
Web Security Patterns for Analysis and Design

Takao Okubo
Fujitsu Laboratories ltd.

Kamikodanaka 4­1­1, Nakahara­ku,
Kawasaki,Japan

okubo@jp.fujitsu.com

Hidehiko Tanaka
Institute of Information Security

Tsuruyacho 2­14­1, Kanagawa­ku,
Yokohama, 221­0835 Japan

tanaka@iisec.ac.jp

ABSTRACT
Although security requirements analysis plays a very signif-
icant role in secure software development, it is difficult since
it requires much security expertise and man-power. Plain
and practical security requirements patterns are needed. We
have presented a visualized analysis approach for eliciting
security requirements by extending misuse cases, and found
that some of its results can be pattern candidates. This
paper proposes 8 new web security requirements patterns
with our analysis approach. The proposed patterns give an-
alysts a way to find a proper pattern for a specific security
goal. They are related to security solutions, and also pro-
duce some security design possibilities. We have applied
these patterns to some case studies and evaluated that they
are effective for web security analysis.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—
Patterns

General Terms
Security

Keywords
Analysis, design, reruirements, security pattern, web appli-
cation program

1. INTRODUCTION
In this paper we present some web security requirements

patterns which have been mined by applying our new secu-
rity analysis approach.

Security issues have become more and more important
in software development. In spite of software developers’ ef-
forts, many security incidents are reported every day. These
incidents occur because security functionalities are not real-
ized properly, or they are disregarded from the beginning.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission. A preliminary version of this paper was presented in a writers’
workshop at the 15th Conference on Pattern Languages of Programs (PLoP).
PLoP ’08,October 18–20, 2008, Nashville, TN, USA.
Copyright 2008 is held by the author(s). ACM 978­1­60558­151­4.

One of the reasons why security is disregarded is the lack
of security aspects in the lifecycle. In general software devel-
opment, analysts only have to consider the normal behavior
of programs: the intended usage by proper users. However,
in order to elicit security requirements, analysts have to con-
sider abuse or misuse of the functions from the viewpoint of
adversaries. This is one of the biggest differences between
security analysis and functional analysis. Currently, for se-
curity, another special analysis is done by security experts,
who have the expertise of what adversaries want and where
and how attacks are performed. They do the analysis from
the viewpoint of the attackers and find what are the threats
for the target system, this is called ”threat analysis”.

Unfortunately, threat analysis is difficult without secu-
rity expertise. Analysts have to identify in advance po-
tential vulnerabilities which may occur in the programming
stage. There are web program-specific vulnerabilities such
as cross-site scripting (XSS)[11], cross-site request forgery
(CSRF)[10] and injection attacks[9]. But current security
analysis methods cannot identify systematically such threats
in the later stages. It requires a great deal of manpower,
meanwhile the number of security experts is limited.

If there exists an efficient security requirements method,
analysts can save the manpower for verifying the coverage
of threat identification. If there are security requirements
patterns, analysts may be able to skip some requirements
steps by reusing the patterns.

We have proposed a new security requrements method
which enables identification of potential threats in program-
ming and expanding security coverage with misuse cases[7].
Although misuse cases are well visualized and efficient for
understanding and verification, they lack expression of as-
sets and they are not useful for asset-based threat analy-
sis. Therefore we have extended misuse cases for asset-based
analysis. We have applied our approach to the web domain
and successfully mined 8 analysis patterns. The contexts
of these patterns are clear, so analysis can find the proper
patterns from use case diagrams of the target program.

The target audience of this paper are web application de-
velopers who have some knowledge about web security such
as XSS, but who are not security experts. Security experts
may be able to confirm the correctness of the proposed pat-
terns. developers with little security knowledge may be able
to learn that if they specify the contexts of their application,
they can find the possible threats and countermeasures au-
tomatically by applying the proposed patterns.

Section 2 reviews current security patterns and their is-
sues. In Section 3.1 our efficient security analysis approach



with the extension of misuse cases is presented. In Sec-
tion 3.2 new web security patterns mined with Section 3.1’s
approach are presented. Section 4 examines the presented
patterns with some case studies. Section 5 concludes this
paper. The Appendix describes the remaining 6 patterns.

