
Core Patterns of Object-Oriented Meta-Architectures

Hugo Sereno Ferreira
Faculdade de Engenharia

Universidade do Porto
Rua Dr. Roberto Frias, s/n
hugo.sereno@fe.up.pt

Filipe Figueiredo Correia
Faculdade de Engenharia

Universidade do Porto
Rua Dr. Roberto Frias, s/n
filipe.correia@fe.up.pt

Joseph Yoder
Refactory, Inc.

joe@joeyoder.com

Ademar Aguiar
Faculdade de Engenharia

Universidade do Porto
Rua Dr. Roberto Frias, s/n

ademar.aguiar@fe.up.pt

ABSTRACT
Meta-architectures, also known as reflective architectures,
are a specific type of software architectures that are able to
inspect their own structure and behavior, and dynamically
adapt at runtime, thus responding to new user requirements
or changes in their environment. In object-oriented program-
ming, these architectures rely on a small set of core concepts
that provide them the means to describe themselves, thus
becoming “closed”. These three core patterns can be found in
almost every object-oriented meta-architecture: Everything
is a Thing, Closing the Roof, and Bootstrapping. By
delving into the inherent problems they try to solve, and the
forces that shape those problems, a developer will improve his
ability to adequately make architectural and design choices
to build and evolve systems with high-adaptability needs.

Keywords
Model driven software engineering, Adaptive object models,
Design patterns, Meta-modeling, Meta-programming.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Patterns

1. INTRODUCTION
Meta-architectures, also known as reflective-architectures,
are software systems architectures that rely on meta-data
and reflection mechanisms in order to dynamically adapt, at
runtime, to new (or changed) user requirements [14]. This
is achieved by exposing the domain model as a first-class
artifact able to be changed and shaped through the system
itself.

1.1 Motivation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission. Preliminary versions of these papers were presented in a writ-
ers’ workshop at the 17th Conference on Pattern Languages of Programs
(PLoP).
PLoP’10 October 16-18, Reno/Tahoe, Nevada, USA

Back in 2005, some of the authors were leading a software
project consisting on the construction of a geographical in-
formation system which would help to manage records of
architectural and archeological heritage, their inventory and
the associated business processes. Although our development
methodology was a slight variant of eXtreme Programming
[2], we were considerably restricted in applying some of the
practices for this particular project: (i) it was bided, so the
cost was fixed, (ii) we could not reduce the scope, although
it was systematically enlarged, (iii) we could not have an
on-site costumer, and (iv) somehow, the result should be
considered a success at all cost.

Our problems began in the very first official meeting we had.
Because the bid was made years before the official start of the
project, the stakeholders’ understanding had evolved since
then. Therefore, the initial requirements were no longer a
reflection of their current manual processes. Our contract en-
forced the delivery of a requirement analysis document which
had to undergo validation before starting the development.
And so we began the task of collecting requirements... for
two years.

At a glance, this seems a good example of how it should
not be done; two years collecting requirements smells like a
good old waterfall. However, our mere presence was directly
contributing to this status. We started to question things the
stakeholders took for granted, and in the process of formaliz-
ing their practices, we uncovered inconsistencies which could
not be solved promptly. This resulted in a series of analysis
iterations, where the stakeholders’ had to re-think their goals,
their processes, and their resulting artifacts, before we could
synthesize a coherent domain model.

At the end of those two years, and with a conceptual model
of over 200 concepts, we were strongly convinced of one
thing: no matter how much time we invested in analysis, the
resulting system would hardly ever be considered finished.
As an example, consider the following requirement: users
needed to collect the physical properties of archeological
artifacts found in excavations. At first, length, width and
height seemed a good measure. But some artifacts are highly
irregular, like a three thousand year old jar. For these, weight
and material composition are greatly more useful. Other
artifacts, like coins, are very regular and rely on different

1



properties, like radius and thickness. Then we have things
in-between, such as plates. The more we categorized, the
more complex and longer the hierarchy become, without
any confidence we would be able to cover all the exceptions.
Our model was being haunted by accidental complexity†,
and a simple solution urged objects to be characterized by
the end-user according to a pre-defined set of properties
(which were not pre-defined at all). Of course users are no
programmers, so they needed to add new properties and
create new hierarchies on-the-fly from inside the application,
without being explicitly aware of the underlying model.

