
Handling Transactional Business Services

Geert Monsieur, Lotte De Rore, Monique Snoeck, Wilfried Lemahieu
Katholieke Universiteit Leuven

Faculty of Business and Economics
The Leuven Institute for Research on Information Systems (LIRIS)

firstname.lastname@econ.kuleuven.be

ABSTRACT
This article discusses the handling of transactional business
services, which are service compositions that orchestrate and
coordinate underlying services to process a high-level busi-
ness activity. The main contribution made in this article
is the presentation of the pattern TBS handler, which
describes how one can implement a transactional business
service (TBS). This pattern functions as an overview pat-
tern for a complete pattern language that is outlined in the
text. This pattern language provides the appropriate ingre-
dients for the implementation of a TBS. It is presented using
thumbnails.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—
Patterns

General Terms
Design, Management, Languages

Keywords
Business Process, Transactional Business Service, Service
Composition

1. INTRODUCTION
A business process can be defined as a collection of ac-

tivities that take one or more kinds of inputs and create an
output that is of value to the customer [6]. These inputs
are retrieved from several business applications that need
to be invoked to execute the business process. In a service-
based environment, business processes are supported and
executed by orchestrating several services. This orchestra-
tion, sometimes referred to as service composition, can be
very complex since many message exchanges between the
participating services are needed.
In order to structure a business process implementation, it

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission. A preliminary version of this paper was presented in a writers’
workshop at the 15th Conference on Pattern Languages of Programs (PLoP).
PLoP ’08,October 18–20, 2008, Nashville, TN, USA.
Copyright 2008 is held by the author(s). ACM 978-1-60558-151-4.

is a good idea to consider the business process as a set of
activities in which each activity matches an invocation on
a transactional business service (TBS), which is responsible
for the required interactions with the services and applica-
tions.

The structuring approach can be considered as an applica-
tion of macroflow-microflow described by Hentrich and
Zdun [8]. This pattern structures a process model into two
kinds of processes, macroflow and microflow. The microflow
is only used for refinements of the macroflow activities. The
macroflow represents the long-running, interruptible process
flow, which depicts the business-oriented process perspec-
tive. The microflow represents the short-running transac-
tional flow that depicts the IT-oriented process perspective.

Another similar approach can be found in the many stud-
ies about Web services conversations [1, 12, 3, 2, 7]. Roughly
speaking, conversations can be considered as well-described
(low-level) interactions between specific services (partners),
which can be used as a kind of module in a high-level process.

Finally, the research about interactions protocols or busi-
ness protocols by Desai and Singh are certainly worth to
mention [5, 11]. Similar to the conversation-based method
the concept of busines protocols is presented as a (design)
abstraction that provides information about which sequence
of message exchanges or interactions can occur between sev-
eral parties. However, they argue that business processes are
conventionally modeled directly as monolithic flows. They
state that these flows are often more complex than necessary
and lack modularity [5]. Therefore they propose to model
business processes as composition of business protocols. Di-
rectly developing composite business flows is harder than
modeling individual business protocols and then putting them
together. Thus, protocol-based process modeling can be
viewed as a structured approach wherein protocols are gran-
ules [5].

A TBS is a composition of a set of services. The orches-
tration of these underlying services will be the ”microflow”,
which represents the short-running transactional flow. This
microflow defines the way the individual services are com-
posed and coordinated to deliver the required TBS. These
services are the TBS participants. The transactional busi-
ness service is transactional in the sense that either it is
delivered completely, or it is not executed at all. The mi-
croflow gives the technical perspective of handling a TBS,



while the TBS gives the more abstract business oriented per-
spective of a single business task. The macroflow defines the
business process as a sequence of such transactional business
tasks, each of which is supported by a TBS.

The main contribution made in this article is the presenta-
tion of the pattern TBS handler, which describes how one
can implement a TBS (see section 2). This pattern functions
as an overview pattern for a complete pattern language that
is outlined in the text. This pattern language provides the
appropriate ingredients for the implementation of a TBS. It
is presented using thumbnails (section 3).

2. PATTERN: TBS HANDLER

2.1 Context
In a service-based environment, a business process is sup-

ported and executed by orchestrating several services. In or-
der to structure the business process implementation, each
activity of the business process is matched with the invoca-
tion of a TBS. This TBS is a composition of a set of services.
These services will typically be some kind of business logic
components that offer services to manage (create, modify,
end) business objects.

