
The Secure Blackboard pattern ∗

Jorge L. Ortega-Arjona
Departamento de Matemáticas

Facultad de Ciencias, UNAM, México
jloa@fciencias.unam.mx

Eduardo B. Fernandez
Dept. of Computer Science and Eng.

Florida Atlantic University
Boca Raton, FL 33431, USA

ed@cse.fau.edu

ABSTRACT
This paper presents the Secure Blackboard pattern as a se-
cure version of the original Blackboard pattern and Shared
Resource pattern. The Blackboard pattern is an architec-
tural pattern useful for problems for which no determinis-
tic solution strategies are known. Several specialized sub-
systems or components “assemble” their knowledge to build
a possibly partial or approximate solution, coordinated by
a central controller. On the other hand, the Shared Re-
source pattern is a specialization of the Blackboard pattern,
in which subsystems or components are allowed to perform
simultaneous computations without a prescribed order on
different, ordered data. The Secure Blackboard pattern in-
cludes ways to add security at the control component, pro-
viding secure handling of data, as well as controlling data
transformation and movement.

Categories and Subject Descriptors
D.2.11 [Software architectures: patterns]: Design—Se-
curity ; D.1.3 [Concurrent Programming]: Distributed
programming—Security

General Terms
Security Patterns

Keywords
Software Pattern, Security Pattern, Software Architecture,
Blackboard

∗Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists,
requires prior specific permission. Preliminary versions of
these papers were presented in a writers’ workshop at the
15th Conference on Pattern Languages of Programs (PLoP).
PLoP’08, October 18-20, Nashville, TN, USA. Copyright
2008 is held by the author(s). ACM 978-1-60558-151-4

1. INTRODUCTION
Many applications, such as problem solving, image process-
ing, feedback control, or even some web applications, are
developed based on a central information repository, com-
posed of (a) a blackboard, which contains a centralized data
structure, (b) several independent components, known as
knowledge sources, which are capable of reading, processing,
and updating the data elements of the blackboard, and (c)
a control, which is in charge of monitoring the blackboard
and synchronizing the access of the knowledge sources. This
organization is used due to several reasons: every knowl-
edge source performs specialized functions over the data,
the global architecture or organization requires a central-
ized control so that state and consistency can be assured, or
the whole system performs its functionality in a more effi-
cient and flexible way. Operations on the data do not have
a fixed precedence, that is, operations can be carried out in
any order, and coordinated by the central controller.

The organization of this process has been well defined and
converted into a pattern: the Blackboard pattern (Figure
1) [1] and its parallel counterpart, the Shared Resource pat-
tern [8]. Both descriptions provided for these patterns take
into consideration only functional properties, such as their
potential for improving performance [8]. They have been
proposed assuming that all components (blackboard, con-
trol, and knowledge sources) “implicitly trust” each other,
and there is no means of any unwanted activity among them.
However, many distributed applications (such as those men-
tioned earlier) require to take into consideration security,
since data sources may handle sensitive or valuable data,
such as personal or credit card information.

Security patterns are relatively new and starting to be ac-
cepted by industry because they are useful to guide the se-
curity design of systems by providing generic solutions that
can prevent a variety of attacks [9]. These patterns describe
how to take into consideration security during the analy-
sis and design of systems. In this paper, we introduce the
Secure Blackboard pattern as a secure version of the orig-
inal Blackboard pattern and the Shared Resource pattern.
This pattern includes ways to add security controls to the
components, providing secure handling of data, as well as
controlling data reading and updating. This pattern is part
of an ongoing effort to catalog and provide a variety of secu-
rity mechanisms for different architectural levels. By itself,
this catalog has its own value (its patterns can be used in
isolation). However, it is also part of a security systems



Figure 1: UML Object Diagram of the Blackboard pattern

development methodology we have proposed [5].

2. THE SECURE BLACKBOARD PATTERN
The Secure Blackboard pattern provides secure handling
of data when its blackboard is accessed by the knowledge
sources. Each knowledge source reads data from the black-
board, applies some processing or data transformation, and
updates the blackboard. In order to prevent violations of
integrity and confidentiality, the rights to reading and up-
dating data should be controlled and their actions should
be logged. The sources also must be authenticated before
being allowed to access the blackboard.

