
The Dynamic Factory Pattern
León Welicki

ONO (Cableuropa S.A.)
Basauri, 7-9

28023, Madrid, Spain
+34 637 879 258

lwelicki@acm.org

Joseph W. Yoder
The Refactory, Inc.

7 Florida Drive
Urbana, Illinois USA 61801

1-217-344-4847

joe@refactory.com

Rebecca Wirfs-Brock
Wirfs-Brock Associates
24003 S.W. Baker Road
Sherwood, Oregon USA

1-503-625-9529

rebecca@wirfs-brock.com

Abstract

The DYNAMIC FACTORY pattern describes a factory that can create

product instances based on concrete type definitions stored as

external metadata. This facilitates adding new products to a

system without having to modify code in the factory class.

Categories and Subject Descriptors

D.1.5 [Programming Techniques]: Object-oriented

Programming; D.2.2 [Design Tools and Techniques]: Object-

oriented design methods; D.2.11 [Software Architectures]:

Patterns

General Terms

Design

Keywords

Factory Objects, Adaptive Object-Models, Creational Patterns

1. Introduction

The DYNAMIC FACTORY pattern describes a factory that can create

product instances based on concrete type definitions stored as

external metadata. This facilitates adding new products to a

system without having to modify code in the factory class.

2. Context

You are working with a software system, possibly a framework—

a set of classes that embodies an abstract design for solutions to a

family of related problems and supports reuse at a larger

granularity than classes [9])—where collaborations between high-

level abstractions determine the execution flow.

New functionality is added by extending existing classes and

combining new extensions with existing classes [1]. However, to

increase flexibility, configuration of how classes are instantiated

can be done dynamically. Thus, the types of objects to be

dynamically instantiated can be parameterized and changed as

needed. This enables new implementations of established

framework abstractions to be added as long as they conform to

pre-established protocols. Additionally, the system should be able

to incorporate these new implementations without coding changes

to core framework classes.

3. Example

A workflow system has a rule evaluation module. Each rule

implements a well-defined interface and is injected into a

container that evaluates it. The rules can be simple or composite

(using the COMPOSITE [7] and INTERPRETER [7] patterns) allowing

for the creation of complex expressions by composing finer-

grained elements.

Creation of rules is delegated to a factory class that has a standard

interface. Clients of the rules request an instance of the rule and

the factory provides it.

The workflow system vendor supplies a fixed set of rules. New

rules can be added by simply providing an implementation of the

rule interface. The problem comes at rule instantiation, since any

factory that contains the logic for creating rule instances may need

to be modified to support these new rule types.

4. Problem

How can we define an interface for creating new types of products

that implement a given interface without tying it to a concrete

implementations?

5. Forces

 Extensibility / Evolvability. New product types should

be easily added without requiring a new factory class or

modification of an existing one.

 Controlled Evolution. New types of products that

conform to the product interface should be capable of

providing different behaviors or new features.

 Agility. New types of products should be added to the

system quickly, avoiding reworking of a factory class

every time a new concrete product is created. It is

important to support new versions and quick releases.

 Simplicity. The client interface for creating product

instances should be simple, hiding from the client the

complex details of dynamic product creation.

 Debugging. When dynamically creating objects based

upon metadata specifications, it can be more difficult to

debug since it is not known ahead of time what objects

might be instantiated.

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or

commercial advantage and that copies bear this notice and the full

citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific

permission. Preliminary versions of these papers were presented in a

writers' workshop at the 15th Conference on Pattern Languages of
Programs (PLoP). PLoP'08, October 18-20, Nashville, TN, USA.

Copyright 2008 is held by the author(s). ACM 978-1-60558-151-4

 Security. Externally storing product definitions expose a

potential security risk. It is important to protect product

metadata repositories from malicious users.

6. Solution

Establish an interface for creating objects that implement a

specific product contract, and store the concrete type information

of the instances to be created in metadata.

The DYNAMIC FACTORY is a generalized implementation that is

responsible for creating instances. It provides a single well-known

location for creating instances of a general type, similar to a

REGISTRY [2]), while not making any a priori decisions about the

concrete types of those instances. Some default types may be

provided in the form of base or default implementations, but a

hook for extensibility must be always provided.