2. CURRENT SECURITY PATTERNS
In this section, current security patterns are evaluated in

terms of web security. Several security patterns are pre-
sented in [6]. Some of them can be categorized as require-
ments patterns and the others as design patterns.

1. Security patterns for mechanisms
Identification and Authentication (I&A), Authoriza-
tion, Access control and logging are kind of design pat-
terns. These patterns are already well known and used.
However, there are more web security vulnerabilities
such as injection attacks (SQL injection[9], pass traver-
sals), cross-site scripting(XSS[11]) and cross-site re-
quest forgery(CSRF[10]) and current patterns or frame-
works do not provide complete remedy for those vul-
nerabilities.
Design patterns contain another issue different from
the security domain. Most design patterns do not have
so much critical effect on software quality as on secu-
rity quality. For example, even without applying the
”Visitor pattern”, it is possible to build software with
the same behavior as the software with the ”Visitor
pattern”. However if ”I&A pattern” is not applied, it
may be difficult to keep it secure. Therefore, security
design patterns should satisfy the following require-
ments.

• Appropriate patterns must be found for certain
security requirements.

• Their application should be forced.

• Their application should be easily verified.

2. Security requirements patterns
As requirements patterns, the steps for eliciting se-
curity requirements are presented in [6]. They are
security needs identification, asset valuation, threat
assessment, vulnerability assessment, risk determina-
tion, etc. Although they are necessary for eliciting
requirements[2][4], they are not enough for analysts to
select the right security approach. More instance pat-
terns are required.

As a result of the analysis of current patterns, we have found
that security design patterns require analysis in advance for
finding the proper context applying the patterns. Security
requirements patterns should be the first step.

3. PROPOSED WEB SECURITY PATTERNS
In this section, we propose some new security requirem-

nents patterns for web application programs. They are prac-
tical instance patterns, so that analysts can easily find the
proper patterns for satisfying the security requirements of
their programs. Moreover, the proposed requirements pat-
terns are strongly related to the security designs (some of
which are design patterns). This approach solves the issue
mentioned in the previous section, that appropriate patterns
must be found for certain security requirements.

3.1 A New Analysis Approach with Extended
Misuse Case

The proposed patterns have been mined by applying a
new security analysis approach[5]. The approach enables
expanded security coverage by improving the expressiveness
of Sindre and Opdahls’ misuse case approach[7].

1. Asset-based extension

• Data assets
Although assets (especially data assets) are es-
sential factors for threat analysis[2][4], they aren’t
explicitly described in the original misuse case di-
agram. Therefore the proposed method adds a
definition of data assets as shown in Figure 1. A
UML note in Figure 1 represents a data asset in-
terchanged between an actor and a use case, and
the ”flow direction” stereotype represents the di-
rection of the interchange. The ”flow direction”
have two types; ”⟨⟨send⟩⟩” and ”⟨⟨receive”.

Figure 1: Asset-based extensions.

• Security properties on assets
Security properties of confidentiality (C), integrity
(I), availability (A) and privacy(P) are added on
the asset elements (data assets/ use cases) in the
form of ’stereotype’ of UML(see Figure 2).

• Targets of misuse cases
In the original misuse case diagram, targets of the
misuse cases are only use cases. We have extended
the original notation so that the misuse cases can
point data assets in addition to use cases(see Fig-
ure 2.

2. Extension of architecture information
The original misuse case diagram[7] has no architec-
tural information. Our new approach[5] added a no-
tation of stereotype ”threat point” to a misuse case
which represents the architecture points where the tar-
get threat may be possible. The ”threat point” stereo-
type takes 3 types; ”⟨⟨ client⟩⟩”, ”⟨⟨network⟩⟩” and
”⟨⟨server⟩⟩”. Figure 2 shows this extension. We have
also added the notation representing dependency be-
tween threats. The arrow named ”enables” means that
the misuse case at the end point is enabled by the mis-
use case at the start point. This extension aims at
rough assessment of the possibility of each threat. In



Figure 2: Extension about assets and architecture
notation.

