty in introducing scenario monitoring is to do so in a
way that is minimally invasive to the objects being monitored. It
would be easy to go into every class where monitoring is required
and add code to those methods. However, this scatters the
monitoring code and tangles the code from two competing
concerns. Further, if the monitoring strategy was to change or
monitoring was no longer required one would have to update or
remove all the monitoring code.
Monitoring a scenario is akin to tracing the state of a scenario.
Therefore a state machine is an ideal way to monitor a scenario. In
fact, this is not a new idea and there have been state based
scenario monitoring algorithms introduced in the past
[5][8][9][15]. In the simplest case when all messages are
sequential a single state machine is an easy solution. The states in
the state machine each represent the processing of a message. The
states are connected by transitions where the next expected
message is an event that will move the scenario forward. For each
state, all messages beyond the next expected message are events
that will take the scenario to an invalid state due to a violation of
the order imposed by the scenario. A monitor should no longer
track invalid scenarios.
One difficulty, however, is resolving how disjoint scenarios are
monitored. When a scenario is broken up into disjoint sets of
sequential messages a single state machine can grow to be
incredibly complex to handle all the different combinations of
received messages.
In the course of an executing system the same scenario might
occur multiple times. It is possible that several instances of a
scenario might be advancing with each one at a different state. For
example, in figure 3 if the monitor recognizes that A sends the
message ‘m1’ to B, then scenario monitoring should begin. If
before that scenario is completed or invalidated the same message
is sent again, this can be considered another instance of the same
scenario. The scenario monitor must be able to manage multiple
scenario instances and react appropriately when each instance
successfully completes.
Solution
In the pattern a scenario is made up of Scenarios, Scenario
Instances, and Scenario Fragments, see figure 5. A Scenario
Fragment is a simple state machine. The state machine represents
a collection of sequential messages sent synchronously where
there is no possibility of delayed message reception. The first
message in a Scenario Fragment has no required messages that
must be handled before it. Every other message in a Scenario
Fragment must come in a strict order specified when creating it.
Figure 6 shows the state machine for one of the Scenario
Fragments from figure 4. One could use the State Pattern [4] to
implement Scenario Fragments but since each one models such an
uninteresting state machine a state table based approach is clearer
[13].

Figure 5.

Figure 6.

A Scenario Fragment is defined by the messages and the order
that the corresponding method calls have completed. Therefore,
when defining a scenario one creates a sequence diagram and
maps out both the method calls and the method returns. The order
of messages in the fragment is taken from the order of method call
returns. This is required to track only the messages that have been
sent, received, and fully processed.
In figure 7 a simple scenario is laid out. In this case the order of
the calls is ‘m1’, ‘m2’, ‘m3’, and ‘m4’. However, the order that
the methods complete their processing is ‘m3’, ‘m2’, ‘m4’, and
‘m1’. Only after those methods calls have been sent and received
in that order should the scenario be considered satisfied. The code
that reacts to the scenario’s completion will find the monitored
objects in a state where all the messages have been fully
processed.

Figure 7.

A Scenario is made up of a collection of Scenario Fragments. It is
possible that in a single Scenario there will be two or more
fragments that have no objects in common. In this case the
ordering between the two fragments is not important (although the
ordering within each fragment must be maintained). For example,
in figure 4 three separate Scenario Fragments are specified. This
is highlighted in figure 8, which shows the same sequence
diagram three times with different fragments highlighted. Each
individual fragment has strict sequential ordering requirements.
Notice, however, that there is some overlap between the messages
in the different fragments. This overlap provides a way for
disparate fragments to rendezvous. As long as all messages are
received and no fragment order is violated the scenario is
considered complete.

Figure 8.

A Scenario Instance tracks the state of a Scenario. It remembers in
each of the Scenario Fragments what the last message handled
was and notifies the Scenario when all the fragments are
completed. Scenario Instances are needed because the same
Scenario may be active multiple times where each instance is in a
different state.
Each Scenario object is notified when a monitored message is
handled. The Scenario object responds by either creating a new
Scenario Instance (if the event represents the first message in any
Scenario Fragment) or feeds every Scenario Instance the event.
Each Scenario Instance will check with all the Scenario
Fragments for the Scenario and either ignore the event, move
forward, or be in violation of the Scenario and be removed from
monitoring. To handle the completion of Scenarios the Observer

Pattern [4] is used. The Scenario acts as the subject and one or
more observers are notified when a scenario successfully
completes. The observers can then react to the completion of the
scenario.
So far we have not discussed in detail how Scenario objects are
notified when a particular message is passed. To achieve this in a
non-invasive way we use the Decorator [4] and Observer Patterns
[4], see figure 9. Each object that receives a message in a
monitored scenario will become wrapped inside a Decorator. Each
sender in a scenario has its reference to the monitored object
changed to a Decorator. The Decorator will store a reference to a
monitored object and delegate the object’s responsibility to it. The
Monitor Decorator class will store the name of the sender and
receiver of the message to be used to create an event that specifies
the names of the sender, the message, and the receiver. This
combination of patterns is not totally original, in fact some AOP
compilers and runtimes may use it. We are highlighting that many
features available in AOP languages can also be accomplished
using good OO design.
The Decorator will also be a subject from the Observer Pattern.
After each delegation the Decorator will inform all observers that
the delegate has handled a particular message. The observers are
Scenario objects that have registered interest in a particular
message because it is part of one of the Scenario’s fragments.