2.2 Problem
The transactional business service consists of, on the one

hand, a set of rules set by the several services that must be
checked and, on the other hand, a set of activities that must
be executed. The use of the term transactional means that
a TBS is executed successfully if all rules are satisfied and
all specified activities are executed successfully. This means,
when one of the rules is not satisfied or one of the activities
could not be executed completely, the TBS should be rolled
back as if nothing has happened.
These requirements of a TBS raise the question how
to implement the handling of a TBS properly. More
particular, how do you define the microflow (i.e. which mes-
sage exchanges are required?) and who is responsible for
monitoring the correct execution of the microflow (i.e. which
component is responsible for coordinating the microflow?).

If a company’s information systems run on only one single
platform it is quite easy to coordinate all actions required to
execute a business activity. In such cases most of the time
no specific message exchanges are needed to communicate.
Business functions are directly invoked on the business ap-
plications. If a service-oriented approach is followed, calls
to components are often still synchronous, which simplifies
the implementation of a TBS.
Unfortunately, in order to support a company’s business pro-
cesses in an optimal way, each department in a company of-
ten has its own specific business applications, which should
be integrated in an efficient and effective manner. Besides
the intra-organizational integration of business applications
today’s businesses require intra-organizational integration of
information systems. In these cases business processes are
executed on a distributed platform. This demands a service-
oriented approach in which business processes are executed
by combining an appropriate set of services. In this setting,
services (often implemented as Web services) are spread out
across different locations and companies. This makes the
implementation of TBSs difficult. Due to the distributed

nature of the information systems all communication is of-
ten asynchronous and a business transaction can take a long
time in certain circumstances. Therefore verifying rules, ex-
ecuting activities and guarding the transactional aspect of
TBSs is not a trivial thing to do.
In summary one can say that implementing TBSs is quite
easy to do in limited conditions, e.g. a single platform. Once
participating components are spread out on a distributed
system it becomes a challenge to maintain the properties of
TBSs.

2.3 Example
The business process for processing orders in an online

shop consists of several main business activities, e.g. cre-
ate order, process order, invoice and pay. These business
activities need to be implemented as TBSs. The microflow
of the create order TBS consists of interactions with the
following services: the sales and marketing service, the fi-
nance service and the stock management service (see figure
1). Besides these services other services as e.g. the cus-
tomer support service or a shipping service could be part
of the company’s information systems. In order to handle
the create order TBS, it is required that these three ser-
vices (sales and marketing, finance and stock management)
are invoked. Therefore, all these participating services will
set certain restrictions or business rules on the create order
business activity. For example, relevant business rules in
the case of create order could be ’checking if the customer
is creditworthy’ (information controlled by finance service),
’checking if the customer’s order doesn’t exceed the maxi-
mum allowed amount to order’ (information controlled by
the sales and marketing service) and ’checking if there is
enough in stock’ (information controlled by the stock man-
agement service). All these business rules need to be checked
before any action related with the create order activity can
be undertaken in one of the participating services. This is
important to maintain the transactional aspect of the TBS
create order. This means that either all business activities
in the participating services are completely and successfully
executed, or none of the participating services has executed
the business activity. For create order this means partici-
pating services process this activity only if the customer is
creditworthy, the desired amount is in stock and the maxi-
mum allowed amount to order is not reached.

2.4 Forces

• Dependencies: The correct handling of a TBS re-
quires some coordination. The responsibility of this
coordination task could be assigned to one service (one
of the participants or a separate, new service), or it
could be distributed amongst several services. The
way coordination is assigned to services creates depen-
dencies between these services. In order to maximize
the adaptability of the implementation architecture, it
is recommended to minimize dependencies as much as
possible.

