
A Security Pattern for Data Integrity in P2P Systems

Benjamin Schleinzer
RWTH Aachen University
Chair of Communication
and Distributed Systems

Ahornstr. 55
52074 Aachen, Germany

Email: schleinzer (at) comsys.rwth-aachen.de ∗

Nobukazu Yoshioka
GRACE Center, National Institute of Informatics

2-1-2 Hitotsubashi
Chiyoda-ku, Tokyo

Email: nobukazu (at) nii.ac.jp

ABSTRACT
Peer-To-Peer-systems (P2P) introduced new methods to
distribute large amounts of data to end users. To increase the
distribution speed resources from all participating network
nodes, the peers, are used, and therefore the workload on
own resources decreases. To utilize all peers large data is
split into small pieces, so called chunks, and these chunks
are distributed among peers therefore making each chunk
available on different peers. To identify and find chunks
in P2P-systems hash algorithms are used, and each peer is
responsible for a specific range of the hash’s keyspace and
all chunks that fall within this keyspace.

With data stored on multiple peers new security risks
in terms of confidentiality, integrity, and availability arise.
Our security pattern targeted specifically for P2P-systems
helps system designers to identify possible threats and show
appropriate countermeasures. We show how secure hash
algorithms can guarantee the integrity of the distributed
data even though chunks are sent to, received from, and
stored by multiple, possible untrustworthy, peers.

1. INTRODUCTION
Peer-To-Peer-systems (P2P) handle large quantities of

data without relying on centralized client server based sce-
narios [10], but instead use resources from all participating
network nodes, the peers. All peers act as servers for other
peers which can be used to distribute data and in turn
increase the speed of the distribution process. Also the
availability of the data can be increased as peers keep copies
of the chunks. Common to all P2P-systems is that the
resources of the all peers can be used in addition to own
resources.

To use the resources of all participating peers in the net-

∗This work was partially funded by the DFG research group
733

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission. A preliminary version of this paper was presented in a writ-
ers’ workshop at the 17th Conference on Pattern Languages of Programs
(PLoP). PLoP’10, October 16-18, Reno, Nevada, USA.
Copyright 2010 is held by the author(s). ACM 978-1-4503-0107-7.

work and to distribute the workload among them the data
is split into multiple even-sized data blocks called chunks [8].
The chunks are then distributed among the peers, where
each peer is responsible of only a fraction of the chunks.
Downloading a chunk in a P2P-system is a two-step process,
as first a peer storing the chunk has to be located before
the download process can be initiated. As different peers
are contacted for each chunk the workload is shared by all
peers.

To spread the workload evenly among the peers most P2P-
systems use a hash algorithm to produce unique identifiers
for each chunk, and each peer is responsible for a range
of hash values. To find a chunk with a give identifier the
hash value is used to provide peers with routing information.
Each peer forwards requests for a chunk to the peer he
knows either has the chunk or is closest to the chunk ([15]).
Once the final peer is found he can contact the originator of
the request who’s address was forwarded with the request.
Information is then shared directly between those two peers.

Bob

Alice

Eve

!

Original Data

Chunk

User

Figure 1: Basic P2P-system

A negative effect of the resource sharing in P2P-systems
is that the trustworthiness of the peers can not be assured.
Thus chunks are vulnerable to attacks [3] such as information
disclosure (confidentiality) or tampering (integrity) attacks
and routing requests can be misdirected. Therefore we
either allow only trustworthy peers to join the system or

use other mechanisms to assure the availability, integrity,
and confidentiality ([1]) of the data. Availability can be
achieved by redundantly storing chunks on different peers.
Encryption can ensure the confidentiality of the data, but
implementation details depend largely on the application.
We will focus on how secure hash algorithms protect the
integrity of chunks.

