
Sharing Bad Practices in Design
to Improve the Use of Patterns

Cédric BOUHOURS, Hervé LEBLANC, Christian PERCEBOIS
IRIT – MACAO team – University of Paul Sabatier

118 Route de Narbonne
31062 TOULOUSE CEDEX 9 FRANCE

{bouhours, leblanc, percebois}@irit.fr

ABSTRACT
In order to guarantee the use of good analysis and design

practices and an easier maintenance of software, analysts and

designers may use patterns. To help them, we propose models

inspection in order to detect instantiations of “spoiled pattern” and

models reworking through the use of the design patterns. As a

design pattern allows the instantiation of the best known solution

for a given problem, a “spoiled pattern” allows the instantiation of

alternative solutions for the same problem: requirements are

respected, but architecture is improvable. We have collected a set

of alternative solutions and deduced the corresponding spoiled

patterns. We have defined a first catalog of these improvable

practices from several experiments with students. To overcome

the limits imposed by this method (restricted public, limited

problems and tiresome validation process), we would like open

this problematic to the expert community. To achieve this, we

propose a collaborative website sharing bad practices in object

oriented design to improve the use of patterns.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques;

D.2.13 [Software Engineering]: Reusable Software - Reuse models

General Terms
Design

Keywords
Design patterns; Spoiled pattern

1. INTRODUCTION
In order to guarantee the use of good analysis and design

practices and an easier maintenance of software, analysts and

designers may use patterns. A pattern is a consensus on the most

efficient solution to solve a given problem [1]. The use of a

pattern is the guarantee to re-use the most adequate solution and

thus, to maintain a consensual quality with analysis and design.

To assist designers, the design patterns catalog of Gang of

Four [2] provides a set of solutions. If a designer uses the GoF on

his design, we consider that he is ensured to select the best known

solution to solve his problems. However, if some errors persist, or

if the designer is not accustomed to use design patterns, design

defects may remain. To limit or avoid this risk, some works help

the use of the patterns. In particular, patterns were classified and

described in several manners to help their selection [3] [4] [1] [5]

[6] [7] [8] [9], for example, in classifying the patterns according

to their intent or in formalizing the problem they solve. Another

way is to check how a pattern can be well-integrated in an existing

solution [10] [11] [12] [13] [14].

Besides these approaches, we defined the concept of spoiled

pattern [15]. Its main interest is to identify a bad practice with

respect to design patterns. A spoiled pattern is a pattern which

corresponds to a deterioration of the intrinsic qualities of a design

pattern. The structural differences between a design pattern and a

spoiled pattern cause an efficiency damage to solve a problem in

an adequate way.

For the same design problem, we consider that several

solutions exist: the ones recognized as the most powerful and the

most efficient, i.e., using the adequate design pattern correctly,

and the others, certainly less powerful and less efficient using

spoiled patterns. We suggest detecting and correcting these others

solutions by a tooled design review activity. The aim is to inspect

models to search fragments characteristic of typical bad design

practices and to substitute them by design patterns, after

communication with the designer.

In this paper, we present in Section 2 the concept of spoiled

pattern. We show how a spoiled pattern can solve the same

problem as a design pattern, but in a different way: the problem is

solved but some intrinsic properties of the design pattern are

damaged. These properties called strong points can be valuated to

define the level of degradation of the pattern. This leads to

alternative fragments we define as spoiled patterns instantiations

whose intent conforms to the corresponding design pattern.

Section 3 gives an overview of a design review activity that we

have defined in order to detect such alternative fragments within a

model. This detection uses a spoiled pattern catalog we present in

Section 4. We discuss on the way we abstract spoiled patterns

from experiments with design problems addressed to students.

The last section is devoted to a collaborative Web site we

currently elaborate. By submitting new problems and their

alternative solutions, its main objective is to complete the catalog

with new spoiled patterns, and so to share bad practices in design.

2. THE SPOILED PATTERNS
Since a design pattern was approved, tested and validated by

an expert community, we estimate that it provides the best known

solution to a given problem. This problem is introduced in a

generic and adaptable form. Thus, the design pattern is a reusable

and adaptable architecture to a problem in a context. Moreover,

Copyright

as it is a proof of development facility and time-saver during the

design, thanks to the best design practices which it brings, we

make the hypothesis that it represents the optimal architecture

(classes and messages arrangement) to solve a specific problem

type.

Axiom 1: “A design pattern” is the optimal reusable micro-

architecture for one and only one problem type.

By micro-architecture, we gather the classes fitting, the

attributes and methods distribution, and the structure of the

messages exchanged between the classes. To adapt a pattern on a

problem, the problem must conform to the problem type solvable

by the pattern.

Corollary 1: For each design problem solvable by a design

pattern, “the best solution” is the adaptation of the design pattern

to the context of the problem.

As design patterns are generic and describe a general context,

it is necessary to adapt them to the context of the problem we

want to solve. So we define the processes allowing the use of

design patterns. The instantiation process consists in adapting a

design pattern to the particular context of a problem. The

abstraction process is the inverse.

2.1 Definitions
In the following definitions, we admit that a given problem is

solvable by the instantiation of a design pattern.

Definition 1: “An alternative solution” is a valid solution

for a given problem, but with a different architecture compared to

the best solution.

Thus, the requirements of the design are respected but the

relations inter-classes are different or/and there is not the whole

pattern participants. According to our first axiom, we consider

that if the designer were confronted to a design problem solvable

by a design pattern, and if he did not use it, he has solved the

problem with an alternative solution.

We can deduce the following corollary from it:

Corollary 2: An alternative solution is not the best solution

for a given problem and therefore is substitutable with the

instantiation of the design pattern corresponding to the problem.

Since an alternative solution is valid for a given context, it is

possible to abstract it in order to obtain a generic model allowing

the solving of a certain problem type, but in an inadequate way.

Definition 2: “A spoiled pattern” is the abstraction of an

alternative solution, in the same manner as a design pattern is the

abstraction of the best solution. A spoiled pattern is connected to

one and only one design pattern.

A spoiled pattern is comparable to a design pattern.

Structurally, it is represented at the same level of granularity. It is

reusable to produce models which solve problems. Thus, for a

problem type, there is a set of spoiled patterns allowing the

production of a set of non optimal solutions.

We could say that the instantiations of spoiled patterns

produce the same results as incomplete or failing design patterns

instantiations. Thanks to their structural descriptions, we are able

to identify the fragments structurally comparable with the spoiled

patterns. This comparison is only structural, and therefore the

intent of the fragment detected must be validated by the designer

himself. Indeed, the structural concordance does not guarantee

that the fragment intent conforms to the spoiled pattern.

Definition 3: “An alternative fragment” is a model fragment

such as its structure corresponds to the structure of a spoiled

pattern instantiation and whose intent conforms to the

corresponding design pattern.

Each alternative fragment detected in a model represents a

potential fragment. A fragment becomes effective when the

designer confirms his intent during a review activity detailed in

section 3.

We chose the term “spoiled” to describe this new type of

pattern, because it corresponds to a deterioration of the intrinsic

qualities of the design patterns. Thus, spoiled patterns are

substitutable by the corresponding design patterns. The structural

differences between a design pattern and a spoiled pattern cause

an efficiency to solve a problem type in an adequate way.

Definition 4: “The strong points” of a design pattern

express the criteria of architecture and the factors of software

quality brought by its use. These criteria are partially deduced

from the “consequence” section of the GoF catalog and from the

design defects noted during the use of the spoiled patterns. They

valorize why the design pattern is the best known solution for a

problem.