• Confidentiality of business rules: The participat-
ing services related to a TBS all set some restrictions
or business rules on the processing of a (high-level)
business activity. Before processing and executing the
business activity in all participating services these rules



Transactional 

Business Service

create order

Transactional 

Business Service

install

Transactional 

Business Service

pay

Transactional 

Business Service

invoice

Checking creditworthiness of customer

Finance Service

Sales and Marketing

Service

Checking if maximum amount 

allowed to order is reached

Stock Management 

Service

Checking if there is enough in stock

Coordinated 

microflow

Figure 1: Transactional Business Service: create order

need to be checked. Business rules set by all participat-
ing services can be shared and known publicly. How-
ever some participating services are not willing or sim-
ply cannot share all business rules. In the case of the
create order business activity one can imagine that the
finance service cannot simply share the rules used to
check the creditworthiness of customers. In particu-
lar it can be possible that the finance service relies on
other external services (e.g. the customer’s bank, the
credit card company, etc.) to check the creditworthi-
ness of a customer. In that case it is difficult to share
the rules.
In a business-to-business environment it is common
that business partners do not share all business rules,
since they want to be sure these rules never arrive in
hands of competitors. Notice that in other cases (e.g.
the maximum amount allowed to order) business rules
can be quite easily shared.

• Variability: A TBS is a composition of several ser-
vices, which are referred to as the participating ser-
vices. In the case of create order business activity
three participating services are given. One could think
of business cases in which it should be possible to add
more services as participating services at run time (e.g.
adding a shipping service as participating service for
the create order business activity).

• Technical capabilities of the participating ser-
vices: There exist probably many strategies and sce-
narios to handle a TBS. However, sometimes not all
scenarios are supported by the participating services.
It all depends on the interface of the participating ser-
vices, which should provide the appropriate actions
needed for a specific TBS handling strategy.

• Required performance: The way the handling of a
TBS is implemented can have substantial impact on
performance. When implementing the handling of a
TBS it can be important to keep in mind that a certain
level of performance is required.

2.5 Solution
To minimize dependencies between services it is advis-

able to create a separate TBS handler. This handler
is responsible for the coordination of the microflow

and guards the the transactional aspect of the TBS.
Considerations while implementing the TBS handler are
on the one hand how to manage the different participating
services and on the other hand the coordination protocol
used.

The subscription manager is a component that stores
information about which services are participants in a TBS.
By means of this component it is also possible for services
to dynamically subscribe for certain TBSs. If no subscrip-
tion manager is used in the handling of a TBS it is required
to hardcode all participating services that needed to
be coordinated. It should be clear that the choice between
using a subscription manager or hardcoding all par-
ticipating services is often a trade-off between on the one
hand the environmental variability, and on the other hand
the performance demanded by the business case.

The last component in the solution for the TBS handling
problem is the coordination protocol used. This protocol
defines the steps that the TBS handler (the coordina-
tor) should follow to implement the coordinated handling
of a TBS. The two-phase commit coordination proto-
col consists of two main phases or steps. In the first step
the business rules set by all the participating services are
checked. If the results of this checking phase are positive
the protocol continues with the second step, which consists
of instructing the participating services to execute the cor-
responding activities to finish the processing of the trans-
actional business service. It is assumed that the results
of the business rules checks are still valid when instructing
the participants in the second phase. This implies that the
participating services should probably lock some resources.
Since locking resources in a distributed and service-oriented
environment can be quite expensive when dealing with long-
running transactions, the two-phase commit does not suf-
fice in every scenario. Therefore another possible coordina-
tion protocol is the compensation-based coordination
protocol. Instead of locking resources services in a first
step, the handler instructs the participating services to ex-
ecute the business activity at once. If one or more services
fail to execute the business activity successfully because of
business rule violation or other problems the coordinating
component is responsible for requesting the participating



TBS HANDLER

Checking business rules

Managing participants

SUBSCRIPTION 

MANAGER

HARDCODE ALL 

PARTICIPATING 

SERVICES

Coordination protocol

COMPENSATION 

BASED

PRIVATE AND 

CHECKED 

DECENTRALLY

SHARED AND 

CHECKED 

CENTRALLY

TWO-PHASE COMMIT

Figure 2: A pattern language for handling a TBS

services to compensate the actions undertaken. In addition
to these two coordination protocols there exist many other
transaction coordination protocols, which are in many cases
minor variations on the protocols discussed above.
If the TBS handler needs to know if there are some busi-
ness rules violated it has two options to choose from. Ei-
ther the participating services share the business rules with
the handler and rules are checked centrally, or the partici-
pating services check the business rules themselves and the
results are sent back to the handler. In the first option busi-
ness rules are kept private and checked decentrally,
while in the second option business rules are shared with
the TBS handler and checked centrally. Choosing
between these two options is probably much easier when
considering the required performance and confidentiality of
business rules. If performance is far more important than
the confidentiality of business rules, one is advised to go for
the option in which business rules are shared with the
TBS handler and checked centrally. In the other
case, when confidentiality is more important than perfor-
mance, it is better to keep business rules private and checked
decentrally.