1

(c) him/herself(b) AuthorizedUser (not him/herself)(a) Unauthorizedperson
Figure 3: Fine classification of mis-actors.

the analysis stage, fine grained threat assessments like
attack tree[4] are difficult to apply because details of
the system architecture have not yet been determined.
However, in order to elicit security requirements, se-
curity analysis needs (even rough) threat assessments.

3. Adding types of mis-actors
The original misuse case diagram[7] contains only one
kind of mis-actor. But security measures must differ
depending on the types of mis-actors:

(a) unauthorized person

(b) other authorized user (not him / herself)

(c) actor him / herself

User identification and authentication (I&A) is effec-
tive as a measure against abuse of use cases for type
(a) of mis-actor, but not for type (c). For type (c), an-
other security measure is required. As just described,
there is a risk that some of the measures related to a
single mis-actor may be missed. Therefore, our new
method[5] defines three types of mis-actor as shown in
Figure 3.

The proposed approach is also used for describing the pat-
terns graphically.

3.2 Web Security requirements patterns with
the New Approach

The proposed security patterns have been mined through
the application of our approach to web programs. We have
found that some typical threats and solutions are identified
in certain patterns of the use cases and assets. We have
formalized them as web security requirements patterns.

• ”Abuse” pattern

• ”Confidential data being sent” pattern

• ”Integral data being sent” pattern

• ”Shared data being received” pattern

• ”Proivate data being received” pattern

• ”Integral data being received” pattern

• ”ID/Password authentication” pattern

• ”Session management” pattern

Each pattern involves the context, problem patterns and
solution patterns. The context navigates the right context
(use case and asset types) that the pattern should be ap-
plied. Problem sections help identifying potential threats
in programs. Solution sections can be used to select proper
countermeasures against certain threats.

In the following sections, two patterns will be described
in detail. The pattern description uses the same pattern
characteristics formats defined in [6]. Refer to the appendix
for details of the rest of the patterns.

3.2.1 "Abuse" pattern

Context This pattern should be applied if it is undesirable
that the target use case is ”abused”. ”Abuse” means
an unintended use violating availability of the target
use case. It represents the following threats or attacks.

• Unauthorized use: use by a person who is not
allowed to use the use case.

• Unintended use: use for unintended purposes such
as fraud.

• Attacks such as Denial of service (DoS).

Security property ”availability” is required for use cases
of the target program. This pattern does not care
whether there is a data asset or not.

Table 3.2.1 and Figure 4 shows the context. Analysts
can find the applicability of this pattern by verifying
whether the usecase diagram of their program contains
the matching pattern of Figure 4.

Characteristic condition security data flow

Use case type any availability n/a
Data asset any any any

Table 1: ”Abuse” pattern: context.

Problem See Figure 5, 6 and 7. Consequently, there exist
the following threats in the program.



1. Unintended use of the use case (including abuse
and Denial of Service (DoS) attack) by an unau-
thorized user and an authorized user.

2. Spoofing of the use case function (such as a server
application) by an unauthorized user,

3. Repudiation by an authorized user (him/herself).

4. Spoofing of users which enables unintended use
and repudiation.

5.

In Figure 5 there are ”enabled” notations between somi
misuse cases. It means that some misuse cases may
become possible due to other misuse cases. It is similar
to the association of threat trees and fault trees.

Solution See Figure 8, 9 and 10. Solutions are the follow-
ing:

1. I&A is useful for preventing unintended use of the
use case by an unauthorized user.

2. Server authentication such as SSL/TLS and pro-
viding server comfirmation methods (such as not
to hide the address-bar of web browsers) are use-
ful for preventing or detecting spoofing of the use
case function.

3. I&A is useful for preventing user spoofing.

4. Logging is useful for detecting abuse and repudi-
ation.

Figure 4: ”Abuse” pattern: context.

Consequences By applying the problem pattern, analysts
can easily find all the typical web threats in the general
use cases. They can also use it to confirm their result of
the threat analysis. By applying the solution pattern,
they can identify design of the security functions as
countermeasures against the threats. Some of them
can be related to security design patterns (see ”See
also”).