The alternative solutions are in fact more or less effective to

solve a problem. It is possible to quantify a degree of damage by

considering the valuation of the strong points of a pattern. As the

strong points of the pattern characterize the effectiveness and the

quality of the solution, we can say that the substitution of an

alternative fragment by an optimal fragment corrects the design

defects generated by the use of the spoiled pattern.

The detection of alternative fragments in a model can evoke

bad smells and the explanation about their defects in referring to

design patterns can evoke anti-patterns.

2.2 Illustration
We illustrate our concepts by the Composite design pattern,

described in Figure 1. We deliberately chose to represent the

design patterns by class diagrams only, inspired by the “structure”

section of GoF, with the pattern participants and their relations

only (associations and inheritance). We omitted the methods of

each participant, on the class diagram, when they were indicated

in the GoF.

Figure 1: The Composite design pattern

The intent of the Composite pattern is “compose objects into

tree structures to represent part-whole hierarchies. Composite

lets clients treat individual objects and compositions of objects

uniformly” [2]. Applying the axiom 1, this pattern is the best

known solution to solve the following global problem:

Component

Leaf

*

Composite

composition of objects, building tree structures and nesting

objects [8]. In the ontology proposed by [8], each problem is

derived from the intent item of the corresponding pattern and

decomposed into sub-problems. Then several patterns can share

one or more sub-problems, but only one pattern is the best

candidate to solve a global problem.

The Composite pattern introduces three participants: an

abstract Component, a Composite, and a Leaf. The abstract

Component defines a common interface to the composed objects

and to composition management, and offers a unique access point

for the client. This entity allows the factorization of the

composition on the composites and the leaves. The Composite

participant manages the relation of composition and recursively

delegates the operations along the tree structure. The Leaves

represent the terminal elements of the tree structure.

Now let us consider a specific problem statement, inspired by

the GoF: Design a system enabling to draw a graphic image: A

graphic image is composed of lines, rectangles, texts and images.

An image may be composed of other images, lines, rectangles and

texts.

This statement implies that the problem type relates to a

hierarchical composition of objects, the hierarchy being

articulated around the concept of Image. To instantiate the

Composite pattern on this problem, we must identify the problem

elements having the same responsibilities as each participant of

the pattern. The concept of Image has the same responsibilities as

the Composite participant. The classes Line, Text and Rectangle

constitute the terminal elements of the hierarchy and thus have the

same responsibilities as the Leaf participant. Lastly, we can

consider that Graphic constitutes the generic element of the

hierarchy of composition, which brings it closer to the

responsibilities for the Component. We obtain an instantiation of

the Composite pattern, and, in agreement with our hypothesis, we

can say that Figure 2 represents the best solution to the problem

introduced above.

Figure 2: The best solution for the problem

Figure 3 introduces an alternative solution of the preceding

problem. In this solution, we can identify that an image is

composed of other images which can be composed of lines, texts

and rectangles. So, the requirements of the problem are respected.

The Graphic class is used to support the factorization of the

protocols and to be the unique access point to the client.

However, the fact that the classes Line, Rectangle and Text are

attached to Image involves code modifications if new classes are

added, with the responsibilities of Leaf or Composite. Thus, if a

new Circle class is added as Leaf, the Image class will have to

manage this new reference, which will involve a code

modification of the Image class.

Figure 3: An alternative solution for the problem

In order to detect an alternative solution in a model whatever

the context of the problem, it is necessary to abstract it. This

abstraction enables us to obtain a “generic” spoiled pattern, able

to be adapted to any context of problem. This abstraction enables

us to consider a spoiled pattern as a generating base of alternative

fragments.

The abstraction process of an alternative solution requires to

identify the pattern participants, then to carry out a “reduction”

making it possible to preserve only one class per participant of the

pattern. However, some alternative solutions do not use the

totality of the participants, which implies that some of the classes

have the responsibilities of several participants.

The first step of this abstraction process consists in marking

each class with the name of one of the participants of the pattern

having the same responsibilities. The abstract Graphic class

offers a common interface to all the other classes and a unique

access point for the client. Thus, it has the responsibilities of the

Component participant. The Image class manages the

composition and represents, by its recursive connection the

Composite. Finally the classes Line, Text and Rectangle are

clearly the terminal elements of the tree structure and thus have

the same responsibilities as the Leaf participant.

This class marking of an alternative solution is done

manually, since it requires an analysis of the semantics of the

classes. The result, summarized by Figure 4, shows the marking

of the classes of the alternative solution by the participants of the

Composite pattern.

Figure 4: The marked alternative solution

After the marking, the second step of the abstraction process

consists in preserving, only one times, each participant in the

same way as in the alternative solution. This reduction can be

complex on some participants when several classes have the same

responsibilities.

In our case, we deduce a model with three classes

Component, Composite and Leaf, substituting respectively the

Graphic class, the Image class and one of the classes Text, Line or

Rectangle. Then, we obtain the structure of a spoiled pattern of

Graphic

ImageLine RectangleText *

** *

Leaf
Component

Composite

Graphic

ImageLine RectangleText *

** *

Image

Graphic

Line RectangleText

*

the Composite where the composition is developed on the

Composite class. Figure 5 presents a spoiled pattern for the

Composite design pattern, named “development of the

composition on <<Composite>>”.

Figure 5: The spoiled pattern development of the composition

on <<Composite>>

Starting from several alternative solutions of the same type

of problem, we obtained a set of spoiled patterns. To classify the

spoiled patterns, we quantified their degree of damage thanks to

the strong points of the design pattern concerned. Indeed, each

spoiled pattern has only a part of the strong points of the pattern.

It is what explains its damage.

For the Composite pattern, the maximal factorization of the

composition and the standardization of the protocol, thanks to

inheritance links, enable us to say that the strong points of the

pattern are “decoupling and extensibility” and “uniform protocol”.

As the composition of the spoiled pattern of Figure 5 is expressed

with a reflexive connection and with a development on all the

leaves, a design defect appears, consequence of the damage of the

strong point “decoupling and extensibility”. Factorization is not

maximal and the coupling between Leaf and Composite imposes

code modifications. However, as there are always inheritance

links, the spoiled pattern does not degrade the strong point

“uniform protocol”.

This characterization of the spoiled patterns enables us to

present to the designer the advantage of the substitution of the

fragment detected by the corresponding design pattern.

Table 1 summarizes the degradation of the strong points by

the spoiled pattern. The strong points of the Composite pattern

damaged by the spoiled pattern are described preceded by the

symbol contrary to preserved strong points which are preceded

by .

Table 1: The strong points valuation of the spoiled pattern

Decoupling and extensibility

 Maximal factorization of the composition.

 Addition or removal of a leaf does not need code

modification.

 Addition or removal of a composite does not need code

modification.

Uniform protocol

 Uniform protocol on operations of composed object.

 Uniform protocol on composition management.

 Unique access point for the client.

2.3 Bad smells and antipatterns
We now position “spoiled pattern” term compared to “bad

smells” and “antipatterns”.

2.3.1 Bad smells
Kent Beck and Martin Fowler have introduced the term “bad

smells” in [16]. These bad smells are a set of clues in the code

suggesting bad design practices. They allow the identification of

the parts of the code to restructure in order to correct the

problems, and the procedures to follow to carry out this

reorganization. For example, the code duplication in a program is

a bad smell which can be corrected by the refactoring “extract

method” [16]. It consists in adding a method in a class so that it

factorizes the parts of code concerned.