Nowadays we have a name – Incomplete by Design [6] – and
a software architecture – Adaptive Object-Models [14] – for
this kind of systems. The irony of this story was that the
final application converged to an AOM without its developers
actually knowing it was one. Only some years later they have
found literature on the subject, a fact that further validates
the AOM as a pattern. We will make usage of this story
throughout this paper to illustrate parts and pieces of our
patterns.

1.2 Technical Description
The separating line between data and model is blurred when
speaking about meta-data, in the sense that everything is,
ultimately, data; only its purpose is different. For example,
the information that some particular Video in our system is
named The Matrix, and another one named Lord of the Rings,
is called data for the purpose of using it as an information
system for video renting. We could hypothetically draw a line
encompassing all the objects that account for data (normally
called instances) and name it the meta-level-zero (M0)
of our system.

The way we would typically model such a simple system in
an object-oriented language would be to create a class named
Video, along with an atribute named Title. But what may
be considered the model in one context, may be seen as data
in another, e.g., the compiler. As such, this information is
meta-data (it is data about data itself): in fact, it conveys
a very crucial information, which is the data’s structure
(and meaning), for the purpose of specifying an executable
program. Once again, we could draw a line around these
things that represent information about other things – classes,
properties, etc. – and call them meta-level-one (M1), or
simply model.

But, what exactly is a class, or a property? What is the
meaning of calling a method, or storing a value? As the reader
might have guessed, once again, there is structure behind
structure itself – an infrastructure – and the collection of
such things may be called meta-level-two (M2), or meta-
model for short (i.e., a model that defines models), which is
composed of meta-classes, class factories, and other similar
artifacts.

Hence, when we talk about data (or instances) we are refer-
ring to M0 – bare information that doesn’t provide structure.
By model we are referring to M1 – its information gives

†Complexity that arises in computer artifacts, or their devel-
opment process, which is non-essential to the problem to be
solved.

structure to data. By meta-model we are referring to M2 –
information used to define the infrastructure. And so on...

Ultimately, depending on the system’s purpose, we will reach
a level which has no layer above. This “top-most” level
doesn’t (yet) have a name; in MOF [9] it is called a meta-
meta-model, due to being the third model layer‡. This
building up of levels (or layers), where each one is directly
accountable for providing structure and meaning to the layer
below is known as the Reflective Tower, a visual metaphor
that can be observed in Figure 1.

M2

M1

M0

ClassAttribute

‹‹instanceOf››‹‹instanceOf››

M3 Class

Instance

‹‹instanceOf››‹‹instanceOf››‹‹instanceOf››

classifier

 +title: string

Video

title = "Matrix"

:aVideo‹‹snapshot››

‹‹instanceOf››

Matrix

‹‹instanceOf››

Figure 1: The Reflective Tower of a video renting
system, showing four layers of data.

All this would not be very useful if it did not have a purpose.
We already mentioned the compiler, whose task is to read
a particular kind of information (known as source code)
and translate it into a set of structures and instructions
(known as a program), which would later be executed by a
computer – a process known as compilation. The compiler
acts as a processing machine: the input goes into one side,
and the outcome comes from the other. Once the compiler
has done its job, it is no longer required, and so it does not
observe nor interact with the final program. Should we
wish to modify the final program, we would need to change
the source code and hand it again to the compiler.

Now let us suppose we wanted to add a new property to a
Video, like the name of its Director, or create new sub-types
of videos as needed, like Documentary or TV Series, each one
with different properties and relations. In other words, what
if we need to adapt the program as it is running? For that,
we would need both to observe and interact with our running
application, modifying its structure on-the-fly (the technical
term is during run-time). The property of systems that al-
low this to be performed is called Reflection, i.e., the ability
of a program to manipulate as data something representing
the state of the program during its own execution. The two
mentioned aspects of such manipulation, observation and
interaction, are respectively known as introspection, i.e.,
to observe and reason about its own state, and intercession,
i.e., to modify its own execution state (structure) or alter
its own interpretation or meaning (semantics).

‡Would it be the sixth, we seriously doubt anyone would
apply the same prefix five times.