See Also The following patterns are related to this pattern.
For example, unintended uses and DoS attacks threaten
use cases required availability.

• I&A[6]

• Logging[6]

• Secure networks (SSL)[6]

Figure 5: ”Abuse” pattern: problem (1).

Figure 6: ”Abuse” pattern: problem (2).

Figure 7: ”Abuse” pattern: problem (3).

3.2.2 "Confidential data being sent" pattern

Context This pattern can be applied when there are some
”confidential” data assets sent from actors to use cases.
Table 3.2.2 and Figure 11 shows the context.

Problem From Figure 12, we can find that, there exists the
following threats in the program.

1. Disclosure data being sent on the client enabled
by vewing caches.



Figure 8: ”Abuse” pattern: solution (1).

Figure 9: ”Abuse” pattern: solution (2).

Figure 10: ”Abuse” pattern: solution (3).

Characteristic condition security data flow

Use case type any any n/a
Data asset required confidentiality send

Table 2: ”Confidential data being sent” pattern:
context.

2. Disclosure data being sent on the client enabled
by shoulder hacking.

3. Disclosure of the sending information on the net-

work enabled by man in the middle (MITM) at-
tacks.

4. Disclosure of the sending information on the server
enabled by injection attacks[9].

5. Disclosure of the sending information on the server
enabled by XSS[11] attacks.

6. Disclosure of the sending information on the server
enabled by inappropriate access control.

Solution See Figure 13. Solutions are as the following.

1. Disabling caches is useful for preventing disclo-
sure data on the client enabled by vewing caches.

2. Hiding the data is useful for disclosure data on
the client enabled by shoulder hacking.

3. Encryption of communication (such as SSL/TLS)
is useful for preventing disclosure on the network
enabled by MITM attacks.

4. Countermeasures against injection attacks (such
as use of parameter binding mechanism) are use-
ful for preventing disclosure on the server.

5. Countermeasures against XSS (such as sanitizing
output) are useful for disclosure on the server.

6. Correct access control are useful for preventing
disclosure on the server.

Consequences Injection attacks such as SQL injection, OS
command injection are performed with injecting ma-
licious input including some part of SQL/ OS com-
mands. Injection attacks enable tampering and disclo-
sure of information. Therefore if there is a data asset
being sent (this context), developers need to imple-
memnt countermeasures preventing injection attacks.

Figure 11: ”Confidential data being sent” pattern:
context.

See Also The following patterns are related to this pattern.

• Secure networks (SSL)[6]

4. CASE STUDIES



Figure 12: ”Confidential data being sent” pattern:
problem.

Figure 13: ”Confidential data being sent” pattern:
solution.

4.1 Web Bookstore
We had some case studies when we apply our patterns to

several sample application programs. This paper presents
one of these applications, which is a web bookstore such as
Amazon.com. It has three use cases:

1. Search books
Customers search books they want to buy. They may
want to keep secret the search keywords and search
results.

2. View/edit personal information
Customers are required to input their personal infor-
mation such as name, address and telephone number.
They are allowed to view and edit their own informa-
tion on the web, but not other customers’ information.

3. Order books
Customers can order books. The order list sent from
customers to the server must not be seen or modified
by any other persons.

Before applying our pattern, the extended use case to which
data assets and security properties are added must be drawn.
Figure 14 presents the extended use case diagram. After
drawing the diagram, each part of the diagram is compared
to the contexts of our patterns. If it matches one of the

Figure 14: The extended use case diagram of a web
bookstore.

contexts, the pattern of the context can be applied. In
Figure 14, at the ”View/edit user information” use case
part, ”Abuse” pattern (Section 3.2.1, ”Leaks of data be-
ing sent” pattern (Section 3.2.2), ”Tampering data being
sent” pattern (Section A.1), ”Disclosure of private data”
pattern (Section A.3) and ”Tampering receiving data” pat-
tern (Section A.4) can be applied. At the ”Search books”
part, ”Leaks of data being sent” pattern(Section 3.2.2) and
”Disclosure of private data” pattern (Section A.3) can be ap-
plied. At the ”Order books” part, ”Abuse” pattern (Section
3.2.1), ”Leaks of data being sent” pattern (Section 3.2.2) and
”Tampering data being sent” pattern (Section A.1) can be
applied. The result of the first analysis iteration is presented
in Table 4.1.

