From Behavioral Description to
A Pattern-Based Model for Intelligent Tutoring Systems

JAVIER GONZALEZ-SANCHEZ, Arizona State University

MARIA ELENA CHAVEZ-ECHEAGARAY, Arizona State University
KURT VANLEHN, Arizona State University

WINSLOW BURLESON, Arizona State University

Intelligent Tutoring Systems are software applications capable of complementing and enhancing the learning process by providing direct
customized instruction and feedback to students in various disciplines. Although Intelligent Tutoring Systems could differ widely in their
attached knowledge bases and user interfaces (including interaction mechanisms), their behaviors are quite similar. Therefore, it must be
possible to establish a common software model for them. A common software model is a step forward to move these systems from proof-
of-concepts and academic research tools to widely available tools in schools and homes. The work reported here addresses: (1) the use of
Design Patterns to create an object-oriented software model for Intelligent Tutoring Systems; (2) our experience using this model in a
three-year development project and its impact on facets such as creating a common language among stakeholders, supporting an
incremental development, and adjustment to a highly shifting development team; and (3) the qualities achieved and trade-offs made.

Categories and Subject Descriptors: D.2.10 [Software Engineering]: Design; D.2.11 [Software Engineering]: Software Architecture;
D.2.13 [Software Engineering]: Reusable Software.

General Terms: Design.
Additional Key Words and Phrases: Design patterns, component model, intelligent tutoring systems, behavioral description.
ACM Reference Format:

Gonzalez-Sanchez,]., Chavez-Echeagaray, M.E.,, VanLehn, K. and Burleson, W. 2011. From Behavioral Description to A Pattern-Based Model
for Intelligent Tutoring Systems. 18th Conference on Pattern Languages of Programs (PLoP), Portland, Oregon, USA (October 2011), 12
pages.

1. INTRODUCTION

Intelligent Tutoring Systems (ITS) complements and enhances the learning process by offering support for
students and complementing the teacher’s labor. There are many discussions about ITS pedagogical and
instructional design, such as (Anderson et al. 1995, Baker et al. 2009, and Nelson 2007), but not about their
technical implementation.

The work described here is part of the technical implementation of an ITS, named Affective Meta Tutor
(AMT). The AMT project aims to use an affective learning companion to motivate students to permanently
adopt effective meta-cognitive strategies (AMT 2012). The AMT project looks to improve ITS not only by
adding those new elements (meta-tutoring strategies and affective learning companions), but also by taking
advantage of previous experiences with ITS implementations from the ITS community to provide a software
framework for designing ITS based on a behavioral description; modeling meta-tutoring capabilities and
learning companions modules is not part of this paper and is left as future work.

An analysis and comparison of existing ITS was made in (VanLehn 2006). The analysis included a diverse
set of ITS such as an ITS for Algebra in High School (Anderson et al. 1995); a tutor for physics in College

We are grateful to Hironori Washizaki for his support during the writing process of this paper. This work is supported by the National
Science Foundation, including the following grants: (1) IIS/HCC Affective Learning Companions: Modeling and supporting emotion during
learning (#0705883); and (2) Deeper Modeling via Affective Meta-tutoring (DRL- 0910221).

Author's address: Javier Gonzalez-Sanchez, University Drive and Mill Avenue, Tempe AZ 85287; email: javiergs@asu.edu; Author’s address:
Maria-Elena Chavez-Echeagaray, University Drive and Mill Avenue, Tempe AZ 85287; email: helenchavez@asu.edu; Author's address: Kurt
VanLehn, University Drive and Mill Avenue, Tempe AZ 85287; email: kurthvanlen@asu.edu; Author’s address: Winslow Burleson,
University Drive and Mill Avenue, Tempe AZ 85287; email: winslow.burleson@asu.edu

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. A preliminary version of
this paper was presented in a writers' workshop at the 18th Conference on Pattern Languages of Programs (PLoP). PLoP'11, October 21-
23, Portland, Oregon, USA. Copyright 2011 is held by the author(s). ACM 978-1-4503-1283-7

(VanLehn et al. 2005); a tutor for qualitative reasoning in natural language (Graesser et al. 2004); a simulated-
based tutor for repairing avionic electronic equipment (Katz et al. 1998); and an ITS to teach SQL language
(Mitrovic 2003). The analysis and comparison concluded that only a few pedagogical features have been
invented and that existing ITS offered different combinations of those features. It also claimed that ITS
behaviors are similar but the ITS differ widely in their software implementation.