2



The technique of using programs to manipulate other pro-
grams, or the running program itself, is known as meta-
programming, and the high-level design of such system
is called a meta-architecture. Granted, there has been
some debate on the exact meaning of this Humpty-Dumpty
word†. Joseph et al. defined it as architectures that can dy-
namically adapt at runtime to new user requirements (a.k.a.

“reflective architectures”) [14]. Ferreira et al. pointed to
an architecture of architectures, i.e. an abstraction over a
class of systems which may rely on reflective mechanisms
[?]. This seemingly disagreement is due to the ubiquitous
meta prefix, which can be understood as being applied to the
word architecture (i.e., an architecture of architectures), or
as a subset categorization (i.e., those architectures that rely
on meta-* mechanisms). For the purpose of this work, we
will stand with the latter, i.e., a meta-architecture is a
software system architecture that relies on reflective
mechanisms.

1.3 General Forces
The construction of this kind of systems is under the influence
of a set of forces; concerns that should be weighted in order
to achieve a good solution. Because the patterns described in
this paper are deeply connected, most of them share a good
amount of forces in common. Figure 2 shows a schematic
relationship among some of the following forces that are
generally relevant to meta-architectures.

Homogeneity

Transparency

Usability

improves

Adaptability

Reuse

Separation of Concerns

Proliferation

Granularity Performance

Concurrency

improves

changes

helps helps

hinders

leads to

leads to hinders

hinders helps





∢

*↖▨

⑉

𐄟

☍

✂

⎌

Figure 2: The relationship among forces of object-
oriented meta-architectures.

1. Transparency. How much of the underlying system
is available through reflection? In other words, to
which degree does the infrastructure expose its own
mechanisms for observation and manipulation? We
may regard a system which is more transparent to
improve usability in the sense that adds more power
to it (hence, the user is able to do more). On the
other side, a lot of transparency exposes details that
can hinder its understandability, and consequently, its
usability.

2. Usability. This is defined as “the extent to which a
product can be used by specified users to achieve speci-
fied goals with effectiveness, efficiency and satisfaction
in a specified context of use” [7]. In this sense, meta-
architectures, particularly Adaptive Object-Models,

†From Lewis Carrol’s Down the Rabbit Hole, when Humpty-
Dumpty explains to Alice: “when I use a word, it means just
what I choose it to mean, neither more nor less”.

have two type of target users: (i) those which develop
and evolve the infrastructure, and (ii) those who use the
public facilities of the infrastructure to develop domain
specific systems. Design choices may have different in-
fluences on the usability of different target users. This
force is actually a product of several other forces.

3. Separation of Concerns. This is a general design
force the establishes the fact that a particular function-
ality of a systems should be the concern of a different
component – in this case, a different level of the re-
flective tower. For example, M1 should be reserved to
only express domain-level concerns, but most systems
regard it as immutable during runtime. Thus, acci-
dental complexity arises when this level is tweaked by
non-domain concerns which should belong to M2.

4. Concurrency. Is a general counter-force to reflec-
tive meta-architectures, mainly due to integration mis-
match (i.e., tight interconnection among different level
artifacts, causal connection among entities to provide
consistency in the meta-representation of the system,
information flux among levels, etc.). Concurrency is
mainly relevant due to performance and distributivity
concerns, and has been a common issue in database
design.

5. Granularity. Represents the smallest aspect of the
base-entities of a computational system that are rep-
resented by different meta-entities, depending on the
reflectivity scope — structural and/or behavioral. Typ-
ical granularity levels are classes, objects, properties,
methods and method calls. The particular choice of
the level of granularity is driven by its transparency,
and has consequences on the resulting systems’ object
proliferation and performance.

6. Proliferation. Increasing the reflectivity granularity,
e.g., by representing method calls as objects, leads to
object proliferation, in the sense that more elements
exist to represent the system’s state. Likewise, more
elements typically means more communication among
them, increasing information flux and likely hindering
overall performance.

7. Information Flux. Measures the amount of infor-
mation that is exchanged between elements of a sys-
tem to perform a desired computation. Depending on
the meta-architecture design, instances typically ex-
change information with its class, classes with their
meta-classes, and so on...

8. Lifecycle. The period of the system execution in
which a specific meta-entity has to exist. For example,
structural meta-entities that defines an information
system may be considered as persistent (or having
a long life-cycle). On the other hand, introspective
aspects have a shorter life-cycle (typically, only during
the execution of the application). This has a correlation
with granularity.