An alternative fragment indicates where a defect is being

able to generate undesirable effects on the model and target a zone

which would have to be restructured. Whereas the bad smells

were defined to target pieces of code, the spoiled patterns target

fragments of model. Thus, identifying alternative fragments can

be comparable with a search of bad smells in designs. As an

alternative fragment comes from the instantiation of a spoiled

pattern, we consider that the spoiled patterns are bases generating

bad smells in designs.

2.3.2 Antipatterns
There exist two manners to define an antipattern. Whereas a

design pattern presents the best solution to be followed to solve a

problem, the antipattern presents a learned lesson. It describes the

effects resulting from bad design practices and gives the

procedure to follow for tending towards a better software quality.

Then, an antipattern makes it possible to check or supervise bad

practices [17]. An antipattern can also represent good design

practices, but which used in an excessive way produce, at last,

consequences more harmful than the anticipated results [18]. In

all the cases, an antipattern suggests a suite of refactorings. An

antipattern is described by the explanations of the defects and by a

reorganization process which explains how to pass from the bad to

a good solution. As example, let us quote the antipattern “makes

an active attempt”, in concurrent programming, which consists in

testing a condition until it is checked. This antipattern can be

corrected by scrolling events or signals.

Let us consider that spoiled patterns are antipatterns, but with

a finer precision. The spoiled pattern does not give information

allowing the correction of the bad solution. Thanks to the fine

description of the bad solution, the spoiled pattern can be

detectable automatically, which is not the case, nor the goal, of the

antipatterns. A spoiled pattern permits to verify if a “bad manner

to make” was not used, and it is directly related to a design

pattern. The set of useful operations of reorganization to

substitute it is much more precise than a refactoring suggested by

an antipattern.

3. A DESIGN REVIEW ACTIVITY
To concretize the concepts presented and in order to be able

to integrate it in a development process, we conceived and

implemented a design review activity, as well as it exists code

inspections for improving programming quality and productivity

[19]. This activity is decomposed in three steps [23]: detection of

alternative fragments on a model expressed in XMI format [20],

communication with the designer to check the intent of the

Component

Leaf Composite

*

*

detected fragments, and model refactorings to integrate the design

patterns.

3.1 A case study
Figure 6 presents the model to analyze. It was found in a

subject of an object-oriented programming supervised practical

work and constitutes the model in input of our activity.

Initially, we can say that this UML class diagram represents

a basic architecture of a files system management. The authors of

this model took care that the good design practices are respected:

 Inheritance between classes. A uniform protocol

for every FileSystemElement is encapsulated by a corresponding

abstract class. Directories and Files must respect this protocol via

inheritance relationships. We can note that all concrete classes are

derived directly or indirectly from an abstract class. This rule

enforces the emergence of reusable protocols.

 Management of reference and delegation. There are

composition links between container and components. A

directory object manages some references to files and directories

objects. A directory object delegates some actions to sub-

directories and files, for example, the getSize() method.

Figure 6: The model to analyze

A good effort on design was carried out, producing a design

in good quality. However, this model presents some design

defects. Although there is a uniform protocol offered by the

FileSystemElement class, the management of composition

relationships towards the other types of data present in the

hierarchy is duplicated. Indeed, the Directory class manages

independently connections on Files and those on itself.

It is enough to consider the two following evolution

scenarios to discredit our first opinion on the quality of the design:

 The first is the addition of new terminal types in the

tree structure, for example, symbolic links in UNIX file systems.

This evolution requires the management of this new type of link

by the Directory class and then requires code modification and

code duplication in this class.

 The second is the addition of new non terminal

types in the tree structure, for example archive files in UNIX or in

Java environment. We can consider that an archive file has the

same functionalities as a Directory. This evolution requires a

reflexive link on an archive file class and the duplication of all

links that represent composition links in the tree structure.

Moreover directories can contain archive files too, then

duplication of management of composition and code modification

is required for the Directory class.

These two scenarios show a decoupling problem (each

container manages a part of the composite structure) and an

extensibility limitation (every modification will require existing

code modification for the addition of a new type of terminal or

non terminal element of the composition hierarchy). Therefore,

this model can be improved. Furthermore, when the authors have

implemented this model, they realized that there were defects.

They adapted their code to correct them, without changing the

design model.

3.2 An activity execution
To be able to execute the activity, we developed the Triton

software, whose screenshot is presented on the Figure 8 [23]. It

reaches the whole of a catalog of the spoiled patterns and uses the

Neptune platform [21] to carry out research with OCL queries

[22]. The constitution of the catalog is presented in Section 4.

The first step of the activity consists in seeking fragments

which correspond structurally to possible instantiations of spoiled

patterns. After the loading of the model to analyze in Triton, the

OCL queries deduced from the structure of each spoiled pattern

are carried out on the model, according to the selection done by

the designer in the principal window of Triton.

In the case of our model, Triton has identified the fragment

{FileSystemElement, File, Repository}, illustrated in Figure 7.

Figure 7: The identified fragment

Directory

+open()
+delete()
+getSize(): int
+getAbsolutePath(): String
+add(e: FileSystemElement)
+remove(e: FileSystemElement)
+get(): FileSystemElement[*]
+searchDir(name: String)
+searchFile(name: String)

File

-size: int
-data: byte

+open()
+delete()
+getSize(): int
+getAbsolutePath(): String

FileSystemElement

+delete()
+getSize()
+getAbsolutePath()
+open()

*

-subdirectory

*

Directory

+open()
+delete()
+getSize(): int
+getAbsolutePath(): String
+add(e: FileSystemElement)
+remove(e: FileSystemElement)
+get(): FileSystemElement[*]
+searchDir(name: String)
+searchFile(name: String)

File

-size: int
-data: byte

+open()
+delete()
+getSize(): int
+getAbsolutePath(): String

FileSystem

+getRoot(): Directory
+setRoot(d: Directory)

FileSystemElement

+delete()
+getSize()
+getAbsolutePath()
+open()

Path

-path: String

+getPath(): String
+getParts(): String[*]

Nameable

-name: String

-getrName(): String

*

-root

-subdirectory

*

FileSystemServices

+search(p: Path): FileSystemElement

Comparable

+compareTo(c: Comparable): int

Figure 8: Triton – the tool allowing the activity execution

At the end of the detection step, the identified fragments are

not regarded as alternative yet because we do not know their

intent. The designer can check more in detail each identified

fragment and thus pass to the following step: the checking of the

intent and the presentation of the advantages of substitution.

Figure 9 introduces the dialog box emitted by Triton to check the

intent with the designer. To do so, we use an ontology defined in

OWL [24], containing information relating to the intents of the

design patterns, as well as the strong points degraded by the

spoiled patterns [23].

Figure 9: Intent verification

In our case, since it is a fragment corresponding to the

spoiled pattern of the Composite, it is the intent of the Composite

pattern which is introduced. If the designer validates the intent

conformity, Triton presents the strong points of the pattern whose

model will benefit after the injection of the pattern. In our

example, we can say that our fragment composes hierarchically of

the objects. Thus, since we accept the intent, Triton shows the

dialog box illustrated by Figure 10.

Figure 10: Advantages of the refactoring

By injecting the Composite design pattern, the designer gains

in decoupling and in extensibility, which corresponds to the

defects that we had identified during the previous analysis. For

our example, we accept the transformation, and so Triton carries

out the transformation of the model into memory. The model

refactoring is done automatically: each class of the alternative

fragments is marked, according to its responsibility. This marking

facilitates the injection of the pattern [23].

After the transformation, the designer is invited to execute

the detection again in order to check if other fragments appeared,

or disappeared, if several fragments would have been identified

during the first analysis. Finally, when the designer estimates that

its model is in a sufficient quality, or if Triton does not identify

any more fragment, a models serialization system allows the

generation of a new XMI file containing the transformed model.