From a software engineering perspective, this variety in software implementation shows a lack of the use of
software engineering techniques and methodologies in the development of this kind of systems, because the
same specifications are creating different products. Subsequently, it will be valuable to establish a model that
moves from the ITS behavior description to the system implementation. An optimal model should be capable of
satisfying the requirements of ITS and providing desired software qualities. This paper describes our approach
to address the design of this model within a context driven by three key elements:

* Incremental requirements. AMT required incremental evolution along three-years; developing an ITS
the first year, adding meta-tutoring support the second year, and including affective learning companions
the third year. Research results and user experience reports drove new requirements.

* Changing requirements. Several and diverse research approaches were tested as part of the project
implementation. For each approach a solid system was released and tested with students. Research
findings were translated into changes in the system.

* Shifting development team. The development team, composed of undergraduate students, shifted
constantly - every 4 to 6 months.

In this context, we chose to incorporate design patterns to standardize an object-oriented model for ITS
functionality that drives the way in which software is developed. We mapped the functional description of ITS
behavior given in (VanLehn 2006) into a software model using some of the “Gang of Four” (GoF) design
patterns (Gamma et al. 1995); GoF design patterns were chosen because they are classic patterns often
considered the foundation for all other patterns. Using GoF design patterns we addressed the creation of the
model and sought to incorporate on it non-functional requirements (i.e. software quality factors) particularly
reusability, extensibility, and adaptability (IEEE 1999). These qualities help us to address the contextual
elements mentioned above: incremental requirements, changing requirements, and a shifting development
team. With this approach we seek to contribute moving ITS construction from software development as a one-
of-a-kind endeavor to software development as a system of components that are widely used and highly
adaptable (Jacobson 1997).

This paper is organized as follows: Section 2 provides some terminology and background about ITS,
patterns, and software qualities; Section 3 explores ITS functional specification and the design process using
patterns to model ITS software components; Section 4 describes our experience using design patterns into the
AMT project and evaluates pros and cons; finally, Section 5 concludes the paper and describes ongoing work.
We expect developers in ITS and education technology communities to find this paper useful as a reference and
as an example of the use and advantages of design patterns for developing software systems; for software
design community, this is an experience report of a research group using design patterns to improve its
software process.

2. BACKGROUND

This section provides background about ITS structure and clarifies some related terminology used within this
paper. It also provides background information about design patterns, and the definition of the software
qualities expected for the proposed model.

2.1 ITS Structure

ITS refers to a computer system that acts as a tutor showing an intelligent way to provide feedback and hints to
support student achievement while solving tasks. A task refers to a multi-minute activity assigned to the
student by the ITS. Tasks can be skipped or interchanged with other tasks. Each of the actions taken to achieve

From Behavioral Description to A Pattern-Based Model for Intelligent Tutoring Systems: Page - 2

a task is called a step. Each task consists of multiple steps and each step involves events with a User Interface
(either through a tool or an environment). Each task requires the use of one or more knowledge components
to be accomplished. Knowledge components are fragments of persistent domain-specific information that the
student is expected to learn. Knowledge components are contained in a knowledge base.

ITS structure is a three-layer model, as shown in Figure 1, that decouples the Knowledge Base and the User
Interfaces from the Core of the ITS. The description of each layer is as follow:

* Knowledge Base (KB) includes data structures and databases for storing and organizing the information
instructed by the ITS. The process of putting data into the KB is called authoring. Authoring involves a
human expert interacting with an authoring tool to provide this data. Occasionally, machine-learning
algorithms have been used to create this expertise. Authoring and KB representation are topics outside of
this paper.

¢ User Interfaces (UI) include graphical interfaces (windows, buttons, text, and so on) and interaction
mechanisms (from single keyboard events to more complex interfaces such as motion capture, voice
recognition, brain-computer interface, and so on).

* Core implements the ITS behavior. While Knowledge Base and User Interfaces are highly different from
one ITS to another, the behavior of all of them is quite similar. The Core is composed of: (1) Task Selector,
which provides a Task (problem or activity) that the student must solve; (2) Tool or Environment, which
models and presents the information that the student must know to complete the Task; (3) Step Analyzer,
which methodically examines and measures the performance of the student and provides that information
to the Assessor and the Pedagogical Module; (4) Pedagogical Module, which provides support (hints and
feedback) to make the student successfully complete the Task; support is related with the performance of
the student in the current Step and the information from the student’s Learner Model; and (5) Assessor,
which learns from the student (how many hints he needed, how skilled he was in the topic, how much time
he used to go from one step to another in order to solve the task, etc.) and then stores this information in
what is known as a Learner Model. The connections between the Core’s components are described in
Section 3.