The dynamic factory alone is not enough to create the instances of

the concrete products: the factory provides the “production

engine”, but the type repository metadata provides the “raw

material”.

Information about the concrete types is persisted in secondary

memory storage (e.g. an xml file, database, plain file, etc.). The

concrete type information of a product may contain the fully

qualified name of the type and the physical container where the

type is contained allowing for the creation of instances using

reflection. Information describing the concrete product type may

vary according with the implementation platform.

Adding a new implementation of a Product interface to the system

is relatively simple: it requires implementing the product

abstraction which is likely to be implemented once and then used

by many different product instantiations, and adding a line in the

configuration file of the factory indicating how to load it (for

example, the assembly and full qualified name of the concrete

product in the case of a .NET application).

The following participants form the structure of the DYNAMIC

FACTORY pattern as shown in Figure 2:

 A DynamicFactory is a class that creates instances using

metadata at runtime to determine the concrete type of

product to be created.

 A MetadataReader reads type metadata from a

configuration repository and delivers it to the

DynamicFactory in an instance of ProductTypeInfo.

 ProductTypeInfo contains the type metadata about a

concrete product. These definitions are fairly constant

and rarely change.

 A Product represents a general abstraction in a software

system. This abstraction can be in the form of an

interface, an abstract class with virtual methods, or a

class providing default implementations.

 A ConcreteProduct is an implementation of the Product

abstraction that provides a concrete, specific

implementations.

 A Client uses instances of ConcreteProducts through

the Product abstraction (abstract coupling [7]). The

instances of the products are created using the

DynamicFactory.

Figure 1 – The Dynamic Factory

Dynamic Factory Type Metadata
Repository

Client

cd Data Model

DynamicFactory

+ CreateInstance(string) : Product

Product

ConcreteProductA ConcreteProductB

MetadataReader

+ Load(string) : ProductTypeInfo
Client

AnotherPackage

ConcreteProductC

ProductTypeInfo

+ TypeName: string

+ TypeContainer: string

«uses»

«creates»

«uses»

Figure 2 - Dynamic Factory Class Diagram

The following CRC cards (Figure 3) describe the participants’

responsibilities and how they interact:

Figure 3 – Abstract Factory CRC Cards

The Product defines the general abstraction of products to be

created by the factory. It can be implemented using an interface,

abstract class, or any similar mechanism depending on the target

implementation language.

The DynamicFactory creates instances of the product

abstraction. In the simplest case, a DynamicFactory creates

instances of a single type of Product. However, this can be

extended by using generics [4], [6] to create a dynamic factory for

any kind of product. The ABSTRACT DYNAMIC FACTORY variant

described in this paper (see Variants section) creates instances of

multiple types of products.

The type information metadata of Product implementations,

e.g. the ConcreteProducts, is stored in a type metadata

repository (e.g. an xml file, relational database, plain text file, or

any suitable means for storing configuration data). The

MetadataReader reads and interprets this information and

returns the type information as an instance of

ProductTypeInfo. This decouples the DynamicFactory

from the metadata repository and product type external

representations, since it only accesses ProductTypeInfo.

7. Consequences

The DYNAMIC FACTORY improves flexibility and provides better

modularity by abstracting the creation process of product

instances. Product creation is provided by a well-known entity,

Additionally, it makes it easier to introduce new implementers of

a product into a system, since the product type specification

details are encoded in metadata.

The process of dynamically creating product instances is complex,

but this complexity is hidden from other application code. The

DynamicFactory can be a well-known static class with a simple

interface.

This helps to put in practice the principle “put abstractions in

code and details in metadata” [8]. This also builds on the

Dependency Inversion Principle and Open Closed Principle [5].

Creating product instances dynamically can cause significant

performance problems. These can be mitigated by applying the

CACHING pattern combined with other resource management

patterns described in [16].

There are several benefits of this pattern:

 Extensibility. Adding new concrete products is a

relatively simple task consisting of two steps:

implementing the concrete product class and adding its

type declaration to the metadata repository.

 Flexibility. Existing concrete products can be modified

or removed and new products can be added

dynamically. This can even be done at run-time since

the creation of instances is done dynamically using

REFLECTION [15] or similar techniques.