At the end of the review, the model presented in Figure 6 is

transformed to integrate the Composite design pattern. The result

is presented on the Figure 11.

Figure 11: The improved model

We can see that the transformation implies the factorization

of the composition by removing the developed compositions. The

consequences of this transformation are found in the

simplification of the management of the tree structure and by the

fact that the two evolution scenarios do not require any more

Directory
<<Composite>>

+open()
+delete()
+getSize(): int
+getAbsolutePath(): String
+add(e: FileSystemElement)
+remove(e: FileSystemElement)
+get(): FileSystemElement[*]
+searchDir(name: String)
+searchFile(name: String)

File
<<Leaf>>

-size: int
-data: byte

+open()
+delete()
+getSize(): int
+getAbsolutePath(): String

FileSystem

+getRoot(): Directory
+setRoot(d: Directory)

FileSystemElement
<<Component>>

+delete()
+getSize()
+getAbsolutePath()
+open()

Path

-path: String

+getPath(): String
+getParts(): String[*]

Nameable

-name: String

-getrName(): String

-root

-subdirectory *

FileSystemServices

+search(p: Path): FileSystemElement

Comparable

+compareTo(c: Comparable): int

modification of the existing code. At the end of the activity, we

can thus consider that the model was improved.

4. A FIRST CATALOG
We can define two manners to constitute a spoiled patterns

base. The first is to analyze the design patterns and to carry out

transformations in order to denature them. Indeed, too artificial or

too distant of designs by people, they would not be found in

standard models. The second possibility is to collect a set of

alternative solutions solving problems solvable by a design

pattern, and to deduce a set of spoiled patterns from them. We

choose the second possibility to obtain the most relevant spoiled

patterns.

In doing so, we are sure that it is possible to apply a context

on the spoiled pattern since they are deduced from models which

had a context. Thanks to this method, the entire base contains

spoiled patterns which have already been used once. As the

constraints of this way are to obtain problem solutions without

exploiting design patterns, a heuristic to optimize the collect

consists in making experiments with designers not having the

reflex to exploit existing know-how.

4.1 Experiments building
First, we have proposed a list of design problems solvable

with design patterns. Second, we have instantiated design

patterns on the problems. These best solutions had been presented

to the students after their contributions, and it was a good start for

a course dedicated to advanced object oriented programming and

reusable micro-architectures. Third, we have analyzed the

contributions and take into consideration valid solutions to a

problem: the alternative solutions. Four, we have tried to deduce

spoiled patterns from alternative solutions by an abstraction

process. In the same time, spoiled patterns permit us to enforce

software qualities in using design patterns by a fine comparison

between different design solutions to a generic design problem.

4.1.1 The public
Generally, students in computer science discover initially the

design techniques, and then the design patterns. At this precise

time, students produce models solving problems, without using

the design patterns. It is at this stage of their formation we asked

them to solve design problems. Thus, they produced models

according to their own experience and often with design defects.

Moreover, these experiments made it possible to the students to

put forward the interest to use the patterns, which constitutes a

considerable teaching contribution. Indeed, during their

formation on the patterns, we confronted them with their models,

putting thus ahead the design defects corrected by the design

patterns.

Distributed on three years, our experiments aimed at students

in third and fifth year of studies in computer science. Each

experiment appeared as a personal work composed of about ten

exercises. Each exercise raised a design problem solvable by the

use of a design pattern. We worked the statement of each

problem so that the solutions correspond directly to the use of the

design pattern. Thus, we limited the number of non-significant

classes so that the students do not disperse in too complex

designs.

4.1.2 The process
To do so, we took as a starting point the “motivation” section

of the patterns of GoF or, when they were not appropriate to us,

we worked out our own design problems. In a general way, this

section presents a problem solvable by the design pattern, in

classes, sequence or objects diagrams. The purpose of this

example is to help to understand, on a concrete case, the pattern

and what it brings.

Our first experiments concerned the structural patterns

primarily. The results obtained were sufficient to deduce

structural spoiled patterns. For the following experiments, we

concentrated on the behavioral patterns. It is for these last

experiments that we imposed, in the statement distributed to the

students, the creation of sequence diagrams allowing the

illustration of the communication between objects.

At last, over the three years, we covered the seven structural

patterns, the eleven behavioral patterns and three of the creative

patterns. Thus, we obtained thousand three hundred models

which it was necessary to analyze in order to eliminate the

erroneous designs and the doubled models.

4.2 A complete example
The next example of our experiment is a compilation of

problems submitted and results obtained. Problems, optimal

solutions (i.e. instantiation of the dedicated design pattern),

alternative solutions and spoiled patterns are presented according

to increasing difficulty. Progressively, the problems are more

difficult to solve, alternative solutions more difficult to obtain and

spoiled patterns more difficult to abstract.

Finding solutions to design problems

This document proposes a set of exercises concerning

objects modeling. You must produce a UML class diagram and

a UML sequence or collaboration diagram illustrating each

exercise. Each diagram should contain sufficient information to

demonstrate that the problem is solved (attributes, methods,

relationships, stereotypes).

The purpose of these exercises is that you use your own

knowledge. These designs can be envisaged in several ways. Do

not look for shared solutions with your collegues, or solutions on

the Internet or in design books.

Some problems are presented with probable evolutions.

Your designs should be structured so that these changes are

easily integrated. Make these changes occur in your diagrams.

Problem 1:

Design a system enabling to draw a graphic image.

A graphic image is composed of lines, rectangles, texts and

images. An image may be composed of other images, lines,

rectangles and texts.

Problem 2:

Design a system enabling to display visual objects on a

screen.
A visual object can be composed with one or more texts or

images. If needed, the system must allow to add to this object a

vertical scrollbar, a horizontal scrollbar, an edge and a menu

(these additions may be cumulated).

Problem 3:

Design a system enabling to display on a screen some empty

windows (no button, no menu...).

A window can have several different styles depending on the

platform used. We consider two platforms, XWindow and

PresentationManager. The client code must be written

independently and without knowledge of the future execution

platform. It is probable that the system evolves in order to

display specialized windows by “application windows” (able to

manage applications) and “iconised windows” (with an icon).

Problem 4

Design a drawing editor.

A design is composed of graphics (lines, rectangles and roses),

positionned at precise positions. Each graphic form must be

modeled by a class that provides a method draw(): void. A rose

is a complex graphic designed by a “black-box” class

component. This component performs this drawing in memory,

and provides access through a method getRose(): int that returns

the address of the drawing. It is probable that the system evolves

in order to draw circles.

Problem 5:

Design a DVD market place work.

The DVD market place provides DVD to its clients with three

categories: children, normal et new. A DVD is new during some

weeks, and after change category. The DVD price depends on

the category. It is probable that the system evolves in order to

take into account the horror category.

Problem 6:

Design a help manager of a Java application.

A help manager allows the show of a help message depending on

the objects on which a client has clicked. For example, the “?”,

sometimes located near the contextual menu of a Windows

dialog box, allows the show of the help of the button or the area

where we click. If the button on which one clicks does not

contain help, it is the area containing which displays its help, and

so on. If no object contains help, with final, the manager

displays “Not help available for this area”. Instantiate your class

diagram in a sequence diagram of on the example of a printing

window. This window (JDialog) consists in an explanatory text

(JLabel), and in a container (JPanel). This last contains a Print

button (JButton) and a Cancel button (JButton). The Print button

contains help “Launches the impression of the document”. The

Cancel button, the text as well as the window do not contain

help. Lastly, the container contains help “Click on one of the

buttons”. In the sequence diagram, reveal the scénarii: “The user

asks for the help of the Print button”, “the user asks for the help

of the Cancel button”, and “the user asks for the help of the text”.