In this case it requires a second iteration. In the first
iteration another asset ”password” has been added to the
system, so we have to consider threats to passwords. If ana-
lysts choose ID/password authentication and password man-
agement, ”ID/password” pattern (Section A.5) and ”Session
management” pattern (Section A.6) may be applied. There-
fore, threats and solutions on Table 4.1 are added to the
result of the first iteration.

4.2 Discussion

Efficiency of patterns Usual security analysis requires the
following steps[6][2][4].

1. Use case definition

2. Asset identificaton

3. Asset valuation

4. Threat identification

5. Threat assessment &risks

6. Security solution elicitation

7. Security solution determination

With the presented patterns, some of the steps 4 to 6
can be skipped by matching the pattern context to the
given use cases and assets. Analysts can obtain typical
web threats and solutions from patterns. However, the
threats in the presented patterns are only typical ones.
Analysts may have to check if there are others.



Threat asset mis-actor location solution solution type

Abuse

view/edit personal info.

order books unauthorized person server I&A prevent

Abuse

view/edit personal info.

order books unauthorized person server logging detect

Leaks

personal info.
Search keyword

order other person client countermeasure against XSS prevent

Leaks

personal info.
search keyword

order other person network encryption prevent

Leaks

personal info.
search keyword

order other person server countermeasure against injection prevent

Disclosure
personal info.
search result other person client disabling caching prevent

Disclosure
personal info.
search result other person client I&A prevent

Disclosure
personal info.
search result other person network encryption prevent

Disclosure
personal info.
search result other person server access control prevent

Disclosure
personal info.
search result other person server countermeasure against injection prevent

Tampering
personal info.

order other person client I&A prevent

Tampering
personal info.

order other person network encryption prevent

Tampering
personal info.

order other person server countermeasure against injection prevent

Tampering
personal info.

order other person server countermeasure against XSS prevent

Tampering
personal info.

order other person server countermeasure against CSRF prevent

Tampering
personal info.

order other person server logging detect

Table 3: The analysis result of the first iteration.

Threat asset mis-actor location solution solution type

Disclosure password unauthorized person client hiding password prevent
Disclosure session token unauthorized person client countermeasure against XSS prevent
Disclosure session token unauthorized person client cookie management prevent

Disclosure
password

session token unauthorized person network SSL detect
Brute force attack password unauthorized person server strong password spec. prevent
Dictionary attack password unauthorized person server strong password spec. prevent
Session fixation session token unauthorized person server countermeasure against session fixation prevent
Session hijack session token unauthorized person server countermeasure against session hijack prevent

Table 4: The analysis result of the second iteration.

Sufficient condition The case study result of the ”web
bookstore” points that the presented threat identifi-
cation for the patterns is good sufficiency. It enables
threats referred in web threat classifications such as [8]
to be identified when applying the patterns.

Necessary condition The presented patterns, by them-
selves, cannot give the reasoning about what kind of
threats are required for the given program. The rea-
soning has to rely on ”security expertise” because the
patterns are based on the result of human analysis,

although it is visualized for easy understanding. To
prove the necessary condition, we need more empirical
evaluation for our analysis method.

5. CONCLUSIONS
This paper proposed some new requirements patterns for

web security. The proposed patterns solves one of the security-
related problem: how to find a proper pattern for a certain
security goal. Each context of the pattern gives analysts
the information whether it should be applied to their pro-



grams or not. Contexts, problems, and solutions are rep-
resented visually which helps the understanding of analysts
and stakeholders.

The proposed patterns also provide security design pos-
sibilities. They appear in the ”Solution” characteristics of
patterns. Some of the security design candidates, such as
I&A are related to the current security design patterns.
which are presented in ”See also”.

Our case study shows that if the use case and asset anal-
ysis is done, it is easy for analysts to find and apply our
patterns. As a result analysts obtain sufficient threats and
suggestion of their solutions.