 Configurability. You can change the behavior of an

application without changing any source code. Just

change the descriptive information about the type in the

metadata repository. If caching is used the cache will

need to be flushed.

 Agility. New concrete products can be added quickly

following a recognized procedure that leverages existing

architectural decisions.

There are several liabilities to using this pattern:

 Run-time errors. It is not enough to write correct

product code, you must also define the metadata

correctly. At compile time a good test suite can help

validate the metadata definitions, but when adding or

modifying the type metadata, unexpected runtime errors

can occur. Very simple typos in metadata can lead to

product instantiation errors. A good error handling

strategy should be established at the architectural level

to cope with these kinds of errors. In some cases, default

implementations can be provided when the type

metadata is incorrect using a variant of the CHAIN OF

RESPONSIBILITY pattern [7].

 Complexity. The solution hides the complexity from the

clients, but it is still complex. The internals of the

factory are more complex than directly invoking a

product constructor. This complexity increases

significantly when CACHING is added. For a more

detailed discussion see [16] and [23].

 Possible “over-engineering”. If new product types are

not going to be added frequently or current product

implementations are rarely modified or switched at

runtime, using this pattern is an overly complex

solution. A good way to avoid unnecessary complexity

is to start with simpler options like using a static class or

simpler creational patterns [7]. You can then evolve to

using a Dynamic Factory when it is warranted,

following an evolutionary design approach [11].

 Performance. Using reflection and dynamically reading

product type definitions can cause the system to perform

slowly. If product instantiation performance becomes a

problem, well known caching techniques can be applied

to improve performance.

 Security. Security may need to be specially considered,

since new concrete products may contain threats to the

host system. This could be mitigated in several ways,

e.g. running in partial trust or having a strong runtime

policy compliance verification mechanism (like .NET’s

Code Access Security [14]).

 Debugging. Debugging of systems using Dynamic

Factory may be harder since the new components may

introduce unanticipated errors. Another important issue

regarding debugging is the configuration differences

between production, staging, and development scenarios

(each one may be running different implementations of

the product interface).

8. Example Resolved

All the rules in the workflow system are derived from a basic

abstraction (the Rule interface). To remove all concrete type

information from rule creation code, a DYNAMIC FACTORY for

creating Rules is defined.

A metadata format for specifying the types of the rules is also

established. This format includes an identifier for the rule and its

type information (e.g. the container and class name of the

implementer of the rule). Moreover, the format supports

composition following the COMPOSITE [7] pattern). Instances of

composed rules are loaded dynamically at runtime by a

combination of the BUILDER [7], INTERPRETER [7], and DYNAMIC

FACTORY patterns.

By doing so we remove references to concrete rule types from the

source code of the factory. This allows for change and extension

of the workflow system through the definition of new rules in the

metadata repository.

9. Sample Code

In this section, we will present a simple implementation of this

pattern as presented previously in figure 3. Our sample

implementation is written in .NET using C#.

Canonical implementation: creating single products

The following code snippet shows the product interface. Usually

the implementation of this patterns starts with the definition of the

Product abstraction which can be an interface, an abstract class,

or any similar mechanism depending on the implementation

language.

public interface IProduct

{

 void DoSomething();

}

This abstraction should be implemented by all the

ConcreteProducts. Since implementers of the abstraction

may not be known upfront, the next step in the implementation of

the pattern is to define the format of metadata which is used to

declare the type information for each realization of the product

interface. The following code snippet shows a sample xml file

with type information. Each declaration contains an identifier of

the concrete product (id attribute) and the type information for

dynamically creating the class (type attribute).