Problem 7:

Design the communications of one plane to the approach of

an airport.

When a plane is in approach of the airport, it must announce to

all the other planes which are around that it intends to be posed,

and await their confirmation with all before carrying out the

operation. It is the control tower of the airport which guarantees

the regulation of the air traffic, by making sure that there is no

trajectory conflict or destination between several planes. Besides

the class diagram, represent by a collaboration (diagram of

collaboration or diagram of objects and sequence) the landing of

a plane among two wanting to land and one wanting to take off.

Problem 8:

Design a tutorial to learn how to program a calculator.

This calculator executes the four basic arithmetic operations.

The goal of this tutorial is to make it possible to take a set of

operations to be executed sequentially. The tutorial presents a

button by arithmetic operation, and two input fields for the

operands. After each click on a button of an operation, the user

has then the choice to start again or execute the suite of

operations to obtain the result. It is probable that this teachware

evolves in order to make it possible to the user to remove the last

operation of the list and to take into account the operation of

modulo.

4.2.1 Best solutions
We present here the best solutions that are given to the

students after their experiments. As mentioned before, these

solutions provide a good start to a design pattern formation.

Students can compare their solutions with best solutions. Then

they can realize the qualities of a design by the use of best

practices.

The first four problems address structural patterns, the last

four behavioral patterns. The proportion between problems type

is respected. We have trying some problems addressing creational

patterns unsuccessfully. We consider that creational patterns can

be used after the use of others patterns in the development

process.

Problem 1 refers to the Composite pattern and its best

solution is described in Figure 12. This problem is directly

inspired by the GoF. Here, the problem is concentrated about

compositions between objects and there is no need to precise

methods.

Figure 12: The best solution of the problem 1

Problem 2 refers to the Decorator pattern and its best

solution is described in Figure 13. This problem is also inspired

by the GoF. Here, we precise methods in classes and we add

notes to show the collaboration between concrete and abstract

decorators. The fact that this pattern uses an explicit call to the

super method is difficult to see in a UML collaboration diagram.

Image

Graphic

Line RectangleText

*

Figure 13: The best solution of the problem 2

Problem 3 refers to the Decorator pattern and its best

solution is described in Figure 14. This problem is also inspired

by the GoF. Here, the simple delegation between abstractions and

implementors are modeled using UML notes. A collaboration

diagram can be used in this case.

Figure 14: The best solution of the problem 3

Problem 4 refers to the Adapter pattern and its best solution

is described in Figure 15. We have chosen to use uniquely the

object instantiation because in their formation, students program

in Java only. As the previous problem, the simple delegation is

modeled using UML notes, but a collaboration diagram can be

used too.

Figure 15: The best solution of the problem 4

Problem 5 refers to the State pattern and its best solution is

described in Figure 16. This problem is inspired by the

motivation example in the Martin Fowler refactoring book [16].

Although this pattern is labeled as behavioral, it is not necessary

to have a collaboration diagram.

Figure 16: The best solution of the problem 5

Problem 6 refers to the Chain of Responsibility pattern and

its best solution is described in Figures 17 and 18. This problem

is inspired by the GoF. Here, we ask students to give us a

collaboration diagram. We consider that the structure is not

sufficient to show the chain, and we need the sequence diagram to

determine if an alternative solution is valid.

Figure 17: The best solution of the problem 6

Figure 18: The sequence diagram of the best solution of the

problem 6

Problem 7 refers to the Mediator pattern and its best solution

is described in Figures 19 and 20. This problem is issued from

[25]. Even if this statement is attractive to present a metaphor of

the pattern, students have resolved the problem by the

instantiation of a mediator; or they have resolved the problem in

accordance with the statement and messages exchanges are in a

complete graph form. Here, alternative solutions become the

design problem to resolve by the use of the pattern.

Figure 19: The best solution of the problem 7

ControlTower

-dispatch()
+addPlane()
+removePlane()
+queryLanding(plane: Plane)
+queryTakeOff(plane: Plane)
+acceptmessage(message: String)
+queryLanding(this: Plane)

Plane

+recieve(message: String)
+land()
+takeOff()

+oneTower

+thePlanes

*

 : Client BP_Print : JButton BP_Cancel : JButton Container : JPanel : JLabel : JDialog : Manager

manageHelp()

"Print the document"

manageHelp()
manageHelp()

"Click on one button"
"Click on one button"

manageHelp()
manageHelp()

manageHelp()

"No available help"
"No available help"

"No available help"

Manager

+helpMessage
+availableHelp

+manageHelp()

+manager

JDialog

+manageHelp()

JLabel

+manageHelp()

JPanel

+manageHelp()

JButton

+manageHelp()

Client
manageHelp(){

 //show "No available help"

}

manageHelp() {

 if (! availableHelp) {

 manager.manageHelp();

 } else {

 //show the object help

 }

}

DVD

+getPrice()
+changeCategory(aCategory: Category)

Category

+getPrice()

Children

-PRICE_CHILDREN

+getPrice()

Normal

-PRICE_NORMAL

+getPrice()

New

-PRICE_NEW

+getPrice()

Horror

-PRICE_HORROR

+getPrice()

public float getPrice() {

 return category.getPrice();

}

public void changeCategory(aCategory : Category) {

 category = aCategory;

}

+category

Picture

Shape

+Xposition: int
+Yposition: int

+draw()

Circle

+draw()

Line

+draw()

Rectangle

+draw()

ComplexShape

-getHandle()
+draw()

Rose

+getRose()

+rose

private int getHandle() {

 return rose.getRose();

}

public draw() {

 //...

 getHandle();

 //...

}

VisualObject

+draw()

DecorationObject

+Decorator(component: VisualObject)
+draw()

Image

+draw()

Menu

+draw()
+drawMenu()

+component1

VerticalScrollBar

+draw()
+drawBar()

HorizontalScrollBar

+draw()
+drawBar()

Edge

+draw()
+drawEdge()

Text

+draw() public void draw() {

 component.draw();

}

public void draw() {

 super.draw();

 drawMenu();

}

public void draw() {

 super.draw();

 drawBar();

}

public void draw() {

 super.draw();

 drawEdge();

}

Window

+showWindow()

Style

+drawWindow()
+manageApplication()
+showIcon()

Empty

+showWindow()

WithIcon

+showWindow()

Applicative

+showWindow()

XWindow

+drawWindow()
+manageApplication()
+showIcon()

PresentationManager

+drawWindow()
+manageApplication()
+showIcon()

+style

public void showWindow() {

 style.drawWindow();

}

public void showWindow() {

 style.drawWindow();

 style.showIcon();

}

public void showWindow() {

 style.drawWindow();

 style.amangeApplication();

}

Figure 20: The collaboration diagram of the best solution of

the problem 7

Problem 8 refers to the Command pattern and its best

solution is described in Figure 21. This problem is inspired from

an exercise to manage pointers function in the C language. For

this, a collaboration diagram is not necessary. The important fact

is to detect the presence of switch statement into the code.

However, we have made the choice to think at design level, and

we did not find a simple way to model the kinematics of a

program in the UML notation. Then we have inferred switch

statements from UML designs.

Figure 21: The best solution of the problem 8

4.2.2 The problem of the design of a problem
We have specifically designed problems for the collect of

alternative solutions. Then, the statement of a problem should not

be too open or too directed. Consider the two following

statements for the Mediator problem.