User Interfaces (Ul)
Including implementation of particular interaction mechanisms.

Core
Implementation of ITS behavior
Tool or Environment
v
Step Analyzer
Pedagogical
i / Module
Assessor Task Selector

Knowledge Base (KB)
Data Repository

Fig. 1. ITS layered structure: User Interface (and interaction mechanisms), Functionality (Core), and Data (Knowledge Base) are decoupled.

From Behavioral Description to A Pattern-Based Model for Intelligent Tutoring Systems: Page - 3

The rest of this paper is devoted to modeling the Core, the layer that implements the behavioral response of
the ITS. Modeling Knowledge Base, User Interfaces, and the connection between them and the Core is out of the
scope of this paper. However, the connection between User Interfaces and Core can be easily figured out as an
MVC pattern application (Buschmann et al. 1996), where Core acts as the Model part. The connection between
Core and Knowledge Base can be realized using diverse data access approaches.

2.2 Why Design Patterns?

Software design patterns are used as a general reusable solution to a commonly occurring problem in software
design, to show relationships and interactions between components and provide a skeleton for the
implementation (Gamma et al. 1995). Even though the concept of patterns has received relatively little
attention in the field of ITS, Devedzic and Harrer (2005) mention that many ITS designers and developers use
their own solutions when faced with design problems that are common to different systems, models, and
paradigms; even when a closer look into that solutions and their comparison often shows that different
solutions and the contexts in which they are applied have much in common.

In that context, our choice about using design patterns in this project was driven by our interest in:

¢ Communication. Since patterns’ names closely match their objective and the problem they solve, we used
them as a common vocabulary among diverse stakeholders aiming to improve the communication process.
Patterns provide us with a standard vocabulary to describe the topology of the system, the structural
hierarchy of the subsystems, and their interfaces and connections.

* Collaboration. Patterns support the sharing of constructions between developers or either use other’s
constructions to enhance our own. No matter what is been built or what others built, it is always known
which are going to be the relations (connections) among different constructions.

* Productivity. Patterns help to create components, and components support the creation of families of
products and/or several versions of the same product to prototype and test new options of functionality.

* Abstraction. Patterns are more abstract than just a technical model, but more technical than a conceptual
model. Patterns make it possible to provide a “controlled” freedom to the programmers because they can
develop functionality in their own creative way, but they follow and preserve the guidelines of a defined
design.

These benefits of using patterns (communication, collaboration, productivity, and abstraction) help us to
overcome the challenging contextual elements of the project (incremental requirements, changing
requirements, and a shifting development team).

2.3 ITS Qualities

ITS are pieces of software, hence they are expected to meet some software quality criteria. Therefore, modeling
ITS behavior is also about accomplishing quality considerations that drive their design. Software quality
criteria are specified as non-functional requirements. Accomplishing non-functional requirements is one
additional reason to use design patterns. Design patterns let us take advantage of previous experiences to
implement non-functional requirements and to avoid, when properly used, accidental complexity. The non-
functional requirements addressed in the project were:

* Reusability. Reusability refers to the degree to which a software module or other work product can be
used in more than one computer program or software system (IEEE 1999). ITS components must be able
to be used again with slight or no modification for the implementation of other products or versions of the
same project.

* Extensibility. Extensibility is the degree to which a system or component can be easily modified to
increase its storage or functional capacity (IEEE 1999). ITS components in the model must be able to
incorporate new functionalities or modify existing functionalities (e.g., assessment strategies, task-creation
strategies, learning algorithms to mining learner model, etc.).

From Behavioral Description to A Pattern-Based Model for Intelligent Tutoring Systems: Page - 4

* Adaptability. Adaptability refers to the ease with which a system or component can be modified for using
it in applications or environments other than those for which it was specifically designed (IEEE 1999).

* Robustness. Robustness is the degree to which a system or component can function correctly in the
presence of invalid inputs or stressful environmental conditions (IEEE 1999). Students expect to get
effective and efficient support from the ITS, as if it was a human tutor; interruptions in the teaching-
learning process due to software failures are highly undesirable.

* Performance. Performance refers to the degree to which a system or component accomplishes its
designated functions within given constraints, such as speed, accuracy, or memory usage (IEEE 1999). The
ITS must emulate real-time responses from a human tutor; delays must be avoided and latency reduced.

The use of patterns becomes the keystone to satisfy the first three qualities enumerated above. Satisfaction of
the last two requirements (robustness and performance) is related to the implementation of the model and not
with the model per se. However, in our experience communication, collaboration, productivity, and abstraction
impact performance and robustness.