<typeInfo>

 <products>

 <product

 id="product1"

 type="DynamicFactorySample,

DynamicFactorySample.ConcreteProducts.ProductA"/>

 <product

 id="product2"

 type="DynamicFactorySample,

DynamicFactorySample.ConcreteProducts.ProductB"/>

 <product

 id="product3"

 type="AnotherAssembly,

DynamicFactorySample.ConcreteProducts.ProductC"/>

 </products>

</typeInfo>

This metadata could also be stored in a relational database, plain

files, etc. To hide the storage implementation details from the

factory use the MetadataReader to access the type metadata

repository (the xml file defined above) and the

ProductTypeInfo to hold the type information of a requested

ConcreteProduct.

public class ProductTypeInfo

{ private string productTypeCode;

 private string assemblyName;

 private string className;

 public string ProductTypecode

 { get { return this.productTypeCode; } }

 public string AssemblyName

 { get { return this.assemblyName; } }

 public string ClassName

 { get { return this.className; } }

 public ProductTypeInfo(

 string productTypeCode,

 string assemblyName,

 string className)

 {

 this.productTypeCode = productTypeCode;

 this.assemblyName = assemblyName;

 this.className = className;

 }

}

public class MetadataReader

{

 public ProductTypeInfo Load(string typeName)

 {

 // fetch concrete product info

 XmlDocument doc = new XmlDocument();

 doc.Load(AppSettings["rootPath"]);

 XmlNode node = doc.SelectSingleNode(

 "/typeInfo/products/product[@id='" +

 typeName + "']");

 // if found, return the type info

 return new

 ProductTypeInfo(typeName,

 node.Attributes["type"].

 Value.Split(',')[0],

 node.Attributes["type"].

 Value.Split(',')[1]);

 }

}

A simple implementation of the DynamicFactory class is

presented below. The Create method creates and returns an

instance of an implementer of the IProduct interface.

public static class DynamicFactory

{

 public static IProduct Create(string

 productTypeCode)

 {

 // create the reader and retrieve the

 // requested ProductTypeInfo

 MetadataReader metadataReader =

 new MetadataReader();

 ProductTypeInfo typeInfo =

 metadataReader.Load(productTypeCode);

 // create the instance of concrete product

 // for info about ObjectHandle see [29]

 // for info about Activator see [30]

 ObjectHandle obj =

 Activator.CreateInstance(

 typeInfo.AssemblyName,

 typeInfo.ClassName);

 return (IProduct)obj.Unwrap();

 }

}

public class SampleClient

{

 public void Main()

 {

 // create the product an do something

 IProduct product =

 DynamicFactory.Create("product1");

 product.DoSomething();

 // create another product an do something

 product =

 DynamicFactory.Create("product2");

 product.DoSomething();

 }

}

Extending the factory with Generics

The implementation of the DynamicFactory shown above is

limited to creating instances of IProduct interface. To make it

more general, you can use generics, as shown below.

public class GenericDynamicFactory<T>

{

 public T Create(string productTypeCode)

 {

 // create the reader and retrieve the

 // requested ProductTypeInfo

 MetadataReader metadataReader =

 new MetadataReader();

 ProductTypeInfo typeInfo =

 metadataReader.Load(productTypeCode);

 // create the instance of concrete product

 // for info about ObjectHandle see [29]

 // for info about Activator see [30]

 ObjectHandle obj =

 Activator.CreateInstance(

 typeInfo.AssemblyName,

 typeInfo.ClassName)

 return (T)obj.Unwrap();

 }

}

public class SampleClient

{

 public void Main()

 {

 // create and use the DynamicFactory

 DynamicFactory<IProduct> dynamicFactory =

 new DynamicFactory<IProduct>();

 IProduct product =

 dynamicFactory.Create("product1");

 product.DoSomething();

 product =

 dynamicFactory.Create("product2");

 product.DoSomething ();

 // create and use another DynamicFactory

 dynamicFactory = new

 DynamicFactory<IAnotherProduct>();

 product =

 dynamicFactory.Create("anotherTypeName");

 product.DoSomething ();

 }

}

Another static implementation using generics

Below, another implementation using generics is shown. In this

case, the DynamicFactory is a static class and the creation

method is generic.

public static class GenericDynamicFactory

{

 public static T Create<T>

 (string productTypeCode)

 {

 // create the reader and retrieve the

 // requested ProductTypeInfo

 MetadataReader metadataReader =

 new MetadataReader();

 ProductTypeInfo typeInfo =

 metadataReader.Load(productTypeCode);

 // create the instance of concrete product

 // for info about ObjectHandle see [29]

 // for info about Activator see [30]

 ObjectHandle obj =

 Activator.CreateInstance(

 typeInfo.AssemblyName,

 typeInfo.ClassName)

 return (T)obj.Unwrap();

 }

}

public class SampleClient

{

 public void Main()

 {

 IProduct product = DynamicFactory.