“When a plane is in approach of the airport, it must

announce to all the other planes which are around that it intends

to be posed, and await their confirmation with all before carrying

out the operation. It is the control tower of the airport which

guarantees the regulation of the air traffic, by making sure that

there is no trajectory conflict or destination between several

planes.”

“When a plane is in approach of the airport, it must

announce to the control tower that it intends to be posed, and

await the confirmation before carrying out the operation. It is the

control tower of the airport which guarantees the regulation of

the air traffic, by making sure that there is no trajectory conflict

or destination between several planes.”

The first statement is too open and does not conform to the

pattern. In fact, if we design a system which scrupulously

respects the problem, it is very difficult to instantiate the

Mediator. For the second statement, it is very difficult to not

instantiate the mediator, and then the problem is not significant.

The problem of the design of a problem happened to other

problem statements. It is not easy to propose a small problem

dedicated to a specific design problem solvable by a unique

pattern and then solvable by a minimal architecture. There are

several solutions: consider problems coarser and apply composite

patterns, search topics of problems from the experience of

designers, ensure that problems are not too didactic, ensure that

problems are easily solvable by the instantiation of a pattern and

more complicated to solve without, ensure that problems address

other patterns…

4.2.3 Results
From all the solutions suggested by the students, we present

here one for each problem. Others alternative solutions exist but

are not presented due to space considerations. When needed, we

have refined the static diagrams with attributes and methods

necessary to the solutions understanding. For each alternative

solution presented, we propose the corresponding spoiled pattern

that we have abstracted from some alternative solution. We have

named spoiled patterns in the same manner as bad smells. Their

names evoke the noted misconception. For now, we have

uniquely represented spoiled patterns by static diagrams. We

study the possibility of adding collaboration diagrams.

An alternative solution to the use of Composite is presented

in Figure 22. This solution is valid, even if this structure imposes

duplications of code for the Graphic class. All compositions are

memorized and managed in this class and this fact invalidates the

strong point “decoupling and extensibility”.

Figure 22: One alternative solution for the problem 1

In the Figure 23, we present the deduced spoiled pattern

named: Development of composition on component. Here,

composition links should be factorized.

Figure 23: The spoiled pattern Development of composition on

component

An alternative solution to the use of Decorator is presented

in Figure 24. This solution is valid, even if the decorations are

directly expressed with composition links on the class object that

plays the Component role. This fact requires a big programming

effort to permit the decoration on the fly, because late binding and

calls to the super method are not used. In this case, the adding of

a new concrete decorator needs some code modification, and there

is a decoupling problem between objects to decorate and

decorators.

Component

Leaf Composite

* *

Graphic

ImageLine RectangleText

* ** *

Client Operations

+Add(x, y)
+Multiply(x, y)
+Substract(x, y)
+Divide(x, y)
+Modulo(x, y)

Command

+execute()
+execute(previous)

AddCommand

+op1
+op2

+execute()
+execute(previous)

SubstractCommand

+op1
+op2

+execute()
+execute(previous)

MultiplyCommand

+op1
+op2

+execute()
+execute(previous)

DivideCommand

+op1
+op2

+execute()
+execute(previous)

ModuloCommand

+op1
+op2

+execute()
+execute(previous)

Tutoriel

+launchCompute(): result
+addCommand(Command)
+removeLastCommand()

+theCommands

+operation

execute() {

 operations.Add(op1,op2);

}

execute(previous) {

 operations.Add(previous,op2);

}

execute() {

 operations.Modulo(op1,op2);

}

execute(previous) {

 operations.Modulo(previous,op2);

}

execute() {

 operations.Multiply(op1,op2);

}

execute(previous) {

 operations.Multiply(previous,op2);

}

execute() {

 operations.Divide(op1,op2);

}

execute(previous) {

 operations.Divide(previous,op2);

}

execute() {

 operations.Substract(op1,op2);

}

execute(previous) {

 operations.Substract(previous,op2);

}

controlTowel : ControlTowel

planeLand2 : PlaneplaneLand1 : Plane

planeLand3 : PlaneplaneTakeOff : Plane

1 : queryLanding()

2 : recieve() 3

4

5 6

7

8

Figure 24: One alternative solution for the problem 2

In the Figure 25, we present the deduced spoiled pattern

named: Development of decorations on component. Here,

decoration links should be factorized and a class dedicated to the

delegation between concrete decorators should be added.

Figure 25: The spoiled pattern Development of decorations on

component

An alternative solution to the use of Bridge is presented in

Figure 26. Even if windows are correctly separated from the

environment, the associations between each window and Style are

not factorized. There will be no problem if a new platform is

added, but for a new window, a new association link will be added

to the Style class. This model is valid. However, it is possible to

have some window types with different styles.

Figure 26: One alternative solution for the problem 3

In the Figure 27, we present the deduced spoiled pattern

named: Development of delegation links. Here, delegation links

are misplaced and should be factorized.

Figure 27: The spoiled pattern Development of delegation links

We do not present an alternative solution for the problem 4

(Adapter pattern), because all the solutions we have obtained were

instantiations of the design pattern

An alternative solution to the use of State is presented in the

Figure 31. For the problem 5, we obtain two worst cases. In the

first worst case, the category is a subclass of DVD imposing

instances destruction to change of category. The question of the

validity of this solution is open in regard of the proposed exercise.

However, we have considered this solution valid in using a

prototype creational pattern with a category as parameter.

Figure 28: One alternative solution for the problem 5

In the Figure 29, we present the deduced spoiled pattern

named: Bad classification. It needs a State class that allows the

category changing without destroying and recreating a new

instance globally identical.

Figure 29: The spoiled pattern Bad classification

Another alternative solution to the use of State is presented in

the Figure 33. Here, the DVD class manages its state thanks to an

enumeration. In doing so, the solution imposes a “switch”

statement, and so, the category changing is possible. The problem

of this solution concerns the extensibility. Indeed, if a new

category is added, the DVD class must be modified to manage the

new type.

Figure 30: One alternative solution for the problem 5

In the Figure 31, we present the deduced spoiled pattern

named: Hidden switch statement. This is an ideal start point of a

big refactoring dedicated to introduce the State pattern. It is given

in the chapter example of the refactoring book by Martin Fowler

[16].

Figure 31: The spoiled pattern Hidden switch statement

An alternative solution to the use of Chain of Responsibility

is presented in the Figure 32. Here, there is a separation between

containers and contents. Two issues arise. The first concerns the

validity of the solution and the second concerns the interaction

with another spoiled pattern presents in the design. We have

considered this solution valid even if delegation between content

objects is not possible. The problem can be solved by adding a

reflexive association on the class Content.

Context State
<<enumeration>>

+ConcreteState

DVD

+category: Category

+getPrice(): int

Category
<<enumeration>>

+Children
+Normal
+New
+Horror

Context

ConcreteState

DVD

Children Normal New Horror

Abstraction

RefinedAbstraction

Implementor

ConcreteImplementor

Window Style

Empty WithIcon Applicative XWindow PresentationManager

Component

ConcreteComponent

ConcreteDecorator

0..1

HorizontalScrollBarVerticalScrollBar Edge

Object

Image

Menu

Text

0..1 0..1 0..10..1

But the main problem is the composition relationship

between Container and Content. We have inferred that this

composition expresses another thing about containers and

contents, and there is a reuse of this link for chaining the

management of help messages. Then, we can say that this

composition link have too many responsibilities as the same

manner that we say on a class. But, what should we consider

about this solution? Is this solution is an alternative solution of the

Chain of Responsibility using a preexisting composition link or a

side effect of a preexisting alternative solution to the composite

between graphical components? It is typical for this kind of

problem we want to hear the opinion of the community working

on patterns.