Figure 9.

Several Decorator instances may exist for a single monitored
object because a Scenario needs to know not only what message
was sent but also who sent it. In figure 10 there are two scenarios.
In the first an object of type A is sending the message m1 to an
object of type C. In the next scenario an object of type B is
sending the message m1 to the same object. Even though the
receiver is receiving the same message the senders are of different
types, therefore these are different scenarios. Both sending objects
require distinct Decorators so that when the Decorator notifies the
observers the observers know who the sender is. This information
is stored in each MonitorDecorator and is passed to observers in
the notifyAllObservers() method, see figure 11. These Decorators
can be used by many different Scenario objects, all that is required
is that each Scenario object register with the correct Decorator to
be notified when a monitored message occurs. A hierarchy of
decorators can be created if the same objects participate in many
scenarios.

Figure 10.

Figure 11.

Forces Resolved
The Decorator Pattern allows one to add behavior to an object
dynamically. This allows monitored objects to remain unchanged
and unaware that they are actively being monitored. This solution
does require that someone do the wrapping of monitored objects
into Decorators, but that code can be localized outside of any
monitored class. Also, because we are using the Observer Pattern
monitoring can be turned off as easily as it is turned on.
Scenario Fragments represent simple state machines, one for each
collection of sequential messages. Scenarios with disjoint
collections of messages are handled by including a Scenario
Fragment for each one. The overlapping of messages in the
fragments guarantee that synchronization occurs between

Scenario Fragments. As long as no individual fragment is
violated, the scenario is not violated and a single complex state
machine is avoided.
The Scenario object creates and tracks Scenario Instance objects
so that multiple occurrences of a scenario can be active and
monitored at once. When a scenario is violated the Scenario
object removes the Scenario Instance so that it is no longer
monitored. Similarly, when a scenario completes the Scenario
Instance is removed.
This approach is somewhat complex and does require additional
code to be created to set up monitoring. There is overhead when
monitoring scenarios. Each scenario requires some memory to
store the scenario specification along with the state of each
scenario instance. Each monitored message involves notifying a
monitor when the system could be executing the behavior
associated with the message instead. This overhead might become
overwhelming in a massively monitored system. However, no
code inside the monitored objects needs to change and monitoring
can be turned on and off relatively easily.
Known Uses
The Spring Framework [18] uses a similar collection of decorators
to permit AOP

2.2 Bind Completed Scenario to Event
Pattern
Name
Bind Completed Scenario to Event
Context
During the development of a traditional data transformational
system one or more state based requirements are discovered that
need to monitor the state of the core concerns. In other words,
some state based behavior is recognized but the state in question
belongs to the part of the system that was built without using state
based decomposition techniques. A state machine must be built so
that additional behavior can occur during transitions between
states but it should not interfere with the development of the non-
state based concerns. In particular the developers of the non-state
based core should not have to instrument their code in order for
the state based behavior to be added. Ideally, the state based
behavior will be reusable in different contexts with different sets
of core code. Further, it is not possible to add new tool support or
change programming language because either the system is
already in development or the cost associated with such tools.
Problem
How do we resolve two radically different types of interacting
concerns using standard OO deign techniques while maintaining
reusability and loose coupling?
Forces
Loose coupling is important in this pattern because each concern
should be able to exist in isolation. It is likely that under certain
situations the core concerns will exist without the crosscutting
concerns and vice versa. For example, handling a crosscutting
concern might be an additional feature that is provided at a
premium. The standard version of the software might exist
without such a feature. Similarly, a crosscutting concern that adds
behavior might be useful in many different contexts. A state based
security concern, for example, might be applicable in many