 Create<IProduct>("product1");

 product.Execute();

 product = DynamicFactory.

 Create<IOtherProduct>("otherProd");

 product.Execute();

 }

}

The implementations shown are greatly simplified. They don’t

take into account critical issues like exception handling, caching,

security, or configuration management. More sample

implementations of this pattern can be found in [22], [20], [13],

and [12].

10. Variants

Following are brief characterizations of some known variants of

the DYNAMIC FACTORY pattern.

 Cached Dynamic Factory: the DYNAMIC FACTORY can be

combined with the CACHING pattern [16] or the

CONFIGURATION DATA CACHING pattern [23] to improve run-

time efficiency. There are two main points where caching

can be introduced: the retrieval of the metadata for a type of

concrete product (in this case the CONFIGURATION DATA

CACHING may be used) or when directly caching the concrete

products. The first case is very simple to implement, since

the ProductTypeInfo are often immutable. The last case is

more difficult and is feasible only when the

ConcreteProducts are stateless [16].

If a cache is used, an EVICTOR [16] or similar approach may

be necessary to unload outdated or unused product instances

from memory. When the type information is updated in the

metadata repository, some mechanism is needed to

synchronize the system with the new versions of the type

definitions. An easy way to do this would be to simply

restart the system or flush the cache.

 Parameterized Dynamic Factory: this variation receives a

parameter it uses when creating product instances. There are

several options for what the parameter represents: it can be

the type information of the product to be created or an alias

to search for it in the product type metadata repository.

 Dynamic Abstract Factory: in this case, the interface is

very simple, containing several methods to create instances

of concrete products. The type metadata about the concrete

type of the instances are declared in a product type metadata

repository. The DynamicFactory establishes an interface for

creating a family of products, but the details about the family

member types is stored in metadata. Therefore, flexibility

and extensibility is achieved by dynamic interpretation of

metadata.

 Adaptive Object-Model Dynamic Factory: in AOM-based

architectures [25], [26], [24], the DYNAMIC FACTORY can be

used to create the instances of the PROPERTIES, ENTITIES,

ACCOUNTABILITIES, and RULE OBJECTS and their

corresponding TYPE OBJECTS [10].

11. Known Uses

Microsoft ASP.NET uses this pattern to configure its

extensibility features. HttpHandlers and HttpModules are

configured using type metadata and created at runtime using this

type info. Taking this model further, there is a dynamic factory for

the factories (HttpHandlerFactories) that uses the same

mechanism [14].

Adaptive Object-Models. An Adaptive Object-Model is a system

that represents user-defined classes, attributes, relationships, and

behavior as metadata [25], [26]. The system domain model is

based on instances rather than classes. Users change these

metadata descriptions to reflect changes in the domain model.

These changes modify the system’s behavior. AOM-based

architectures extensively use dynamic creation of objects based on

metadata.

Rule based systems. The rules are configured using a VISUAL

LANGUAGE [17] where they can be combined to be applied to a

wide variety of contexts. Moreover, new rules can be added,

deleted, and changed at runtime. To add new rules, typically a

general abstraction (e.g. interface or abstract class) is

implemented and its type information is registered within a type

metadata repository.

Spring XT Modeling Framework provides components for

helping develop rich domain models and making them collaborate

with other application layers without violating Domain Driven

Design principles. It includes the Dynamic Factory Generator that

lets you generate factory objects on the fly [20].

Eclipse Tools with Plugins provides a dynamic factory

mechanism for instantiating and plugging in new types of tools

[28].

12. Related Patterns

FACTORY METHOD [7] and ABSTRACT FACTORY can be evolved to

DYNAMIC FACTORY. Since both establish an interface for creating

products, they can be evolved to use metadata.

The DYNAMIC FACTORY can use the CACHING pattern [16] to hold

the configuration data (XML metadata), a prototypical instance or

the instance itself when the product is stateless. In this case an

EVICTOR [16] may be used to remove cached instances of concrete

products.