Figure 2 gives an overview of the pattern language. The
relationship between TBS handler and all other patterns
is shown.

2.6 Consequences

• By putting the responsibility of handling TBSs in a
separate component, firstly the basic services can re-
main independent from each other and secondly the
handlers can be put in a separate layer on top of the
services layer, creating a dependency from handlers to-
ward services, but not the other way around.

• Using the private and checked decentrally pat-
tern implies that business rules are kept confidential,
while shared with the TBS handler and checked
centrally means that a central component should
have knowledge of all business rules and thus business
rules are shared.

• In the case of a huge variability in participating ser-
vices, a TBS handler should be implemented by means

of a look-up table, which allows services to subscribe
at run time. The use of a subscription manager
guarantees a high level of flexibility in case of variable
business cases. While on the other hand in a stable
environment it can be interesting (e.g. due to per-
formance reasons) to hard code the participating
services in a TBS handler.

• In the solution we used two possible coordination pro-
tocols: two-phase commit coordination proto-
col and compensation-based coordination pro-
tocol. Using the two-phase commit coordina-
tion protocol implies the availability of appropri-
ate actions to check business rules at the participating
services.

• Performance is also very much linked to scalability. If
you sell a few tens of products every day, it is prob-
ably not so much of a problem if one generic TBS
handler is responsible for all TBSs. On the other
hand, if thousands of orders come in per day, then
performance and scalability to large volumes of trans-
actions becomes a real issue. In the latter case it can
be important to make several TBS handlers instead
of one TBS handler which can handle more than one
transactional business service. Notice that the use of
a subscription manager increases the flexibility of
the TBS handler to allow variability in participat-
ing services, but it also reduces the performance of the
overall system since many lookup actions are needed.

2.7 Example resolved

• Minimized dependencies: Suppose that the han-
dling of the create order TBS is handled by the Sales
and Marketing service (see figure 3(a)). Then this ser-
vice becomes dependent on the finance service and the
stock management service. Other TBSs may create
other dependencies. For example, the coordination of
the TBS invoice could be assigned to the Finance ser-
vice, creating a dependency in the other direction be-
tween the Finance and the Sales and Marketing ser-
vice, as the order amount and conditions for discount
rules should be checked there. Therefore it is useful to
create a separate TBS handler which deals with the



Finance Service Stock Management 

Service

Sales and Marketing

Service

TBS Handler

create order

Coordinated 

microflow

(a) No use of separate TBS handler

Finance Service

Sales and Marketing

Service

Stock Management 

Service

TBS Handler

create order

Coordinated 

microflow

(b) Separate TBS handler

Figure 3: Minimizing the dependencies by adding a separate TBS handler

Finance Service

Sales and Marketing

Service

Stock Management 

Service

TBS Handler

create order

Checking shared business rules

Checking if maximum amount allowed 

to order is reached

Checking if there is enough in stock

Checking creditworthiness of customer

Coordinated 

microflow

(a) Business rules are shared

Finance Service

Sales and Marketing

Service

Stock Management 

Service

TBS Handler

create order
Check business rules 

for ‘create order’

Business rules 

check result

(b) (Finance) Business rules are private

Figure 4: Dealing with the confidentiality of business rules

Finance Service

Sales and Marketing

Service

Stock Management 

Service

TBS Handler

create order

Subscription 

Manager

Get participating services 

for ‘create order’

1

2
Coordinated 

microflow

(a) A Subscription Manager holds list of participating
services

Finance Service

Sales and Marketing

Service

Stock Management 

Service

2

TBS Handler

create order

List of participating 

services

Coordinated 

microflow

(b) Participating services are hardcoded in the TBS han-
dler

Figure 5: Dealing with variability



Finance Service

Sales and Marketing

Service

Stock Management 

Service

TBS Handler

create order

Check Business 

Rules Interfaces

Check Business 

Rules Interfaces

Check Business 

Rules Interfaces

1

1

1

2

2

2

(a) All TBS participants have interfaces for checking
business rules. Step 1 consists of checking business rules.
Step 2 is about processing the high-level business activ-
ity.