Our approach is based on the misuse case approach. It
does not decompose the activity sequences because our tar-
get development fields require lightweight analysis for re-
quirements alicitation. If more precise analysis is allowed,
there is another requirements elicitation approach using mis-
use activities which extends activity diagrams[3][1]. Misuse
activities enables more granular analysis for possible threats.
Then if more precise analysis is allowed, the misuse activities
may be the alternative.

As mentioned in Section 4.2, though the presented pat-
terns have ability to identify sufficient threats and solutions,
currently it is difficult to prove that the proper threats are
identified for the given situation. A more empirical evalua-
tion is required, which is future work.

6. ACKNOWLEDGMENTS
We appriciate our shepherd, Eduardo Fernandez and all

the atendeees of the ”Security & Quality” writers’ workshop
for valuable comments that improved this paper.

7. REFERENCES
[1] Braz, F., Fernandez, E. B., and VanHilst, M.

Eliciting security requirements through misuse
activities. In accepted for the 2nd Int. Workshop on
Secure Systems Methodologies using Patterns
(SPattern’07). In conjunction with the 4th
International Conference onTrust, Privacy & Security
in Digital Busines(TrustBus’07) (Turin, Italy, 2008).

[2] CC. Common criteria for information technology
security evaluation v3.1, 2007[Online]. Available:
http://www.commoncriteriaportal.org/public/

developer/index.php?menu=2. (accessed 2008-06-28).

[3] Fernandez, E. B., VanHilst, M., Petrie, M.
M. L., and Huang, S. Defining security requirements
through misuse actions. In in Advanced Software
Engineering: Expanding the Frontiers of Software
Technology, S. F. Ochoa and G.-C. Roman (Eds.),
International Federation for Information Processing
(2006), Springer, pp. 123–317.

[4] Howard, M., and LeBlanc, D. Writing Secure
Code Second Edition. Microsoft, 2003.

[5] Okubo, T., and Tanaka, H. Identifying security
aspects in early development stages. In Proc.
International Conference on Availability, Reliability
and Security (ARES’08) (Barcelona, Spain, Mar.
2008), pp. 1148–1155.

[6] Schumacher, M., Fernandez-Buglioni, E.,
Hybertson, D., Buschmann, F., and Sommerlad,
P. Security Patterns. Wiley, 2006.

[7] Sindre, G., and Opdahl, A. L. I. Eliciting security
requirements by misuse cases. In Proc. TOOLS Pacific
2000 (2000), pp. 120–131.

[8] Threat classification, 2007[Online]. Available:
http://www.webappsec.org/projects/threat/.
(accessed 2008-06-28).

[9] WASC. Web application security consortium threat
classification: Sql injection, 2007[Online]. Available:
http://www.webappsec.org/projects/threat/

classes/sql injection.shtml. (accessed 2008-06-28).

[10] Watkins, P. Cross-site request forgeries,
2007[Online]. Available:
http://www.tux.org/∼peterw/csrf.txt.

[11] Cert advisory ca-2000-02 malicious html tags
embedded in client web requests, 2000[Online].
Available:
http://www.cert.org/advisories/CA-2000-02.html.
accessed(2008-06-28).

APPENDIX

A. APPENDIX: WEB SECURITY REQUIRE­
MENTS PATTERNS (REST 6 PATTERNS)

A.1 "Integral data being sent" pattern

Context This pattern can be applied to a program where
some data assets required integrity are sent from ac-
tors to use cases. Table A.1 and Figure 15 shows the
context.

Characteristic condition security data flow

Use case type any any n/a
Data asset required integrity (I) sent

Table 5: ”Tampering data being sent” pattern: con-
text.

Problem See Figure 16 and Figure 17. Consequently, there
exist the following threats in the program.

1. Tampering data being sent on the network enabled
by MITM attacks.

2. Tampering data being sent on the server enabled
by injection attacks, XSS and CSRF.

3. Tampering data being sent on the server enabled
by user spoofing.

4. Repudiation of data being sent by a user him/herself.

Solution See Figure 18 and 19.