2.1 Example
Suppose we are developing an application for a law firm
[3]. The conduction of a case require inputs from many
data sources: lawyers, witnesses, defendants, etc. Court
appearances are scheduled according to court and lawyer
availability. All this makes the sequence of actions rather
unpredictable. The variety of inputs requires coordination.
The data handles is very sensitive and needs to be controlled.
If we are not careful we might end up with invalid data which
will hurt our chances of winning the case. There can be also
data misuses such as a clerk selling the information of a case
to the opponent party.

2.2 Context
A Blackboard system is used to receive and modify informa-
tion about a problem in progress from several data sources.
The execution platform for this kind of system is normally
distributed, with knowledge sources possibly remote. The
data is exchanged between blackboard and knowledge sources
in a client/server fashion.

2.3 Problem
How to let the knowledge sources access the blackboard
while keeping an acceptable level of security for the whole
system? A software system based on the Blackboard pat-
tern is suited to process data as a shared resource among
the knowledge sources [1, 8]. This has several reasons: every
component may perform specialized functions over the data,
the global architecture or organization is the simplest and
easiest to develop, requiring only devise knowledge sources

that read and update the blackboard, and this approach
makes the whole system more efficient and flexible.

The essence of the Blackboard pattern is that every time
data is processed, its is done so outside the data structure of
the blackboard: that is, within the knowledge sources where
different functions are applied on it (see Figure 1). In the
previous example, the personnel of the law firm are the only
ones who should have access to the blackboard. . Notice
that in this kind of system, we have the flexibility to take
any order of steps of the process or change the processing
steps. Nevertheless, how do we control the actions to be
performed in the blackboard?

This problem requires considering the following forces:

• The blackboard itself is shared data and how it is used
is very important for security. We may end up with
bad information or leaking information.

• Data should only be created by authorized knowledge
sources, and its use (reading or modification) should
also be controlled. The system needs to assign privi-
leges according to the knowledge source and the func-
tions of the users of these sources.

• It might be necessary to verify the source of the data
is authentic. Otherwise we might receive false infor-
mation or our information could be leaked outside the
system.

• Due to regulatory constraints, work changes, or effi-
ciency, we need to be able to reconfigure the number
of knowledge sources or their order of operation. This
reconfiguration must be controlled.

• For billing and security purposes, logging the actions
at each updating may be necessary.

• The security controls should be transparent to the users
of the system or they would not use them.

2.4 Solution
The Secure Blackboard pattern provides a secure way to ac-
cess blackboard data from a variety of knowledge sources, by



adding to the control component some basic security mecha-
nisms (as instances of security patterns), providing authen-
tication (Authenticator), authorization (Role-Based Access
Control, RBAC), and logging Secure Logger) in each access
operation.

2.4.1 Structure
Figure 2 shows an UML Class Diagram of the Secure Black-
board pattern, in which security pattern instances have been
added to the components of the Blackboard pattern. Se-
cure Logger indicates an instance of the Secure Logger
pattern [10]. The Reference Monitor associated with
the control indicates the enforcement of authorization [9].
Knowledge Sources can be not only software components,
but also humans. Nevertheless, either automated or human
Knowledge Sources require that their access is authen-
ticated by the Authenticator [9] in the control to verify
their origin. The sources belong to Roles, according to
their functions, and their rights depend on these roles.

2.4.2 Dynamics
Figure 3 shows a UML Sequence Diagram in which a Knowl-
edge Source (with a specific role) requests an operation on
the Blackboard. The Control receives the request and
invokes the Autheticator to validate that it proceeds from a
legitimate source. After source validation, the Reference
Monitor checks if its role is allowed this operation and,
if true it performs the operation on the Blackboard. A
Secure Logger record is created after the operation is per-
formed.

2.5 Implementation
[1] list several general implementation aspects. From a se-
curity point of view we need to consider:

• The authentication system should be appropriate to
the value of the information handled.