9. Performance. This is also a general engineering force
that may mean short response time, high throughput,
low utilization of computing resources, etc.

3



10. Adaptability. Characterizes a system that empowers
end-users without or with limited programming skills
to customize or tailor it according to their individual
or environment-specific requirements.

11. Reuse. Is the ability of using existing artifacts, or
knowledge, to build or synthesize new solutions, or
to apply existing solutions to different artifacts. For
example, one can reuse the persistency engine, typically
tailored to persist data, to also persist model and meta-
model elements. Reusing generally leads to a reduce of
overall systems complexity and improves usability.

12. Homogeneity.

1.4 Pattern Thumbnails
Figure 3 shows the relationship between the three patterns
here presented, and the way they extend the pattern language
for adaptive object-models [13, 4, 12], by coupling to the
TypeSquare pattern [14]:

1. Everything is a Thing. Which addresses the prob-
lem of having multiple representations of the same
underlying concept.

2. Closing the Roof. A pattern that encloses the struc-
ture and meaning of a meta-architecture by stopping
the seemingly infinite escalation of meta-levels.

3. Bootstrapping. Which solves the fact that any en-
closed structure able to define itself relies on a (small)
set of basic definitions, upon which it can build more
complex structures.

Everything is a Thing

Closing the Roof

Bootstrapping

brings the need for requires

Type Square
is extended by also defines a

Figure 3: Patterns of object-oriented meta-
architectures and their relationship.

In this paper we we use Christopher Alexander’s pattern
language (APL) format [1], instead of the more commonly
used variants of the Gang of Four [5]. Although recognizing
the several benefits of the latter, including a more method-
ological partitioning of the pattern, we feel that the APL
form results in a more fluid, narrative-like structure.

Some typographical conventions are used to improve the
readability of this document. Patterns names always appear
in SmallCase style. Whenever referring to domain elements,
e.g., class names, they are printed using fixed-width char-
acters. If not otherwise specified, the graphical notation used
complies to the latest versions of UML [11] and OCL [10]
available at the date of publication (v.2.3).

1.5 Target Audience
The main goal of this paper is to present a collection of
patterns that address fundamental concepts underlying meta-
architectures. They are intended for those (developers) build-
ing or trying to understand the inner workings of such sys-
tems, among which may be (a) those whose interest is in the
design of programming or specification languages, and (b)
others that aim to improve their systems’ adaptivity. We
hope both find these patterns useful.

The secondary purpose of this work is to unveil some of the
magic that seems to hover anything that is prefixed by meta.
Tim Peters, a python guru, once said [8]:

“[Metaclasses] are deeper magic than 99% of
users should ever worry about. If you wonder
whether you need them, you don’t (the people who
actually need them know with certainty that they
need them, and don’t need an explanation about
why).”

While we respect, and to some extent agree with Tim’s
remarks, we have seen many developers scared away by this
meme of “forbidden kingdom”. The net result is a class of
awfully designed systems and too many hours “reinventing
the wheel”, mainly due to the overall lack of education in the
practical application of meta techniques. Should this paper
help those 1% of users that actually need them, but don’t
(yet) know, then it has served its secondary purpose.

2. PATTERN I: EVERYTHING IS A THING
Also known as Universal Object, Everything is an object,
Meta-class.

Figure 4: A 3D projection of a Calabi-Yau mani-
fold from superstring theory – an hypothesis that
explains every entity our universe is made of.

The system, with its several types of composing parts, needs
to be adapted. Meta-architectures make use of elements avail-
able at runtime (i.e., models and meta-models) to specify the
system’s behavior. The system’s data is observed and manip-
ulated according to such elements, addressing concerns such
as Persistency, Behavioral Rules, Graphical User-Interfaces,
and Communications, among others.