different non-state based systems as long as a mapping can occur
from the core to the crosscutting concerns.
Solution
The solution involves using the Scenario Monitor pattern (or some
other scenario monitoring technique) to specify how the dynamic
parts of the two concern types interact. In a data transformational
system the dynamics are in the messages sent between objects. In
a state based system the transitions between states represent the
dynamic behavior. A mapping between these two is required to
add additional behavior in a loosely coupled way.
This pattern accomplishes this by mapping completed scenarios in
the core concerns to events that are injected into a crosscutting
concern state machine. The state machine can then react to the
event and possibly add behavior on a transition (if one takes
place).
A mechanism is required for the scenario monitor to inject events
into a state machine. If one uses the Scenario Monitor pattern this
behavior exists because the Scenario is the subject in the Observer
Pattern [4] and it is responsible for notifying all observers waiting
for the completion of a scenario. The observers are objects that
interact with state machines that react to the notification by
injecting an event into the state machine. It is these interacting
objects that bind the loosely coupled concerns together. It would
be the responsibility of a weaving developer to bring together the
core and crosscutting concerns and specify how the completion of
a scenario is mapped to an event in a state machine.
Forces Resolved
This approach is superior to AOSD approaches because it
provides all of the loose coupling that is present with specialized
programming languages without having to adopt new tools or
language extensions. One can use this pattern in any OO
environment whether being created from scratch or several years
(and releases) into the development process.
In most AOSD technologies the weaving is done automatically
with language extensions and a tool. In this pattern the weaving is
done manually rather than with a tool. In order to avoid new tools
it is up to a human to specify which completed scenario maps to
which event in a state machine. In addition, there is overhead
involved with the use of the Observer Pattern.

3. EXAMPLE USING THE PATTERNS
The following describes a set of requirements that we use to
elucidate our approach (for a more complete description see [11]).
The system is for a financial advisor that generates and sells
reports to his customers about potential companies to invest in.
The financial advisor gets some of his financial data from a much
larger financial services organization referred to as the Investment
Warehouse.

3.1 Report Generating System
Requirement R1: Financial Advisor Attempts to Sell Report
A financial advisor requests an investment report from the Report
Generating System to sell to his customer. If the Report
Generating System does not have the requested report it will ask
an independent Investment Warehouse for information in order to
generate the report. The Report Generating System will then
generate a report and send a summary to the financial advisor.
The financial advisor shows the customer the summary and tries

to sell it to her. If the customer wishes she may purchase the full
report. If that happens the report will be stored by the system and
presented to the customer. When a customer requests a report that
already exists, the Report Generating System will pull the report
from storage and display a summary to the customer. If the
customer chooses to purchase the report it will be presented to
her.
In the early design phase the Sequence Diagrams in figures 12 and
13 are created.

Figure 12. Financial Advisor Attempts to Sell Report

Figure 13. Financial Advisor Attempts to Sell Report (Report
Already Exists).

3.2 Crosscutting Billing Concern
Imagine the financial advisor has the option of becoming a
franchisee of the Investment Warehouse or a pay-as-you-go
customer. If the financial advisor becomes a franchisee, he is
charged a relatively high flat yearly rate for access to financial
services information. A pay-as-you-go customer is charged per
access to the Investment Warehouse. The financial advisor has
negotiated an additional term in the contract. The Investment
Warehouse will only charge the financial advisor once when he
accesses data the first time a report is sold. If the financial advisor
does not sell the report, or the report is already in his database of
sold reports, he is not charged for the data access.
To keep costs down the financial advisor would initially like to be
a pay-as-you-go customer but would like the flexibility to switch
to a franchisee. If he switches he would like to keep his existing
Report Generating System in place. The main difference is that a
franchisee does not need to handle billing.
The state machine in figure 14 describes how normal franchisees
are charged for access to the Investment Warehouse’s data. The
requirement is to charge $10 for the first 5000 accesses in a
month, $5 for the next 5000 accesses in a month, and charge
nothing for more than 10000 accesses in a month.

Full Price

Discount Price

Free

H

hits = 0

access data
[hits == 5000] / bill $10; hits++

access data
[hits == 10000] / bill $5; hits++

access data / bill $10; hits++

access data / bill $5; hits++new month / hits = 0

new month / hits = 0

new month / hits = 0

Figure 14. ‘Access Data’ State Machine

The problem is determining when a billable access has been
performed. The only time a billable access occurs is when a new
report is actually purchased. One cannot simply bill after
accessing the data from the Investment Warehouse because there
is no charge unless the customer purchases a report. Further, one
cannot simply bill after the customer purchases a report because
they may be purchasing a report that already exists. The billing
system needs to know the state of the transaction.
The important states to the billing concern are Idle, Pending
Purchase New Report, Pending Purchase Existing Report, and
New Report Purchased. The important events are when a new
report is generated, when an existing report is requested, when a
report is purchased, and when a report is abandoned. The state
machine in figure 15 describes these states and events.