Figure 32: One alternative solution for the problem 6

In the Figure 33, we present the deduced spoiled pattern

named: Excessive reuse of a preexisting association. The

reflexive association on Container class must be pulled up to the

super class.

Figure 33: The spoiled pattern Excessive reuse of a preexisting

association

The alternative solution of the Figure 32 respects the

messages chaining, as illustrated in the sequence diagram in the

Figure 34. When a help demand is activated, the object concerned

has the possibility either of answering or to communicate it to

another object. However, we do not show that different

associations are used in this collaboration. So even if a particular

scenario unfolds a chain of responsibility for dealing with error

messages, the static architecture between objects can be different.

It seems likely that the study of such a behavioral pattern requires

firstly a static diagram and the other a complete set of test cases

modeled by sequence diagrams.

Figure 34: The sequence diagram of the previous alternative

solution

We present an alternative solution to the use of Mediator in

Figure 35. Unfortunately, all the alternatives we have obtained

corresponded to the worst case ever presented in the GoF catalog.

The concrete mediator that is represented by the control tower is

not used. As mentioned before, it is due to the difficulty to

propose an adequate exercise.

Figure 35: One alternative solution for the problem 7

In the Figure 36, we present the deduced spoiled pattern

named: Complete collaboration between concrete colleagues.

Here the refactoring consists to move the association-end from

planes to the Control Tower.

Figure 36: The spoiled pattern Complete collaboration between

concrete colleagues

In the next collaboration diagram of the Figure 37, we show

the complete graph structure dedicated to exchange of messages.

We have chosen a collaboration diagram to express this fact.

Figure 37: The collaboration diagram for the previous

alternative solution

land1 : Plane land2 : Plane

takeOff : Plane land3 : Plane

control : ControlTower

ConcreteColleague ConcreteMediator

Plane

+land()
+takeOff()
+sendMessage()
+recieveMessage()

ControlTower

+sendMessage()
+recieveMessage()
+recieveMessage()

+otherPlane

 : JPanel : JDialogimprimer : JButtonannuler : JButtonClient

1 : availableHelp()

2 : showHelp

3 : availableHelp()

4 : availableHelp()

5 : availableHelp()

6 : false

7 : false

8 : noHelp

Handler_b

ConcreteHandler_1

Handler _c

ConcreteHandler_2

Handler_a

Container

JDialog JPanel

Content

JLabel

Help

-String message
-Boolean isAvailable

+showHelp()
+setMessage(String c)
+availableHelp()

JButton

An alternative solution to the use of Command is presented

in the Figure 38. This solution grants all the management to the

System class but separates the real operation in different classes.

So, the solution is valid, but imposes a lot of communications

between the System class and the operations classes. Moreover,

System does not memorize the operation but an identifier from

OperationType. So, the System class must test all the identifiers

during the computeOperation that is problematic if there are a lot

of operations.

Figure 38: One alternative solution of the problem 8

In the Figure 39, we present the deduced spoiled pattern

named: Partially reification of command. As one of the spoiled

pattern concerning the state, we can name it the hidden switch

statement because it needs the use of dynamic binding for the

selection of the appropriate operation. Here the refactoring

consists in terminating the reification process by transforming

each association link between the invoker and a concrete

command by an inheritance link with the command.

Figure 39: The spoiled pattern Partially reification of

command

4.3 Limits
Our collection method of spoiled patterns presents, in its

current form, two limits. The first relates to the collection with

experiments, the second to the manual analysis of the alternative

solutions.

 To collect alternative solutions with designers

corresponds to an approach which enables us to exploit a large

number of solutions. However, the participation of students of the

same course produces very close results when the problems

become more and more complex. Having the same formal and

technical training, the same design defects are found in their

models, thus limiting the number of different alternative solutions.

 To constitute our spoiled pattern base, we manually

analyzed each solution suggested. Such an analysis remains

manual, because it seems difficult to automate the examination of

a model starting from a simple class diagram. For the structural

patterns, the effort is not very consequent since only the structure

of the solution is significant, contrary to behavioral patterns which

bring into play the kinematics of the messages exchanges between

the objects.

In order to avoid the multiplication of the same solutions and

to increase the diversity of the alternatives solutions suggested, it

is advisable to urge an experiment on broader scale by touching

designers of any horizon. The use of a collaborative sharing

website of problems and alternative solutions would make it

possible to identify the most frequent spoiled patterns, and more

largely, the bad practices of designs. Moreover, this website

would allow the emergence of an experts community opening a

sharing zone of “bad practices”.

5. A WEBSITE TO SHARE SPOILED

PATTERNS
We have designed a collaborative website giving an access to

the whole catalog of the spoiled patterns. This site, reachable at

http://www.irit.fr/GOPROD/, introduces each design pattern with

a list of its spoiled patterns and a problem list solvable with the

pattern. Each spoiled pattern is described with a justification of

its damage. The site proposes a contribution system allowing the

submission of new problems, new alternative solutions, new

spoiled patterns and new strong points. Each submission is

subjected at a committee examining its validity and its interest as

a spoiled pattern. Thus, this site makes it possible to create a

community of experts to urge the use of the design patterns.

The website manages three roles. The first concerns simply

the visitor. A visitor can show the entire catalog already validated

and so can use the website as an information source to do its

design, to correct its design, or to teach design patterns concepts.

After identification, a visitor becomes a contributor. With this

role, the contributor can submit new problems, new alternative

solutions or new strong points. Each submission is sent to the

committee of the website. This committee is an expert group able

to validate or invalidate each submission. While the submission is

not validated, the visitors cannot see it. Thanks to this system, we

present to the visitors a catalog always validated.

The submission process of the website is conceived in the

same logic as the conduction of the experiments presented in the

section 4. All the user stories of the website are presented is the

Table 2.

Finally, the entire website is articulated around a specific

business model presented in the Figure 40. We can see in this

model all the concepts previously presented. A pattern has some

strong points decomposed in subfeatures, and solves a problem.

So, this problem has a best solution which instantiates the

concerned design pattern, and some alternative solutions. These

alternative solutions solve the problem but with a different

architecture compared to the best solution. A spoiled pattern may

be deduced from each alternative solution, and the difference

between the alternative and the best solution produces a strong

points degradation. Except for the strong points and the sub-

features, each entity has one or more representations allowing the

Command Invoker

ConcreteCommand / Reciever

0..*

CommandType
<<enumeration>>

+ConcreteCommandType

Operation

+operand1
+operand2
+operation: OperationType

System

+addOperation(operation, op1, op2)
+computeOperation()
+showResult()

Addition

+click(op1, op2)

Substraction

+click(op1, op2)

Multiplication

+click(op1, op2)

Division

+click(op1, op2)

Result

+click()

0..*

OperationType
<<enumeration>>

+addition
+substraction
+multiplication
+division

illustration of each concept, like static diagrams or sequence

diagrams as shown in the previous sections of this paper.

Table 2: The user stories

As visitor, I can

 show design patterns description (structure, strong points,

intent and applicability).

show spoiled patterns for one design pattern.

 show alternative solutions allowing the deduction of a

spoiled pattern.

 show problems allowing to obtain alternative solutions.

show the best solution for a problem.

register as contributor.

As contributor, I can

 submit a new problem and its best solution.

submit a new alternative solution for a problem.

submit a new spoiled pattern for an alternative solution.

submit a new strong point or a new subfeature.