• Instead of RBAC we could use an access matrix or
even a multilevel access control model [7], depending
on the environment.

• Since the repository and its control are centralized ap-
plying the proposed security functions is relatively sim-
ple.

2.6 Example Resolved
The law firm now uses a Secure Blackboard structure to
conduct its cases. The case blackboard receives changes for
the case documents which get stored in specific classes. The
case blackboard can be protected from illegal access. We
can also verify that new information is authentic.

2.7 Known Uses
• The software system used by many news agencies (such

as AP, AFP, or Reuters) has a structure like the Secure
Blackboard pattern. All information retrieved by re-
porters and correspondents (articles, editorials, notes,
photographs, an so on) is gathered into a single black-
board, which at the same time is read by many other
news and media enterprises (newspapers, television,

radio, etc.), who distribute the information. Never-
theless, all the information written to or read from the
database should be secure. This means, nobody should
be allowed to modify the database unless she logs in
and authenticates in order to have the right of writing.
In a similar way, the blackboard can be read as long as
the news and media enterprises are allowed to do so.

• The Automatic Teller Machines (ATM) of any bank
or credit institution require having a similar organiza-
tion as the Secure Blackboard pattern. The credit or
savings information of all the banka֒Çs or credit insti-
tutiona֒Çs customers flows every day from the ATMs
to a central database, which requires to be protected
from corruption, or be modified with the purpose of
stealing. So, every time a customer performs an oper-
ation on an ATM, and before allowing any change to or
consult for the information of the database, the ATM
system requires to take appropriate security measures
in order to prevent any corruption or misuse.

• A Wiki web is also an example of the use of the Secure
Blackboard pattern. In such a case, knowledge sources
are actually humans, whose role within the Wiki could
be “reader”, “editor”, or “admin”. The Wiki should
actually function like a blackboard, whose secure use
requires that users are always authenticated, and ac-
cess is controlled according to their roles within the
Wiki system.

• Two designs for applications that may use this pat-
tern include a travel booking system [12], a law firm
[3], and a Java-based knowledge processing and agent
programming software framework [11].

• The Reflective Blackboard pattern [2] includes security
services.

2.8 Consequences
The Secure Blackboard pattern shares the same benefits con-
sidered for the original Blackboard pattern [1], having the
following additional advantages:

• We can define precise role rights, e.g. an expert can
only add to the information, not change it.

• The access control mechanism enforces controlled ac-
cess to the information.

• Authentication services can validate that the data sources
are legitimate.

• We can reconfigure the data sources to comply with
regulations or other reasons. This reconfiguration can
be done only by authorized people.

• We can log accesses to the blackboard for future au-
diting.

Similarly, the Secure Blackboard pattern shares the same
liabilities of the original Blackboard pattern [1], and also:

• Adding security capabilities affects the response time
of the whole Blackboard system.



Figure 2: UML Object Diagram for the Secure Blackboard pattern

Figure 3: UML Sequence Diagram for use case to apply an operation on data



• Even though normally the implementation of the Black-
board pattern requires to develop the blackboard, the
control, and the knowledge sources as simple, loosely
connected components, when adding security capabil-
ities a more complex implementation is required. Sev-
eral software components, such as the Reference Mon-
itor, the Authenticator, the Log, Role, and Right com-
ponents should be taken into consideration in order to
have a correct functionality.

2.9 See Also
• The Blackboard pattern [1] is the basis for this pattern.

• Assignment of knowledge sources can use the Con-
strained Resource Assignment Description pattern [6].

• The rights structure can follow an RBAC pattern [9].

• Authentication is performed by means of instances of
the Authenticator pattern [9].

• Logging can be done using a Secure Logger [10].

• The Control acts as a Reference Monitor [9].

3. CONCLUSIONS
The use of blackboards is frequent in software design. Fol-
lowing the principle that security must be applied in all
stages of the software development, the designer should in-
clude security aspects in any application. As mentioned ear-
lier, this pattern will become part of a catalog of security
patterns. Combined with other similar patterns, it gives a
designer a choice of possibilities when building the middle-
ware of a complex system [4]. Future work includes devel-
oping secure versions of the Adapter pattern [1], a pattern
frequently used together with this pattern. Implementing
these patterns together in a real application would be an-
other useful direction that would confirm the value of using
patterns; specifically implementing the law office example
using web resources.