4



[
Back to the story started in Section 1.1, our system began
as a simple variant of the TypeSquare pattern that in-
cluded attributes, relations, compositions, etc. In fact, it was
heavily inspired in UML class diagrams and we were trying
to “squeaze” everything we could out of it. At first it was
sufficient to store the model description (i.e., EntityTypes,
AttributeTypes, etc.) in a separate XML file, and dis-
tribute it over client applications and load it at start-up.
Truth be told, to modify the domain model we had to modify
the XML file, so there was not that much run-time “adap-
tivity”. There was also a “mapper”, with the purpose of
interpreting the XML file into runtime elements. Then we
had a GUI engine which followed a set of heuristic rules
and was able to automatically create a user interface by, like
everything else, observing the system’s definition.

The lack of homogeneity was a problem first spotted
with the need to actually manipulate the domain model
at runtime. Although easy to deal with, the round-
trip to XML was ugly. Also, changing the name of an
AttributeType or of an EntityType required special-
ized operations, such as ChangeAttributeTypeName or
ChangeEntityTypeName, that established the degree of
transparency at the model level, but what was really bug-
ging us was that logic was duplicated all around. The GUI
engine inferred the user interface to manipulate the data
level, but we were implementing by hand most of the same
rules to manipulate the model level. Then we realized that
relying on XML to persist the model would not work well
in a concurrent environment. We asked ourselves: why
exactly do we have two descriptions of our system? If we
have the infrastructure to manipulate data, why don’t we
reuse it to manipulate meta-data? In other words:

How to represent all that needs to be reflected upon?

Clearly, we were lacking a fundamental, unifying principle.
We have a system that observes and manipulates data, but it
cannot do the same for meta-data? Why may we use a certain
operation to change the attribute value of any instance, like
setting the name of a person to John, but a different operation
is required to change the name of a model element? Why
could the data be stored in a warehouse, but needed the
XML to store the model? We had decoupled the system
from the domain, but we were coupled to what we believed
to be a fixed structure; a false belief, since it soon needed to
evolve. Our implementation pointed to a system that would
need a large number of specific operations and components to
manipulate the meta-level, and that number would increase
in direct proportion with the system’s transparency. What
was so different between elements of M0 and elements of M1?
The solution was right in front of us: the system knew how
to manipulate instances, so we needed to make the elements
of our model to also be instances.

Therefore, make all system’s elements specializations
of a single concept, regardless of their model level.
These highly generic concepts are Things (or Instances, or
Objects...). They are a single, unifying, primitive structure, as
seen in Figure 5. To manipulate data or model elements, the
system always relies on the manipulation of Things, that have

Entity Entity Type

‹‹instanceOf››

Figure 5: Extending the TypeSquare to implement
this pattern, by making EntityType a specialization
of Entity.

a common set of basic capabilities for their own observation
and manipulation. By homogenizing these concepts, the
mechanisms that deal with such generalizations don’t need
to be specific to every kind of entity. For example, setting
the name of a type is performed as setting the attribute
called name of that instance. Consequently, this increases
the degree of reflection transparency of the system.

Lets suppose that the persistency mechanism focuses on
loading/saving States of Things, then the same mechanism
can be reused for both levels (whether they are base-level
objects, or types). This is also valid for graphical user-
interfaces (GUI) and other features relying on the system’s
reflective properties. A known use is the Oghma framework
[3], which is able to render a GUI for editing meta-levels.
This GUI is dynamically generated using the same rules as
those used for the base-level. For example, every enumeration
is rendered as either a combo-box (if the property has an
upper-bound cardinality of 1), or a check-list (for more than
1). Because the concept of enumeration is equal both in the
user defined model (e.g., the gender of a person) and in the
system’s meta-model (e.g., the rule of an association), both
are rendered in the same way.

The following code is a snippet of a C# unit-test, asserting
several properties that hold after implementing this pattern:

1 var m1 = new MetaModel();
2 var entity = m1.OfType<Entity>().ByIdOrDefault("entity");
3
4 Expect(entity, Is.Not.Null, "There is an Entity named

Entity.");
5 Expect(m1.ToList(), Is.All.AssignableFrom<Thing>(), "

Everything is a Thing.");
6 Expect(m1.ToList().All(t => t.Meta.Identity == entity.