The DYNAMIC FACTORY can be a SINGLETON [7] and can also be a

dynamic REGISTRY [2]

STRATEGY [7] may be used to change the configuration storage

access strategy used by the MetadataReader. It may use several

strategies aimed at fetching data from different types of

repositories, e.g., XML, relational database, flat file, etc.

DEPENDENCY INJECTION [31] can use DYNAMIC FACTORY for

abstracting and moving to metadata the information about the

implementations to be injected in the system.

13. Summary

This paper presented the ABSTRACT FACTORY pattern, which

allows for dynamic creation of product instances based on the

interpretation of externally stored metadata. Variants of this

pattern support the creation of a family of products, improve

performance, or support Adaptive-Object Model implementations.

We used as an example the creation of rules for a workflow

system. Since rules can be added frequently, applying this pattern

provides the capability to dynamically create rule instances based

on the interpretation of externally stored metadata descriptions.

14. ACKNOWLEDGEMENTS

We would like to thank our shepherd Scott Schneider for his great

help and advice for improving the contents of this paper. We

would also like to gratefully thank to the participants of the PLoP

2008 “Rock and Roll” Writers Workshop (Ralph Johnson,

Ademar Aquiar, Alexander Ernst, Srinivas Rao, Hugo Ferreira,

Filipe Correia, Nono Flores, Sachin Bammi, Peter Swinburne, and

Atsuto Kubo) and to OOPSLA 2008 for supporting us on having

PLoP in Nashville TN.

15. References

[1] Foote, Brian. Designing to Facilitate Changes with Object-

Oriented Frameworks. MSc Thesis. University of Illinois at

Urbana-Champaign. 1988.

[2] Fowler, M. Patterns of Enterprise Application Architecture.

Addison-Wesley. 2003

[3] Foote B, J. Yoder. Metadata and Active Object-Models.

Proceedings of Plop98. Technical Report #wucs-98-25, Dept.

of Computer Science, Washington University Department of

Computer Science, October 1998.

[4] Sun Microsystems. Java Programming Language. Enhance-

ments in JDK 5:Generics.http://java.sun.com/j2se/1.5.0/docs/

guide/language/generics.html

[5] Fowler, Martin. Agile Software Development, Principles,

Patterns, and Practices. Prentice Hall. 2002.

[6] Microsoft Developers Network. Generics (C# Programming

Guide). http://msdn.microsoft.com/en-us/library/512aeb7t

(VS.80).aspx

[7] Gamma, E.; R. Helm, R. Johnson, J. Vlissides. Design

Patterns: Elements of Reusable Object Oriented Software.

Addison-Wesley. 1995.

[8] Hunt, Andrew; David Thomas. The Pragmatic Programmer:

From Journeyman to Master. Addison-Wesley. 2000.

[9] Johnson, Ralph; Brian Foote. Designing Reusable Classes.

Journal of Object-Oriented Programming June/July 1988,

Volume 1, Number 2, pages 22-35.

http://www.laputan.org/drc/drc.html

[10] Johnson, R., R. Wolf. Type Object. Pattern Languages of

Program Design 3. Addison-Wesley, 1998.

[11] Kerievsky, J. Refactoring to Patterns. Addisson-Wesley.

2003.

[12] Kovacs, R. Creating Dynamic Factories in .NET Using

Reflection. MSDN Magazine. March 2003.

http://msdn.microsoft.com/en-us/magazine/cc164170.aspx

[13] Miller, R.; R. Kasparian. Java For Artists: The Art,

Philosophy, and Science of Object-Oriented Programming.

Pulp Free Press, 2006

[14] Microsoft .NET Framework. http://www.microsoft.com/net/

[15] Buschman, F. et al. Pattern Oriented Software Architecture,

Volume 1: A System of Patterns. Wiley & Sons. 1996

[16] Kircher, M.; P. Jain. Pattern Oriented Software Architecture,

Volume 3: Patterns for Resource Management. Wiley &

Sons. 2004.

[17] Roberts, D.; Johnson, R.: Evolving Frameworks: A Pattern

Language for Developing Object-Oriented Frameworks.

[18] Riehle D., M. Tilman, and R. Johnson. "Dynamic Object

Model." In Pattern Languages of Program Design 5. Edited

by Dragos Manolescu, Markus Völter, James Noble.