4. ACKNOWLEDGMENTS
Our shepherd, Peter Sommerlad, provided valuable com-
ments that helped improve this paper. The workshop par-
ticipants at PLoP 2008 provided valuable comments.

5. REFERENCES
[1] F. Buschmann, R. Meunier, H. Rohnert,

P. Sommerlad, and M. Stal. Pattern-Oriented Software
Architecture: A System of Patterns. John Wiley and
Sons, West Sussex, England, 1996.

[2] O. R. da Silva, A. F. Garcia, and C. J. P. de Lucena.
The reflective blackboard architectural pattern. In
Rept. PUC-Rio Inf. MCC24/02, September 2002.

[3] E. B. Fernandez, D. L. laRed, J.Forneron, V. E.
Uribe, and G. Rodriguez. A secure analysis pattern for
handling legal cases. In 6th Latin American
Conference on Pattern Languages of Programming
(SugarLoafPLoP’2007), 2007.

[4] E. B. Fernandez and M. M. Larrondo-Petrie.
Developing secure architectures for middleware
systems. In Procs. of CLEI 2006. (XXXII Conferencia
Latinoamericana de Informática), 2006.

[5] E. B. Fernandez, M. M. Larrondo-Petrie, T. Sorgente,
and M. VanHilst. A methodology to develop secure
systems using patterns. In Integrating security and
software engineering: Advances and future vision,
pages 107–126. H. Mouratidis and P. Giorgini (Eds.),
IDEA Press, 2006.

[6] E. B. Fernandez, T. Sorgente, and M. VanHilst.
Constrained resource assignment description pattern.
In Proceedings of the Nordic Conference on Pattern
Languages of Programs, Viking PLoP 2005, pages
23–25. Otaniemi, Finland, September 2005.

[7] D. Gollmann. Computer security (2nd Ed.). John
Wiley and Sons, West Sussex, England, 2006.

[8] J. L. Ortega-Arjona. The shared resource pattern. an
activity parallelism architectural pattern for parallel
programming. In Procs.of the Conference on Pattern
Languages of Programs (PLoP 2003), 2003.

[9] M. Schumacher, E. B. Fernandez, D. Hybertson,
F. Buschmann, and P. Sommerlad. Security Patterns:
Integrating security and systems engineering. John
Wiley and Sons, West Sussex, England, 2006.

[10] C. Steel, R. Nagappan, and R. Lai. Core Security
Patterns: Best Strategies for J2EE Web Services and
Identity Management. Prentice Hall, Upper Saddle
River, New Jersey, 2005.

[11] P. Tarau. Object oriented logic programming as an
agent building infrastructure. In
http://logic.csci.unt.edu/tarau/research/slides/oolpAgents.ppt,
October 2002.

[12] E. Tempero. Notes for softeng 325: Software
architecture, lecture 11. In
http://www.se.auckland.ac.nz.

APPENDIX
Authenticator [9]. How to verify that a subject is who it
says it is? Use a single point of access to receive the interac-
tions of a subject with the system and apply a protocol to
verify the identity of the subject.

Role-Based Access Control (RBAC) [9]. How do we
assign rights to people based on their functions or tasks?
Assign people to roles and give rights to these roles so they
can perform their tasks.

Secure Logger [10]. Defines how to capture the application-
specific events and exceptions in a secure and reliable man-
ner to support security auditing.

Constrained Resource Assignment Description Pat-
tern [6]. Once resources have been allocated in some way
to functional units, this pattern describes the assignment,
including resource types, constraints, roles, and other de-
scriptions.

Reference Monitor [9]. In a computational environment
in which users or processes make requests for data or re-
sources, this pattern enforces declared access restrictions
when an active entity requests resources. It describes how
to define an abstract process that intercepts all requests for
resources and checks them for compliance with authoriza-
tions.