Identity), Is.False, "There must be things beside
Entities.");

7 Expect(m1.Where(t => t.Is(entity)), Is.All.AssignableFrom
<Entity>(), "All Things which have Entity as Meta
are typed as Entities.");

8 Expect(name.Meta.Meta, Is.EqualTo(entity), "The Meta-Meta
of any Thing is the Entity named Entity.");

Line 1 creates a new container loaded with the system’s
basic infrastructure. Line 2 finds and strongly types the
Thing with an Identifier named Entity. Line 4 and 6 are
sanity checks. Line 5 states that everything that is defined
inside the container derives from Thing. Line 7 checks that
if the model says the meta of a Thing is an Entity, then
the infrastructure ensures it is typed as one. Finally, line 8
checks for meta-circularity definition, which will be discussed
in Section 3. The following snippet shows a usage of these
features:

1 var car = entity.New<Entity>();
2 var attr = m1.Get<Entity>("attributetype");

5



3 var c1 = car.New<Thing>();
4
5 Expect(c1.Violations, Is.Empty);
6
7 var vehicle = entity.New<Entity>();
8 var p = attr.New<AttributeType>(m1, "name");
9 p.Owner = vehicle;

10 p.lowerBound = 1;
11
12 car.ParentEntity = vehicle;
13
14 Expect(c1.Violations, Is.Not.Empty);

Lines 1 – 3 create a new entity car and instantiates it. Line
5 verifies there are no violations for that instance. Lines 7 –
10 create a new entity vehicle, with a mandatory attribute.
Line 12 changes the inheritance of car, and 14 checks that
there is now a reported violation due to the mandatory parent
entity attribute.

There are some liabilities to this pattern, which are direct
consequence of the level of transparency. The model can be
changed in many more ways than if we don’t have specialized
mechanisms to manipulate it. This results in an higher
coupling between meta-levels, mainly due to an increase of
information flux. For example, instead of a Type having
a specialized field to hold its name, it would have to rely on
holding it in a separate object (attribute), which is defined
by its meta-type. The type would thus need to exchange
information with the meta-type to access its own name.
Considering that the model may change anytime, the same
thing is even more evident with base-level objects. The fact
that more objects are needed to hold basic properties of a
system leads to what is known as object proliferation. Both
information flux and object proliferation may contribute to
a decrease in the overall performance of the system.

[
In set theory, everything is a set. In LISP, everything is a list.
In the object-oriented world, everything is an object. Well,
not quite everything – there are binary relations, function
applications, and message passing. But the principle still
applies, in the sense that there is a single, unifying, primitive
aspect (set, list, object) defining the fundamental underlying
structure.

Known uses of this pattern include the Meta Object Facility
(MOF), pure Object-Oriented languages like Smalltalk, and
adaptive object-model frameworks, such as Oghma [3]. Both
the Memento pattern and the History of Operations
pattern can be used for storing the States of Things.

3. PATTERN II: CLOSING THE ROOF
Also known as Self-Compliance, Rooftop, Idempotence.

By seeing the model as data, one can use Everything is
a Thing to manipulate the several model levels using the
same mechanisms. But, whenever we raise up a level, we find
ourselves needing another (probably more abstract) level to
describe it.

[
Continuing the story in Section 1.2, we implemented Ev-

Figure 6: A famous painting by Escher, where two
drawn hands seem to protrude out of the drawing,
becoming the real hands that would be drawing one
another.

erything is a Thing by making all objects directly inherit
from Thing. Attributes and Relations were stored in slots
(just like Ruby and Smalltalk), and accessed by Methods.
Because the system needed to be adaptable, we designed it
much like a dynamic language, so that when a method was
invoked1, the meta-class was responsible for dispatching it
to the appropriate handler. This meant that the meaning of
a method call of an instance was given by its meta-class.

We are dealing with three levels here: (M1) the instance,
(M2) its class and (M3) its meta-class. The semantics of
a particular level is given by the level above. But what
gives M3 its meaning? As we were, M3 was hardcoded in
our application. In other words, at some point we decided
that the concept of an “entity” or “class” would not change.
But this isn’t necessarily true. One simple example where
extending M3 makes sense is when defining a static method,
i.e., a method that operates over a class and hence should
belong to the meta-class. Should we need an M4 to define a
fixed structure so that we could adapt the M3? This points
towards a potentially unbounded number of levels (since each
level requires an higher – more or equally abstract – level to
describe it), thus resulting in a seemingly infinite escalation.
In other words:

How do we stop a seemingly infinite escalation of
meta-levels? We could devise a system were an infinite
escalation of meta-levels would be consistent to its seman-
tics, but, pragmatically, computations are more useful if
they terminate. A solution that would establish an hard-
coded structure, such as in the system’s native programming
language, could easily solve this problem at the expense of
reducing both the overall level of transparency (i.e., this
structure could not be reflected upon), and its homogeneity
(since there would be a dependency on an external definition).