1. Encryption such as SSL/TLS is useful for prevent-
ing MITM attacks which enables tampering on the
network.

2. Countermeasures against injection attacks, XSS and
CSRF are useful for preventing tampering on the
server.

3. I&A against spoofing is useful for preventing tam-
pering on the server.

4. Logging is useful for detecting tampering on the
server.

5. Original Assurance such as digital signature, time
assurance and I&A is useful for preventing repudi-
ation.



See Also The following patterns are related to this pattern.

• I&A[6]

• Logging[6]

• Secure networks (SSL)[6]

Figure 15: ”Integral data being sent” pattern: con-
text.

Figure 16: ”Integral data being sent” pattern: prob-
lem (1).

Figure 17: ”Integral data being sent” pattern: prob-
lem (2).

Figure 18: ”Integral data being sent” pattern: solu-
tion (1).

Figure 19: ”Integral data being sent” pattern: solu-
tion (2).

A.2 "Shared data being received" pattern

Context This pattern can be applied to the program which
shared data assets are sent from use cases to actors.
Table A.2 and Figure 20 shows the context. ”Shared”
data means that its access is allowed to the actors of the
same role. ”C1” stereotype in Figure 20 represents that
the data is required ”shared” level of confidentiality.

Characteristic condition security data flow

Use case type any any n/a
Data asset required confidentiality (C) received

Table 6: ”Shared data being received” pattern: con-
text.

Problem See Figure 21.

1. Disclosure shared data on the client enabled by
vewing caches.

2. Disclosure shared data on the client enabled by
shoulder hacking.

3. Disclosure shared data on the network enabled by
MITM attacks.

4. Disclosure shared data on the server enabled by
user spoofing and injection attacks.



Figure 20: ”Shared data being received” pattern:
context.

Figure 21: ”Shared data being received” pattern:
problem.

Figure 22: ”Shared data being received” pattern:
solution.

Solution See Figure 22.

1. Disabling caches is useful for preventing disclosure
data on the client enabled by vewing caches.

2. Hiding the data is useful for disclosure data on the
client enabled by shoulder hacking.

3. Encryption such as SSL/TLS is useful for prevent-
ing disclosure on the network enabled by MITM

Figure 23: ”Private data being received” pattern:
context.

attacks.

4. I&A is useful for preventing disclosure on the server
enabled by user spoofing.

5. Countermeasures against injection attacks are use-
ful for preventing disclosure on the server.

See Also The following patterns are related to this pattern.

• I&A[6]

• Secure networks (SSL)[6]

A.3 "Private data being received" pattern

Context This pattern can be applied to the program which
private data assets are sent from use cases to actors.

Table A.3 and Figure 23 shows the context. ”Private”
data means that its access is allowed to the owner only.
”P” stereotype in Figure 23 represents that the data is
required ”private” level of confidentiality.

Characteristic condition security data flow

Use case type any any n/a
Data asset required privacy (P) received

Table 7: ”Private data being received” pattern: con-
text.

Problem See Figure 24.

1. Disclosure private data on the client enabled by
vewing caches.

2. Disclosure private data on the client enabled by
shoulder hacking.

3. Disclosure private data on the network enabled by
MITM attacks.

4. Disclosure private data on the server enabled by
user spoofing and injection attacks.

5. Disclosure private data on the client enabled by
inappropriate access control.

Solution See Figure 25.

1. Disabling caches is useful for preventing disclosure
data on the client enabled by vewing caches.

2. Hiding the data is useful for disclosure data on the
client enabled by shoulder hacking.



Figure 24: ”Private data being received” pattern:
problem.

Figure 25: ”Private data being received” pattern:
solution.

3. Encryption such as SSL/TLS is useful for prevent-
ing disclosure on the network enabled by MITM
attacks.

4. I&A is useful for preventing disclosure on the server
enabled by user spoofing.

5. Countermeasures against injection attacks are use-
ful for preventing disclosure on the server.

6. Appropriate access control is useful for preventing
unintended data accesses on the server.

See Also The following patterns are related to this pattern.

• I&A[6]

• Access Control[6]

• Secure networks (SSL)[6]

A.4 "Integral data being received" pattern

Context This pattern can be applied to a program where
some data assets which require integrity are sent from
use cases to actors. Table A.4 and Figure A.4 shows
the context.