Finance Service

Sales and Marketing

Service

Stock Management 

Service

TBS Handler

create order

Check Business 

Rules Interfaces

Check Business 

Rules Interfaces

1

1

1
Result

+

Result

+

Result

-

2

2

23

3

3

(b) Since the Stock Management Service does not sup-
port checking business rules, step 1 consists of processing
the high-level business activity. Depending on the result
(see result arrows in step 2), it is possible that compen-
sating actions are needed (see dashed arrows - step 3).

Figure 6: Dealing with the technical capabilities of services

handling of one or more transactional business activi-
ties (see figure 3(b)).

• Dealing with confidential business rules: As the
finance service is a participant for the create order TBS
it sets some business rules on this business activity. In
particular it is the responsibility of the finance service
to check if the customer is creditworthy. Since the
specific business rules used to check this issue cannot
be made public (e.g. because the finance service relies
on other external services to check the creditworthiness
of customers) it is required to check the business rules
decentrally for the create order TBS (private and
checked decentrally) (see figure 4(b)).

• Room for variability: Since in the example it should
be possible to add a shipping service, which can hap-
pen quite frequently, it is desirable to have a flexible
handling system which allows a sufficient variability in
participating services. Therefore the use of subscrip-
tion manager can add value to the handling of the
create order TBS (see figure 5(a)).

• Dealing with technical capabilities: Suppose the
stock management service does not provide the nec-
essary interfaces to check the stock level of a given
product or to check if there is enough in stock to pro-
cess a given order. So suppose the interface only allows
to directly execute an order in the stock management
service. If the service finds out the stock level is not
sufficient an error is returned. This makes it difficult
or even impossible to go for the two-phase coor-
dination protocol (see figure 6(a)). Therefore the
TBS handler for create order needs another coordi-
nation protocol (e.g. a compensation-based proto-
col) (see figure 6(b)).

2.8 Known uses
In [4] a prototype of a Web service orchestration layer

overlaying Web Service Description Language (WSDL)1 and
Business Process Execution Language (BPEL)2 was devel-
oped using the pattern language for handling TBSs.

1http://www.w3.org/TR/wsdl
2http://www.oasis-open.org/committees/wsbpel

The pattern language presented in this article was also ap-
plied in a case study, which dealt with the integration of
COTS3 applications for customer management, finance and
service provisioning for a Dutch broadband provider [9]. In
the remainder of this subsection we outline the case study.
More details can be found in [9, 10].
We consider a business process for order handling in the
telecommunication company. Executing the business pro-
cess is done by interacting with four COTS applications
(Sales and Marketing, Service Provisioning, Finance and
Customer Support). Since defining business processes as
sequence constraints on message exchanges is considered a
too low-level task, the business process at hand is described
using TBSs. These TBSs are responsible for the interac-
tions required to execute a business activity. Figure 7 gives
a high-level overview of the business process using four TBSs
(create order, install, invoice and pay).The company needed
a solution which was scalable, flexible and implementable in
the current environment, consisting mainly of COTS appli-
cations. Several forces (as mentioned in 2.4) made it com-
plex to design an appropriate solution: e.g. sharing business
rules was difficult when using certain COTS applications,
some COTS applications have limited support for certain
coordination protocols, etc. These forces made it difficult
to choose between several implementation alternatives. As
such, the TBS handler pattern helped to make the right
decisions. Furthermore it provided clear descriptions of pos-
sible solution aspects (by means of the subpatterns).

3. THUMBNAILS

• subscription manager
This is a component or service which allows to store in-
formation about TBSs and correspondig participants.
It also allows services to dynamically subscribe and
unsubscribe for certain TBSs.

• hardcode all participating services
Instead of using a subscription manager it is also
possible to hardcode all participating services in the
TBS handler.