1Or should we say a message was sent.

6



Another way is to devise a stop condition able to halt the
infinite recursion, although how does one establish an infinite
number of levels? Maybe by induction, though this approach
would be significantly more complex. Our main goal is to
provide enough transparency among all levels so that they
are both observable and changeable.

Therefore, use a self-describing meta-level and make
it the top-most layer of the reflective tower. This
meta-level needs to be expressive enough to define itself, but
once this property is attained it could, in principle, expose
all the necessary information to allows the whole system
to adapt and evolve. This represents a very high level of
transparency. You should make this top-most level as simple
as possible, with the bare information needed to specify more
extensive (and eventually more complex) lower levels.

M0

M1

M2

M3

complies-to

...

Figure 7: Closed Reflective Tower.

This particular solution is also known as a meta-circular
model (or a closed meta-model) where the primary represen-
tation of the model is a primitive model element in the model
itself (a property related to homoiconicity). One primary
advantage of this approach is not requiring (or depending
on) an external representation of the system.

The main liability of this pattern is the potential for our
system’s logic to be trapped into infinite loops, since inter-
preting the self-describing level will imply that same level to
be introspected. This may pose threats on the decidability of
the meta-model, particularly when semantics-level reflection
is provided. Bootstrapping and Lazy Evaluation may
be used to solve such infinite dependencies.

[
There are several known uses for this pattern, from model-
driven (e.g. MOF) to grammar definitions (BNF). In UML-
related models, the layer that describes UML per-se is the
M2, as depends on MOF — M3 — which is self-compliant.
Another common example of meta-circularity (although not
always regarded as such) is the XSLT language: XSLT is
expressed using XML, thus allowing XSLTs to be written
that manipulate other XSLTs.

4. PATTERN III: BOOTSTRAPPING
There are no known alias.

Closing the Roof implies the creation of a circular dependency
in the top-most model level. In fact, due to the nature of
reflective systems, it is common for circular dependencies to

Figure 8: An artist rendition of the big-bang, a cos-
mological theory that postulates the birth of the uni-
verse as a massive explosion of matter and energy
from a singularity.

appear throughout the system.

[
How do we start a process that depend on it’s own
outcome?

Defining a model whose definition depends on itself often
leads to a chicken-and-the-egg problem, where you may find
yourself in need of definitions which may not yet have been
defined, and in turn those definitions need whatever you are
now defining. This is similarly to what happens when writing
a dictionary, how do you write the meaning of a word if the
words you’ll use also require a meaning? Normally, you start
with a small set of existing resources and then proceed to
create something more complex and effective.

Therefore, provide a minimalistic core of well-known
elements from where you can build more complex
constructions. The smaller and simpler it is, the less the
system will be bound to specific model elements, and the less
likely the top-most level will need to change in the future. A
thorough formalization of the core will benefit the system, as
it will serve as a foundation for all the other levels. In order
to help solving cyclic dependencies, Lazy Semantics may
be used. Although maintaining the core small and simple,
boot-strapping a system also requires a substantial degree of
expressiveness, which will eventually result in a considerably
powerful infrastructure.

Instantiator Meta-Level-*

describes

Figure 9: Bootstrapping a model level.

The term bootstrap seems to have its roots on a metaphor
derived from pull straps sewn onto the backs of leather boots
with which a person could pull on their own boots (without
outside help). The term was heavily to refer to the seemingly
paradoxical fact that a computer cannot run without first

7



loading its basic software, but to do so it needed to be
running.