As committee member, I can

 validate or invalidate the submissions, in motivating my

choice.

show all the submissions.

submit a new design pattern.

Figure 40: The business model

6. CONCLUSION
A spoiled pattern is a generic micro-architecture that

produces non-optimal solutions to a design problem. Therefore,

by comparisons with best solutions instantiated with design

patterns, spoiled patterns allow to enforce the good properties of

design patterns. We think that spoiled patterns can be used for

others purposes too. First, a didactic purpose: spoiled patterns can

be considered as bad smells at design time or as “small” anti-

patterns. Then early detection of them can be useful during a

weekly meeting of the development team covering architecture.

Second, a dissemination purpose as we propose in the

collaborative website. Spoiled patterns can consolidate the proof

of the pertinence of the pattern concept. Therefore, having an

extensional definition of design problems covered by the patterns

can help designers to detect more easily misconceptions on their

designs.

However experiments that we have driven are expensive in

time and are concentrated on a specific panel. Therefore we have

played too much roles: teacher, analyst, specialist, and committee

member. Then, we propose a collaborative web site to open

spoiled patterns to the community.

We encounter some difficulties in the process of abstraction

concerning spoiled behavioral patterns. Here, structure is not

sufficient and interactions diagrams represent specific

collaborations between objects.

REFERENCES
1. A.L. Baroni, Y.-G. Guéhéneuc, H. Albin-Amiot, “Design

patterns formalization”, rapport de recherche, Département

d’informatique, École des Mines de Nantes, number

03/03/INFO, 2003.

2. E. Gamma, R. Helm, R. Johnson, J. Vlissides, “Design

Patterns: Elements of Reusable Object-Oriented

Software”, Addison Wesley Professional, 1995.

3. H. Albin-Amiot, P. Cointe, Y.-G. Guéhéneuc, N. Jussien,

“Instantiating and Detecting Design Patterns: Putting Bits

and Pieces Together”, in: proceedings of the 16th conference

on Automated Software Engineering (ASE), IEEE Computer

Society Press, pages 166-173, 2001.

4. H. Albin-Amiot, Y.-G. Guéhéneuc, “Meta-Modeling

Design Patterns: Application to Pattern Detection and

Code Synthesis”, in: proceedings of the 1st ECOOP

workshop on Automating Object-Oriented Software

Development Methods, University of Twente, 2001.

5. J. Dietrich, C. Elgar, “A Formal Description of Design

Patterns Using OWL”, in: proceedings of the 16th

Australian Software Engineering Conference, IEEE Computer

Society, pages 243-250, 2005.

6. J. Dong, Y. Zhao, “Classification of Design Pattern

Traits”, in: proceedings of the 19th International Conference

on Software Engineering & Knowledge Engineering (SEKE),

pages 473-477, 2007.

7. A.L. Guennec, G. Sunyé, J.-M. Jézéquel, “Precise

Modeling of Design Patterns”, in: proceedings of 3rd

International Conference on the Unified Modeling Language

(UML), Springer Verlag, pages 482-496, 2000.

8. H. Kampffmeyer, S. Zschaler, “Finding the Pattern You

Need: The Design Pattern Intent Ontology.”, in:

proceedings of the 10th International Conference on Model

Driven Engineering Languages and Systems (MoDELS),

Springer, volume 4735, pages 211-225, 2007.

PatternSpoiled pattern

Sub feature

Strong point

Alternative solution

Problem

Best solution

solves

0..*

1

has

1

1

has

0..*

1

is deduced from

1..*

0..1

has

0..*

1

1

1..*

validates

0..*

0..*

damages

0..*

0..*

instantiate

1

0..*

9. J.K.H. Mak, C.S.T. Choy, D.P.K. Lun, “Precise Modeling

of Design Patterns in UML”, in: proceedings of the 26th

International Conference on Software Engineering (ICSE),

IEEE Computer Society, pages 252-261, 2004.

10. A.H. Eden, A. Yehudai, J. Gil, “Precise specification and

automatic application of design patterns”, in: proceedings

of the 12th international conference on Automated Software

Engineering (ASE), IEEE Computer Society, pages 143-152,

1997.

11. G. El-Boussaidi, H. Mili, “Detecting Patterns of Poor

Design Solutions Using Constraint Propagation”, in:

proceedings of the 11th international conference on Model

Driven Engineering Languages and Systems (MoDELS),

Springer-Verlag, volume 5301, pages 189-203, 2008.

12. R. France, S. Ghosh, E. Song, D.-K. Kim, “A

Metamodeling Approach to Pattern-Based Model

Refactoring”, in: IEEE Software, IEEE Computer Society

Press, volume 20, number 5, pages 52-58, 2003.

13. H. Mili, G. El-Boussaidi, “Representing and Applying

Design Patterns: What Is the Problem?”, in: proceedings of

the 8th international conference on Model Driven

Engineering Languages and Systems (MoDELS), pages 186-

200, 2005.

14. M. O'Cinnéide, P. Nixon, “A Methodology for the

Automated Introduction of Design Patterns”, in:

proceedings of the 15th IEEE International Conference on

Software Maintenance (ICSM), IEEE Computer Society,

pages 463-473, 1999.

15. C. Bouhours, H. Leblanc, C. Percebois, “Bad smells in

design and design patterns”, in: Journal of Object

Technology, ETH Swiss Federal Institute of Technology,

volume 8, number 3, pages 43-63, 2009.

16. M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts,

“Refactoring: Improving the Design of Existing Code”,

Addison-Wesley Professional, 1999.

17. M. Dodani, “Patterns of Anti-Patterns ?”, in: Journal of

Object Technology, volume 5, number 5, pages 29-33, 2006.

18. W.J. Brown, R. C. Malveau, T.J. Mowbray, “AntiPatterns:

Refactoring Software, Architectures, and Projects in

Crisis”, Wiley, 1998.

19. M. Fagan, “Design and code inspections to reduce errors

in program development”, in: Software pioneers:

contributions to software engineering, Springer-Verlag New

York, pages 575-607, 2002.

20. Object Management Group., “XML Metadata Interchange”,

http://www.omg.org/technology/xml/index.htm, 2007.

21. T. Millan, L. Sabatier, T. T. Le Thi, P. Bazex, C. Percebois,

“An OCL extension for checking and transforming UML

Models”, in : proceedings of the 8th International Conference

on Software Engineering, Parallel and Distributed Systems

(SEPADS), WSEAS Press, pages 144-150, 2009.

22. Object Management Group., “Object Constraint Language”,

http://www.omg.org/cgi-bin/apps/doc?formal/06-05-01.pdf,

2006.

23. C. Bouhours, “Detection, Explications et Restructuration

de défauts de conception : les patrons abîmés”, PhD, IRIT,

2010.

24. D.L. McGuinness, F.V. Harmelen, “OWL Web Ontology

Language Overview”, http://www.w3c.org/TR/owl-features/,

2004.

25. M. Duell, J. Goodsen, L. Rising, “Non-software examples

of software design patterns”, in: OOPSLA '97: Addendum

to the 1997 ACM SIGPLAN conference on Object-oriented

programming, systems, languages, and applications

(Addendum), ACM, pages 120-124, 1997.

	Introduction
	The Spoiled patterns
	Definitions
	Illustration
	Bad smells and antipatterns
	Bad smells
	Antipatterns

	A design review activity
	A case study
	An activity execution

	A first catalog
	Experiments building
	The public
	The process

	A complete example
	Best solutions
	The problem of the design of a problem
	Results

	Limits

	A website to share spoiled patterns
	CONCLUSION