To demonstrate how communication among individual
peers work and how hashes are employed consider the P2P-
system in figure 1 where Bob wants to share some data and
Alice wants to download that data. Some of the peers already
downloaded individual chunks. For Alice to acquire the data
she asks Bob for a list of chunks. She then tries to find
the peer responsible for the chunk using the P2P-system’s
algorithm. When the routing request is forwarded over Eve
or the chunk downloaded from Eve all information shared is
subject to manipulation unless some security mechanisms
are employed to circumvent this.

Section 2 will give more details on the pattern. We will
motivate the need for secure hash algorithms by giving a
short example followed by the context in which to apply the
pattern and forces to consider. Afterwards in section 2.6
we will show different levels of details of the pattern. First,
a class diagram gives an overview over involved parts of
the system, second a sequence diagrams shows the flow of
information, and third implementation details are given. The
reader should to have a basic understanding of P2P-systems
addressing and routing mechanisms as found e.g. in [10] and
of secure hash algorithms (see e.g. [13]).

2. DATA INTEGRITY IN P2P-SYSTEMS

2.1 Intent
Secure hashes can be used to ensure data integrity. In a

P2P-system data is split into smaller chunks, hashed, and
spread over multiple peers. Depending on the strength of
the hash’s algorithm tampering attacks are prevented even
though the chunks are stored and handled by untrusted
entities.

2.2 Example
Alice wants to retrieve a large document from Bob that he

stored using a P2P-enabled software as Bob has only very
limited resources. To store the document he split it into
several small chunks and distributed them over the peers of
the network. Alice does not know which peers store these
chunks. To find them Bob sends her a message containing
a list of the chunks for his document and how to address
the peers storing the chunks. Alice now asks peers in the
network to send the chunks that belong to Bob’s document.
Eve wants to spread her worm and instead of sending Alice
the requested chunk she will send her worm. Alice has no
way of detecting this misuse and to remove or quarantine
the worm.

2.3 Context
This pattern can be applied by service providers with

limited resources, who want to distribute large quantities
of data to multiple users. The distribution process must
be resilient against tampering attacks. All participating
network nodes can communicate directly.

2.4 Problem
In a P2P-network all peers can share information with

other peers. This means that, among others, the data is
vulnerable to tampering attacks and can not be trusted.
However, service providers need to utilize peers to decrease
the workload of their own resources, but still want to ensure
the integrity of the data. An approach is needed that pro-
vides integrity of the shared data without relying solely on
the initial service provider resources.

2.5 Forces
For the proposed solution we have to consider the following

forces:

Minimize own resource usage Large quantities of data
need to be distributed with limited own resources.
Instead of relying only on own resources, download-
ing peers help in disseminating the data by acting as
servers to others.

Fast resource identification Peers store different chunks
of data. If downloads happen from multiple peers
simultaneously, identifying a peer that stores a specific
chunk has to be done efficiently.

Data integrity Data must be secured against tampering,
as chunks stored on foreign peers can be altered for
different misuse scenarios.

Data Confidentiality As with tampering, the confiden-
tiality of the data needs to be ensured.

Minimal communication with data provider The orig-
inal owner of the data has only limited resources, thus
the validity of a downloaded chunk has to be identified
with minimal communication with the owner of the
data.

2.6 Solution
It has been shown that strong cryptographic hashes ensure

data integrity, and at the same time identify chunks in a P2P-
network [15]. These characteristics can be used to prevent
tampering attacks in P2P-networks and efficiently distribute
data. To do so the initial data provider splits the data into
even-sized chunks of smaller data. For each chunk the hash
is computed and stored, and users requesting the data get
a list with these hashes over a secure connection. Each
entry in the list identifies a different chunk that needs to be
retrieved. The following sections present the structure of the
solution, it’s dynamics with involved parties and common
pitfalls during implementation.

2.6.1 Structure
The structure of the secure pattern is given by the class dia-

gram in figure 2. The ServiceProvider wants to distribute
some data to a large user base. The ChunkGenerator divides
the data into chunks and generates a list of hashes. The list,
together with the chunks, is sent to the peers participating
in the system. Depending on the implementation different
peers receive different chunks during this initial dissemina-
tion. Other peers use the list to request needed chunks and
verify the validity of each chunk using the ChunkVerifier
after a successful download. A valid chunk is then stored
to either assemble the original data when all chunks are
downloaded or send it to requesting peers.