3Commercial off-the-shelf



COTS applications (services)

Business process built using TBSs

Transactional Business 

Service

create order

Sales and Marketing
Service Provisioning

Finance

Transactional Business 

Service

install

Transactional Business 

Service

invoice

Transactional Business 

Service

pay

Customer Support General Ledging
Logistics

Coordinated 

Microflow
Coordinated 

Microflow
Coordinated 

Microflow

Coordinated 

Microflow

Figure 7: A business process in a telecommunication company

• two-phase commit
This coordination protocol consists of two phases. In
the first phase the processing of a TBS is prepared.
If the first step ended successfully the processing of a
TBS is completed in the second phase.

• compensation based
All participating services try to process a TBS. If any
participant fails to do so all services are asked to com-
pensate the processing of the TBS.

• private and checked decentrally
A participating service does not share business rules.
It is only possible to ask to the participant whether or
not business rules are violated.

• shared with the TBS handler and checked cen-
trally
A participating service shares business rules. As such
other components (e.g. the TBS handler) can check
business rules set by the participant themselves (with-
out communicating with the participant).

Acknowledgements
The authors would like to thank Alejandra Garrido for her
many constructive and valuable remarks during the shep-
herding process. Furthermore the quality of this article has
increased substantially after the conference’s writers’ work-
shop. The authors thank the workshop participants, Paul
Austrem, Philipp Bachmann, Rob Daigneau, Lise Hvatum,
John Liebenau, Mark Mahoney, Miyuko Naruse and Bobby
Woolf, for their extensive, constructive, helpful and inspir-
ing discussion of a previous version of this article.
This has been written as part of a project funded by the
Research Fund K.U.Leuven (OT 05/07), whose support is
gratefully acknowledged.

4. REFERENCES
[1] A. Arkin, S. Askary, S. Fordin, W. Jekeli,

K. Kawaguchi, D. Orchard, S. Pogliani, K. Riemer,
S. Struble, P. Takacsi-Nagy, et al. Web Service
Choreography Interface (WSCI) 1.0. Standards
proposal by BEA Systems, Intalio, SAP, and Sun
Microsystems, 2002.

[2] B. Benatallah, F. Casati, and F. Toumani. Web
service conversation modeling: a cornerstone for
e-business automation. Internet Computing, IEEE,
8(1):46–54, 2004.

[3] F. Daniel and B. Pernici. Insights into Web Service
Orchestration and Choreography. International
Journal of E-Business Research, 2(1):58–77, 2006.

[4] J. Decroos. The development of an event layer for
Web service orchestration. Master thesis K.U.Leuven,
Faculty of Business and Economics, Belgium, 2005.

[5] N. Desai and MP Singh. Protocol-based business
process modeling and enactment. Web Services, 2004.
Proceedings. IEEE International Conference on, pages
35–42, 2004.

[6] M. Hammer and J. Champy. Reengineering the
Corporation: A Manifesto for Business Revolution.
HarperCollins, 2003.

[7] JE Hanson, P. Nandi, and S. Kumaran. Conversation
support for business process integration. Enterprise
Distributed Object Computing Conference, 2002.
EDOC’02. Proceedings. Sixth International, pages
65–74, 2002.

[8] C. Hentrich and U. Zdun. Patterns for
process-oriented integration in service-oriented
architectures. Proceedings of 11th European
Conference on Pattern Languages of Programs
(EuroPlop 2006), 2006.

[9] W. Lemahieu, M. Snoeck, and C. Michiels. Integration
of third-party applications and web clients by means
of an enterprise layer. Annals of cases on information



technology, pages 213–233, 2003.

[10] Geert Monsieur, Monique Snoeck, and Wilfried
Lemahieu. Coordinated web services orchestration.
Proceedings of the IEEE International Conference on
Web Services (ICWS), pages 775–783, 2007.

[11] M.P. Singh, A.K. Chopra, N. Desai, and A.U. Mallya.
Protocols for processes: programming in the large for
open systems. ACM SIGPLAN Notices, 39(12):73–83,
2004.

[12] X. Yi and K.J. Kochut. Process composition of web
services with complex conversation protocols: a
colored petri nets based approach. Proc. of the
Design, Analysis, and Simulation of Distributed
Systems Symposium at Adavanced Simulation
Technology Conf, pages 141–148, 2004.