2.4 Unified Modeling Language

Unified Modelling Language (UML) notation is used as modelling language, specifically UML class diagrams. To
facilitate the understanding of the diagrams offered in this paper (see Figures 2, 3, and 4) this section provides
a brief description of the elements (boxes and arrows) within a UML diagram.

* Boxes represent components or classes.

* Arrows represent association relationships; the arrows go from the component that requests functionality
to the component that provides that functionality.

* Arrows with dashed lines represent dependency relationships; in the model we are showing the
dependency between functional components and the data component they require to access them.

* Arrows with a triangular shape in the arrowhead represent inheritance relationships.

* Arrows starting with a diamond shape represent composition relationships; they are used to represent
that a component is formed by a conjunction of other components.

3. MODELING THE ITS BEHAVIOR

This section uses the ITS behavior described in (VanLehn 2006) to create a conceptual model for the Core
layer. The ITS behavior, stated in (VanLehn 2006), is summarized in a list of statements that identifies the
involved components, responsibilities for each component, and relationships between components. In the list,
components’ names were marked in bold and relationships between components are explained. Complex
components were split into simple ones, identifying specific responsibilities and assigning them to new
components. The list of statements is as follows:

* Students interact with the ITS through the User Interface. The events triggered by the User Interface are
handled by the Tool component. The Tool is the component responsible for creating and managing the
environment in which the student works.

* The ITS provides students with tasks to be solved and helps them in the process. A Task is a set of steps.
For simplicity, this report assumes that the set of steps is static and pre-enumerated. In principle, a Task
could be a step generator, which means steps could be dynamically generated. The ITS literature refers to
tutors using a static, pre-enumerated set of steps as “example tracing tutors” whereas those using steps
generators are called “model tracing tutors” (VanLehn, 2006). Each Step is related to events in the User
Interface. Steps include Assessment and Help. Help could be Hints before completing the Step or
Feedback after completing the Step. Each Task is related to a set of Knowledge Components that are the
information and skills that a student needs to apply in order to solve the Task successfully. The
Knowledge Base is a set of Tasks and Knowledge Components and the mapping between them.

¢ The ITS behavior starts when the Task Selector selects the next Task that the student must solve and
places the Task into the Tool in order to be solved by the student. The four basic methods to do “task

From Behavioral Description to A Pattern-Based Model for Intelligent Tutoring Systems: Page - 5

selection” are described in (VanLehn 2006). The Task Selector needs to have access to a source of Tasks.
The Task Factory is the source of Tasks. It either reads Tasks stored in the Knowledge Base (reading
previously human-authored tasks) or creates tasks in real-time.

* The Step Analyzer compares the student’s Ul behavior to the correct Steps of the Task and provides that
information to the Assessor and the Pedagogical Module. The Step Analyzer typically determines
whether the student’s step is correct or incorrect, and which of the task’s steps most closely matches the
student’s step. The Assessor updates the Learner Model. The Pedagogical Module provides Help using
different strategies such as providing immediate or delayed help or providing requested or unsolicited
help.

* The Learner Model represents the knowledge, difficulties, and misconceptions of the student. The
Learner Model lists Tasks assigned to the student, measures of the time spent to complete the Task, and
the status of the Task. For each Step in the Task a counter of the Hints requested and Feedback (errors
made) is kept. Most importantly, for each Knowledge Component, a mastery measure is also kept. The
Task Selector relies on the Learner Model’s measures of Knowledge Component mastery to choose a
Task that is neither too hard (too many unmastered knowledge components) nor too easy (too many
mastered knowledge components).

Figure 2 extends the ITS structure shown in Figure 1 in order to identify components (functional and data) and
their relationships. UML notation is used inside the Core block to create a first attempt of the object-oriented
model. The next section shows the details of this model using a pattern-based approach.

User Interfaces (Ul)
Including implementation of particular interaction mechanisms.

4

Core

Implementation of ITS behavior

Tool
KnowledgeComponent
TaskFactory
PedagogicalModule O— > Task
1y 1 M
StepAnalyzer TaskSelector : L
1 pooseseesnnooooond Ste
: ! | SR & P
] Assessor| | LearnerModel \
: ' Help Assesment

Hint Feedback

1

Knowledge Base (KB)

Data Repository

Fig. 2. ITS model. White boxes represent functional components and gray boxes represent data components. Relationships of association,
dependency, composition, and inheritance are shown using UML notation.