ChunkGenerator

Chunk

ChunkList ChunkHash

Peer

ChunkVerifier

Data

 1

 *

 wants to distribute

 1

*

 sends

1 *

access

1..n1
corresponds to

 1

 1..n

 generates

 *

 * send/receive

 *

 *

 1

 wants

 1

 1..n

generates

 1

*

 uses

 1

 1

 uses

*

 1

 receive

 1

 1

 hasServiceProvider

 1

 *

 sends

Figure 2: Class diagram for Secure Hash Addressing Pattern

2.6.2 Dynamics
The following two sequence diagrams, given in figure 3 and

figure 4, show the dynamics for using hashes to download
chunks and achieve integrity. The first diagram shows how
the list of hashes is generated:

Download sequence diagram.

Summary: A service provider wants to distribute a large
amount of data. The data is divided into equal-sized
chunks that are disseminated to peers of the P2P-
system.

Actors: The initial service provider

Precondition: None

Description:

1. The data is passed to the ChunkGenerator to be
divided into equal-sized chunks.

2. The ChunkGenerator divides the data and com-
putes the hash for each chunk.

3. The ChunkGenerator returns a list of hashes and
the generated chunks.

4. The ChunkList can be accessed using a secure
method that allows peers to validate the integrity
of the list and the identity of the service provider.

Postcondition: The chunks are ready for distribution over
the network. Clients can request the list of needed
chunks.

:ChunkGenerator:ServiceProvider :ChunkVerifier

 generateChunks
(file,chunkSize)

0..n
 hash(chunk)

3

1

2

ServiceProvider:HTTPS-Server

 publish(chunkList)4

Figure 3: Sequence diagram for computing the list
of hashes

Integrity check sequence diagram.

Summary: A peer wants to download the data offered by
the service provider.

Actors: The downloading peer and other peers of the P2P-
system.

Precondition: The peers knows how to retrieve the list of
valid hashes (ChunkList) and uses a secure connection
that validates the integrity of the list and the identity
of the service provider.

Description:

1. The peers asks the initial service provider for a
ChunkList.

2. The service provider sends the ChunkList via a
secure connection.

3. For each chunk the peer nearest to the chunks’
hash is requested to send it. The nearest peer
has an ID that is smaller then the hash of the
chunk and there is no other peer known who’s ID
is smaller then the chunk’s hash and bigger then
the ID of the contacted peer.

4. If the requested chunk is not stored by the peer
contacted in step three the send request is for-
warded to the peer storing it. This process is
repeated until the correct peer is found or if no
such peer exists the chunk is requested from the
initial service provider. For details cf. section 2.7.

5. The chunk is downloaded from the peer storing
it.

6. The retrieved chunk is verified.

(a) If the computed hash and the hash stored in
the list are equal the chunk is verified and
gets accepted.

(b) If the computed hash and the hash stored in
the list are not equal the chunk is discarded
and downloaded again from a different peer.

Postcondition The data is downloaded and verified.

Server:Peer

Client:Peer

sendChunk(hash)

verify(chunk)

Server_2:Peer

forward
 Request(hash)

3

5

4

6

ServiceProvider:HTTPS-Server

request
ChunkList()

1

2

Figure 4: Sequence diagram to download a single
chunk of data

2.6.3 Implementation
The following problems need to be considered when im-

plementing this pattern. A common mistake is to distribute
the list of hashes without securing the transmission. This
leaves the list open to attacks which could be used to add
malicious chunks or change a chunk’s hash. To prevent this
attack the download of the list has to be secured against
tampering attacks, and the initial data provider’s identity
has to be verified using the secure pipe pattern, e.g. using
SSL encrypted connections [11].