Figure 15. ‘Billing’ State Machine

Using a variation of sequence diagrams described in [11] one can
capture the scenarios of interest, see figure 16. The models specify
which scenarios map to events in the state machine using the
event-op operator. The semantics of this model are that when the
scenario in the Combined Fragment of the sequence diagram
completes the event specified in the event-op operator will be
injected into the state machine. This decouples the crosscutting
concern’s required state information (specified in figure 15) from
a particular implementation.
Using the Scenario Monitor Pattern from above, an
implementation can be created that will treat the completed
scenarios as events in the crosscutting concern state machine.
Billing can then occur by combining the state machines using the
approach in [10]. In that work state machines can be combined

and events from one state machine are bound to events in another.
In this case the ‘purchase’ event from the Billing state machine of
figure 15 is bound to the ‘access data’ event from the Access Data
state machine from figure 14.

a. New Report Event

b. Purchase Event

c. Report Exists Event

Figure 16. Specification of bindings between Sequence
Diagrams and events.

4. CONCLUSION
History sensitive crosscutting concerns are difficult to implement
when the history lives in the core implementation. We have
provided a way to monitor the core concerns and create events
that can be used by a crosscutting concern state machine. This is
done in a non-invasive manner without using any proprietary tools
or programming languages. We combined simple design patterns
to create a new Scenario Monitor Pattern.
The primary benefit of our approach is the loose coupling between
core and crosscutting concerns. The specification of binding
between the core and crosscutting concerns is at a higher level of
abstraction than other approaches. The consequences are that
developers can specify state based behaviors required for
crosscutting concerns in an abstract way that is reusable in
different contexts. Crosscutting concern developers can
emphasize the state based nature of concerns without requiring the
core concern developers to create a state machine model- they are
oblivious.

5. ACKNOWLEDGEMENTS
We would like to thank Marcelo d'Amorim for his insightful
comments during the shepherding phase of this year’s PLoP. In
addition, the members of our shepherding group provided
invaluable insight into the strengths and weaknesses of the
patterns.

6. REFERENCES
[1] AOSD web page. http://aosd.net
[2] Cottenier, T., van den Berg, A., Elrad, T. The Motorola
WEAVR: Model Weaving in a Large Industrial Context. Industry
Track paper at AOSD'07
[3] Filman R.E., Friedman, D.P. “Aspect-Oriented Programming
is Quantification and Obliviousness”, Workshop on Advanced
Separation of Concerns, OOPSLA 2000, October 2000,
Minneapolis.
[4] Gamma, Helm, Johnson, Vlissides; Design Patterns, Elements
of Reusable Software Design, Addison-Wesley 1995
[5] D. Harel, H. Kugler. “Synthesizing State based Object
Systems from LSC Specifications”, Proceedings of Fifth
International Conference on Implementation and Application of
Automata (CIAA2000), Lectutre Notes in Computer Science,
Springer-Verlag, July 2000.
[6] Harel, D., Marelly, R. Specifying and Executing Behavioral
Requirements: The Play In/Play-Out Approach Software and
System Modeling (SoSyM) 2 (2003), pp. 82-107.
[7] Kiczales, G. et al., Aspect-Oriented Programming Proc.
European Conf. Object-Oriented Programming, Lecture Notes in
Computer Science, no. 1241, Springer-Verlag, Berlin, June 1997,
pp. 220-242.
[8] K. Koskimies, E. Makinen. "Automatic Synthesis of State
Machines from Trace Diagrams". Software-Practice and
Experience, vol.24, No. 7, pp. 643-658 (July 1994).
[9] S. Leue, L. Mehrmann, M. Rezai. Synthesizing ROOM
Models From Message Sequence Charts Specifications. TR98-06,
Department of Electric and Computer Engineering, University of
Waterloo, Waterloo, Canada, 1998.
[10] M. Mahoney, T. Elrad. A Pattern Story for Combining
Crosscutting Concern State Machines. Pattern Language of
Programs Conference. Monticello, Illinois, 2007.
[11] M. Mahoney, T. Elrad. Using Scenario Monitoring to
Address State Based Crosscutting Concerns. Software
Engineering Knowledge Engineering Conference. Redwood
California, 2008.
 [12] Maoz, S. Harel, D. From multi-modal scenarios to code:
compiling LSCs into aspectJ Proceedings of the 14th ACM
SIGSOFT international symposium on Foundations of software
engineering Portland, Oregon, USA 2006: 219 – 230
[13] Samek, M. Practical Statecharts in C/C++. CMP Books.
2002.
[14] UML Specification. http://www.uml.org/
[15] J. Whittle, R. Kwan, and J. Saboo. From scenarios to code:
An air traffic control case study. Software and System Modeling,
4(1):71–93, 2005
[16] Telelogic Tau. http://www.telelogic.com
[17] JASCO Home Page. http://ssel.vub.ac.be/jasco/.
[18] Spring Framework, http://www.springframework.org/