[
The most common known uses of this pattern are program-
ming languages and their compilers (e.g. Smalltalk and
LISP). The advantages of starting with a small self-describing
core to define the whole system are very patent in the fol-
lowing war story from Alan Kay:

“It was easy to stay motivated, because the virtual machine.
running inside Apple Smalltalk, was actually simulating the
byte codes of the transformed image just five weeks into
the project, A week later, we could type 3 + 4 on the
screen, compile it, and print the result, and the week after
that the entire user interface was working, albeit in slow
motion. We were writing the C translator in parallel on
a commercial Smalltalk, and by the eighth week, the first
translated interpreter displayed a window on the screen. Ten
weeks into the project, we crossed the bridge and were able
to use Squeak to evolve itself, no longer needing to port
images forward from Apple Smalltalk. About six weeks later,
Squeak’s performance had improved to the point that it could
simulate its own interpreter and run the C translator, and
Squeak became entirely self-supporting.”

For model languages, the most well-known use is probably
MOF, which began as a small subset of UML structural
diagrams along with some constraints, and that is used to
define the whole UML.

5. CONCLUSION
To be written...

6. ACKNOWLEDGMENTS
We would like to thank our shepherd Hans Wegener for
all the support, patience, and valuable comments he has
handed during the course of this work. We would also like
to acknowledge the Foundation for Science and Technology
and ParadigmaXis, S.A., which have partially funded this
work through the grant SFRH / BDE / 33298 / 2008.

7. REFERENCES
[1] C. Alexander, S. Ishikawa, and M. Silverstein. A

Pattern Language: Towns, Buildings, Construction.
Oxford University Press, Oct. 1977.

[2] K. Beck and C. Andres. Extreme Programming
Explained: Embrace Change (2nd Edition).
Addison-Wesley Professional, 2004.

[3] H. S. Ferreira, F. F. Correia, and A. Aguiar. Design for
an adaptive object-model framework: An overview. In
Proceedings of the 4th Workshop on Models@run.time,
held at the ACM/IEEE 12th International Conference
on Model Driven Engineering Languages and Systems
(MoDELS’09), October 2009.

[4] H. S. Ferreira, F. F. Correia, and L. Welicki. Patterns
for data and metadata evolution in adaptive
object-models. In PLoP ’08: Proceedings of the 15th
Conference on Pattern Languages of Programs, pages
1–9, New York, NY, USA, 2008. ACM.

[5] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides.
Design Patterns: Elements of Reusable Object-oriented
Software. Addison-Wesley Professional, Nov. 1994.

[6] R. Garud, S. Jain, and P. Tuertscher. Incomplete by
design and designing for incompleteness. In Marianne
and G. Romme, editors, Organization studies as a
science of design. 2007.

[7] ISO 9241-11:1998. Ergonomic requirements for office
work with visual display terminals (VDTs) – Part 11:
Guidance on usability. ISO, Geneva, Switzerland, 1998.

[8] M. Lutz. Learning Python. O’Reilly Media, Sept. 2009.

[9] OMG. MetaObject Facility (MOF), 2010.
http://www.omg.org/mof/ [Accessed 5-July-2010].

[10] OMG. Object Constraint Language (OCL), 2010.
http://www.omg.org/spec/OCL/ [Online; accessed
5-July-2010].

[11] OMG. Unified Modelling Language (UML), 2010.
http://www.uml.org/ [Online; accessed
5-July-2010].

[12] L. Welicki, J. W. Yoder, and R. Wirfs-Brock. A pattern
language for adaptive object models: Part i-rendering
patterns. In PLoP ’07: Proceedings of the 14th
Conference on Pattern Languages of Programs, 2007.

[13] L. Welicki, J. W. Yoder, R. Wirfs-Brock, and R. E.
Johnson. Towards a pattern language for adaptive
object models. In OOPSLA ’07: Companion to the
22nd ACM SIGPLAN conference on Object-oriented
programming systems and applications companion,
pages 787–788, New York, NY, USA, 2007. ACM.

[14] J. W. Yoder, F. Balaguer, and R. Johnson.
Architecture and design of adaptive object-models.
ACM SIG-PLAN Notices, 36:50–60, Dec. 2001.

8

http://www.omg.org/mof/
http://www.omg.org/spec/OCL/
http://www.uml.org/

	1 Introduction
	1.1 Motivation
	1.2 Technical Description
	1.3 General Forces
	1.4 Pattern Thumbnails
	1.5 Target Audience

	2 Pattern I: Everything is a Thing
	3 Pattern II: Closing the Roof
	4 Pattern III: Bootstrapping
	5 Conclusion
	6 Acknowledgments
	7 References