Another problem arises when the algorithm used to com-
pute the hashes is not resilient against collision and preimage
attacks [6,16]. Attackers could perform these attacks to gen-
erate valid looking chunks that contain malicious data.

Apart from these problems the peers and the initial service
provider have to use the same algorithm to generate the
hashes. Only then can the peer verify the downloaded chunk.

2.7 Known Uses
Some known implementations for this pattern are, e.g.

Freenet [2], CFS [4], Kadmila [5] or Chord [15]. Freenet
and CFS are P2P-filesystems that use hashes to identify
individual files. Kademila implementations of a Distributed
Hash Table (DHT) that was adapted for and used by BitTor-
rent [7] to find and verify downloadable chunks. Chord also
implements a DHT, and provides fast and efficient routing in
the P2P-system. More variants of DHTs exist with Can [9],
Pastry [12] or Tapestry [17] that have different properties
when it comes to route length, number of know peers or
exchanged message when a new peer joins.

All DHTs use a ring like communication structure and
distribute the hash’s keyspace over available peers. Peers are
responsible for storing chunks that belong to their part of
the keyspace and forward request to all other chunks to other
peers. Therefore they always know their direct predecessor
and successor and, depending on the implementation, various
other peers.

2.8 Consequences
Using secure hashes in P2P-systems to verify the integrity

of chunks and to address chunks has the following advan-
tages:

• The initial service provider is only contacted when the
list of valid hashes is requested or when a chunk is not
stored by any peer.

• The integrity of the chunk is validated when the hash
of a retrieved chunk is equal to the one stored in the
list. No communication to the initial service provider
is needed.

• To increase the download speed data is downloaded by
requesting multiple chunks from different peers.

• The hash of a chunk is used to locate the peer storing
it and to forward routing requests.

• Integrity checks and data assembly can be done by the
peers without communicating with other peers.

The pattern presents some liabilities, which in part can
be negated employing other patterns (see Section 2.10):

• The list of valid hashes is susceptible to different mis-
uses, e.g. tampering, man in the middle attacks. An
appropriate pattern has to be applied to ensure the
list’s security.

• Some algorithms for computing hashes are vulnerable
to collision attacks. Using these algorithms threatens
the security of the whole pattern.

• The confidentiality of the data is not protected using
this pattern. If confidentiality is a concern this needs
to be addressed by employing other patterns.

• If only a limited number of peers exist, the overhead
of finding available peers to download the chunk from
negates the advantage that arises from using multiple
peers.

2.9 Example resolved
Alice wants to retrieve a large document from Bob that he

stored using a P2P-enabled software as Bob has only very
limited resources. To store the document he split it into
several small chunks and distributed them over the peers of
the network. Alice does not know which peers store these
chunks. To find them Bob uses a secure connection to send
her a message containing a list of the chunks for his document
and how to address the peers storing the chunks. Alice now
asks peers in the network to send the chunks that belong to
Bob’s document. Eve wants to spread her worm and instead
of sending Alice the requested chunk she will send her worm.
After downloading a chunk Alice computes the chunk’s hash,
detects Eve tampering attack and discards Eve’s chunk.
Alice repeats the downloading and verification steps until
all chunks on the list have been retrieved and verified. She
then reassembles the chunks and has the original document
that Bob wanted to send her without using his resources,
but ensuring the document’s integrity.

2.10 Related patterns
Other patterns should be used together with this pat-

tern. To transfer the list of chunks the secure pipe pattern
[14] is needed, otherwise tampering attacks are still possi-
ble. Hashing and appropriate algorithms are described in
[13]. However, recent developments in attacks against these
algorithms needs to be taken into account.

2.11 Conclusion
We showed how even with limited own resources large

amounts of data can be distributed to a wide user base while
insuring the integrity of the disseminated data. The data
is split into chunks and for each chunk a hash is computed.
The initial service provider only communicates the computed
hashes and individual chunks are downloaded directly from
other peers. Through the hash the integrity of each down-
loaded chunk and thus the integrity of the original data can
be verified. Additionally hashes are used for routing requests
to find peers that store specific chunks, which is important
when high-performing P2P-systems are designed.