Problem See Figure 27 and 28.

1. Tampering data on the network enabled by MITM
attacks.

2. Tampering data on the server enabled by injection
attacks and user spoofing.

Characteristic condition security data flow

Use case type any any n/a
Data asset required integrity received

Table 8: ”Integral data being received” pattern:
context.

Solution See Figure 29 and 30.

1. Countermeasures against injection attacks, XSS and
CSRF are useful for preventing tampering on the
server.

2. Encryption such as SSL/TLS is useful for prevent-
ing MITM attacks which enables tampering on the
network.

Figure 26: ”Integral data being received” pattern:
context.

Figure 27: ”Integral data being received” pattern:
problem (1).

A.5 "ID/Password authentication" pattern

Context This pattern can be applied to the program where
ID/password authentication has been introduced. ID/password
authentication is the major authentication method in
the web application domain. Application of this pat-
tern may be examined after the introduction of I&A is
determined with other patterns,

Table A.5 and Figure 31 shows the context.



Figure 28: ”Integral data being received” pattern:
problem (2).

Figure 29: ”Integral data being received” pattern:
solution (1).

Figure 30: ”Integral data being received” pattern:
solution (2).

Problem See Figure 32. Data Asset ”password” has been
newly added to the program. Therefore additional threats
may be identified for the new assets. The new identified
threats are:

1. Brute force attacks on a password which enables
user spoofing.

2. Dictionary attacks on a password which enables

Characteristic condition security data flow

Use case type any any n/a
Data asset any any any

Other

use ID/password

authentication n/a n/a

Table 9: ”ID/Password authentication” pattern:
context.

Figure 31: ”ID/Password authentication” pattern:
context.

Figure 32: ”ID/Password authentication” pattern:
problem.

user spoofing.

3. Disclosure of a password on the client and the net-
work.

4. Disclosure of a stored password.

Solution See Figure 33.

1. Hiding passwords is useful for preventing disclosure
on the client.

2. Encryption of communication is useful for prevent-
ing disclosure of passwords on the network.

3. Strong password specification which rejects pass-
words with short length and a small repertoire of
characters is useful for preventing brute force at-
tacks.

4. Rejecting passwords which are easy to guess such as
dictionary words, phone numbers and birth dates is



Figure 33: ”ID/Password authentication” pattern:
solution.

useful for preventing dictionary attacks and guess-
ing passwords.

See Also The following patterns are related to this pattern.

• Password design and use[6]

A.6 "Session management" pattern
Context This pattern can be applied to the program where

session management has been introduced. Session man-
agement is usually used for maintaining web session
data, especially for authenticated users. Therefore ap-
plication of this pattern may be examined after the
introduction of I&A is determined with other patterns,
Table A.6 and Figure 34 shows the context.

Characteristic condition security data flow

Use case type any any n/a
Data asset any any any

Other
use session

management n/a n/a

Table 10: ”Session management” pattern: context.

Figure 34: ”Session management” pattern: context.

Problem See Figure 35. By introducing session manage-
ment, session token is identified as a new data asset.
Therefore analysts have to consider threats for the new
asset. The new threats for a session token are:

Figure 35: ”Session management” pattern: prob-
lem.

1. Guessing a session token which enables user spoof-
ing.

2. Session fixation attacks which enable user spoofing.

3. Session hijack attacks which enable user spoofing.

4. Disclosure session tokens on the client.

5. XSS which enables disclosure session tokens on the
client.

6. Disclosure session tokens on the network with MITM
attacks.

Solution See Figure 36.

Figure 36: ”Session management” pattern: solution.

1. Strong (random) session token generation which
makes tokens difficult to guess.

2. Countermeasures which prevent session fixation.

3. Countermeasures which prevent session hijack.

4. Secure cookie management such as setting secure
attribute, proper domain and expiration date are
useful for preventing disclosure session tokens on
the client.

5. Countermeasures against XSS useful for preventing
disclosure on the client.

6. Encryption of communication useful for preventing
disclosure session tokens on the network.