Reading, MA: Addison-Wesley, 2005.

[19] Revault, N, J. Yoder. Adaptive Object-Models and

Metamodeling Techniques Workshop Results. Proceedings of

the 15th European Conference on Object Oriented

Programming (ECOOP 2001). Budapest, Hungary. 2001.

[20] Spring Modules. Chapter 18. XT Framework.

https://springmodules.dev.java.net/docs/reference/0.8/html/xt

.html

[21] Sun Developer Forums. Reflections & Reference Objects -

Dynamic Factory Method Pattern.

http://forums.sun.com/thread.jspa?threadID=573494

[22] van Deursen, S. A Fast Dynamic Factory Using

Reflection.Emit. September 2006. http://www.cutting

edge.it/blogs/steven/pivot/entry.php?id=9

[23] Welicki, L.. The Configuration Data Caching Pattern. 14th

Pattern Language of Programs Conference (PLoP 2006),

Portland, Oregon, USA, 2006.

[24] Welicki, L.; J. Yoder; R. Wirfs-Brock; R. Johnson. Towards

a Pattern Language for Adaptive Object-Models. Companion

of the ACM SIGPLAN Conference on Object Oriented

Programming, Systems, Languages and Applications

(OOPSLA 2007), Montreal, Canada, 2007.

[25] Yoder, J.; F. Balaguer; R. Johnson. Architecture and Design

of Adaptive Object-Models. Proceedings of the ACM

SIGPLAN Conference on Object Oriented Programming,

Systems, Languages and Applications (OOPSLA 2001),

Tampa, Florida, USA, 2001.

[26] Yoder, J.; R. Johnson. The Adaptive Object-Model

Architectural Style. IFIP 17th World Computer Congress -

TC2 Stream / 3rd IEEE/IFIP Conference on Software

Architecture: System Design, Development and Maintenance

(WICSA 2002), Montréal, Québec, Canada, 2002

[27] Yoder, J.; R. Razavi. Metadata and Adaptive Object-Models.

ECOOP Workshops (ECOOP 2000), Cannes, France, 2000.

[28] Bolour, A. Notes on the Eclipse Plug-in Architecture.

Eclipse.org. http://www.eclipse.org/articles/Article-Plug-in-

architecture/plugin_architecture.html

[29] Microsoft Developers Network. ObjectHandle Class. .NET

Framework Class Library. http://msdn.microsoft.com/en-

us/library/system.runtime.remoting.objecthandle_members.a

spx

[30] Microsoft Developers Network. Activator Class. .NET

Framework Class Library. http://msdn.microsoft.com/en-

us/library/system.activator.aspx

[31] Fowler, M. Inversion of Control Containers and the

Dependency Injection pattern.

http://martinfowler.com/articles/injection.html

http://java.sun.com/j2se/1.5.0/docs/%20guide/language/generics.html
http://java.sun.com/j2se/1.5.0/docs/%20guide/language/generics.html
http://msdn.microsoft.com/en-us/library/512aeb7t%20(VS.80).aspx
http://msdn.microsoft.com/en-us/library/512aeb7t%20(VS.80).aspx
http://www.laputan.org/drc/drc.html
http://msdn.microsoft.com/en-us/magazine/cc164170.aspx
http://www.microsoft.com/net/
https://springmodules.dev.java.net/docs/reference/0.8/html/xt.html
https://springmodules.dev.java.net/docs/reference/0.8/html/xt.html
http://forums.sun.com/thread.jspa?threadID=573494
http://www.eclipse.org/articles/Article-Plug-in-architecture/plugin_architecture.html
http://www.eclipse.org/articles/Article-Plug-in-architecture/plugin_architecture.html
http://msdn.microsoft.com/en-us/library/system.runtime.remoting.objecthandle_members.aspx
http://msdn.microsoft.com/en-us/library/system.runtime.remoting.objecthandle_members.aspx
http://msdn.microsoft.com/en-us/library/system.runtime.remoting.objecthandle_members.aspx
http://msdn.microsoft.com/en-us/library/system.activator.aspx
http://msdn.microsoft.com/en-us/library/system.activator.aspx
http://martinfowler.com/articles/injection.html