3. REFERENCES
[1] M. Bishop. Introduction to Computer Security.

Addison-Wesley Professional, 2004.

[2] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong.
Freenet: A distributed anonymous information storage
and retrieval system. In Designing Privacy Enhancing
Technologies, volume 2009 of LNCS, pages 46–66.
Springer-Verlag, 2001.

[3] F. Cornelli, E. Damiani, S. D. Capitani, S. Paraboschi,
and P. Samarati. Choosing reputable servents in a p2p
network. In In Proceedings of the 11th World Wide
Web Conference, pages 376–386, 2002.

[4] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and
I. Stoica. Wide-area cooperative storage with CFS. In
SOSP ’01: Proceedings of the eighteenth ACM

symposium on Operating systems principles, pages
202–215, New York, NY, USA, 2001. ACM.

[5] P. Maymounkov and D. Mazières. Kademlia: A
peer-to-peer information system based on the xor
metric. In IPTPS ’01: Revised Papers from the First
International Workshop on Peer-to-Peer Systems,
pages 53–65, London, UK, 2002. Springer-Verlag.

[6] B. S. P. Hoffman. Attacks on cryptographic hashes in
internet protocols. RFC 4270, November 2005.

[7] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips. The
bittorrent p2p file-sharing system: Measurements and
analysis. In In Proceedings of Peer-to-Peer Systems IV,
volume 3640 of LNCS, pages 205–216. Springer-Verlag,
2005.

[8] M. Rabin. Efficient dispersal of information for
security, load balancing, and fault tolerance. Journal of
the ACM, 36:335–348, 1989.

[9] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In
SIGCOMM ’01: Proceedings of the 2001 conference on
Applications, technologies, architectures, and protocols
for computer communications, pages 161–172, New
York, NY, USA, October 2001.

[10] S. Ratnasamy, P. Francis, S. Shenker, R. Karp, and
M. Handley. A scalable content-addressable network.
In In Proceedings of ACM SIGCOMM, pages 161–172,
2001.

[11] E. Rescorla. SSL and TLS: designing and building
secure systems. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2001.

[12] A. Rowstron and P. Druschel. Pastry: Scalable,
decentralized object location and routing for
large-scale peer-to-peer systems. In IFIP/ACM
International Conference on Distributed Systems
Platforms (Middleware), pages 329–350, Nov. 2001.

[13] B. Schneier. Applied cryptography (2nd ed.): protocols,
algorithms, and source code in C. John Wiley & Sons,
Inc., New York, USA, 1995.

[14] C. Steel. Applied J2ee Security Patterns: Architectural
Patterns & Best Practices. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2005.

[15] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-To-Peer
Lookup Service for Internet Applications. Computer
Communication Review, 31(4):149–160, Oct. 2001.

[16] X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu.
Cryptanalysis of the hash functions md4 and ripemd.
In In Proceedings of Eurocrypt ’05, volume 3494 of
LNCS, pages 1–18. Springer-Verlag, 2005.

[17] B. Y. Zhao, J. Kubiatowicz, A. D. Joseph, B. Y. Zhao,
J. Kubiatowicz, and A. D. Joseph. Tapestry: An
infrastructure for fault-tolerant wide-area location and
routing. Technical report, University of California at
Berkeley, 2001.

	1 Introduction
	2 Data integrity in P2P-systems
	2.1 Intent
	2.2 Example
	2.3 Context
	2.4 Problem
	2.5 Forces
	2.6 Solution
	2.6.1 Structure
	2.6.2 Dynamics
	2.6.3 Implementation

	2.7 Known Uses
	2.8 Consequences
	2.9 Example resolved
	2.10 Related patterns
	2.11 Conclusion

	3 References