From Behavioral Description to A Pattern-Based Model for Intelligent Tutoring Systems: Page - 6

3.1 Pattern-Based Modeling

The model in Figure 2 represents a conceptual description of who is doing what and corresponds to an
abstraction of the expected functionality of each internal component in Core. Even though the conceptual
model can be a starting point to implement ITS functionality, it is still too abstract to be a software design and
therefore there are diverse options to implement it. The next step in our process was to evolve this model by
defining more specific relationships between components using design patterns; this provided us with a
template for the software design and therefore for the implementation. Table 1 shows the relationship
between components previously defined matched with a pattern name with a description of the meaning of the
relationship.

Table 1. Relationships between ITS components and design patterns

Components Pattern Description
Tool FACADE Tool is a high-level interface for the set of ITS subsystems.
TaskSelector STRATEGY TaskSelector is implemented using STRATEGY pattern to deal with the fact that

selecting the next Task for the student is done with different algorithms
(methodologies) described in (VanLehn 2006).

TaskSelector OBSERVER The relationship between TaskSelector and Assessor can be described by OBSERVER

and pattern. TaskSelector needs information about changes in the LearnerModel

Assessor (performance of the student) maintained by Assessor, in order to adjust the level of the
next Task.

TaskFactory | ABSTRACT FACTORY : TaskFactory creates Task objects. The relationship between TaskFactory and Task
corresponds to the relationship between a factory and a product in ABSTRACT
FACTORY pattern.

TaskFactory STRATEGY TaskFactory implements STRATEGY to create Tasks, due to the fact that ITS could

implement either particular algorithms to create Tasks in real-time or create Tasks
recovering them from a data repository.

StepAnalyzer CHAIN OF CHAIN OF RESPONSIBILITIES is a design pattern that avoids coupling the
RESPONSIBILITIES : gsepder of a request to its receiver by giving more than one object a chance to handle the
request. StepAnalyzer chains the receiving objects, which are the task’s steps, and
passes the request along the chain until one object handles it. Handling a request means
recognizing a student’s Ul event as a step that is either correct or incorrect.

Assessor STRATEGY Assessor implements STRATEGY to maintain the LearnerModel. Diverse strategies
could be tried to store and recover the LearnerModel information. A typical strategy
consists of associating each step with a set of knowledge components that represents
what the student would need to know in order to get that step correct. When the
Assessor is informed that a particular Step is correct, it increments the mastery of the
associated knowledge components. On the other hand, if the student got the Step
wrong, then Assessor reduces the mastery of the associated knowledge components.

Pedagogical STRATEGY PedagogicalModule implements STRATEGY to provide support to the student in

Module solving the current Step. Options to provide Help go from pressing a button asking for a
Hint to the implementation of intelligent algorithms that provide support to maintain
the student in the "zone of proximal development” (Vygotsky 1978), where tasks are
neither boringly easy nor frustratingly difficult, but instead these tasks afford maximal
learning and motivating challenges.

Step COMPOSITE COMPOSITE pattern allows us to compose Steps into tree structures to represent
part-whole hierarchies. COMPOSITE pattern lets us treat individual Steps and
hierarchies of Steps (and sub-Steps) uniformly.

Assessor OBSERVER The relationship between Assessor and StepAnalyzer is described by OBSERVER
and pattern. Assessor needs information about student performance in each Step. That
StepAnalyzer information is obtained from StepAnalyzer.
Pedagogical OBSERVER The relationship between PedagogicalModule and StepAnalyzer can be described by
Module OBSERVER pattern. PedagogicalModule needs information about student
and performance in each Step. That information is obtained from StepAnalyzer.
StepAnalyzer

From Behavioral Description to A Pattern-Based Model for Intelligent Tutoring Systems: Page - 7

Finding the appropriate pattern to be applied to each component and relationship was a process based on
experience and literature research (Buschmann et al. 1996, Gamma et al. 1995). There is no set of rules on
how to choose a pattern; instead, a firm knowledge of existing patterns as well as the problems they solve is
required in order to effectively use patterns to describe what happens within a given system. Our approach
consists of using the pattern that most closely matches the semantic description of the requirement or group of
requirements. From the “GoF” design patterns documented in (Buschmann et al. 1996) and (Gamma et al.
1995), we took the keywords observer, abstract factory, builder, chain of responsibilities, strategy,
communicator, facade, composite, and singleton; each pattern is fairly close to implementing the task that its
name means and what each component is supposed to do; for example, TaskFactory is an ABSTRACT
FACTORY of Tasks.

3.2 Putting All The Patterns Together

With the relationships expressed as pattern equivalences, as listed in the previous section, creating a software
design is fairly straightforward. Each pattern has a unique equivalence in UML (as a class diagram). Then, our
development team would be able to focus on the detailed implementation of the desired functionality, filling in
specific places inside of specific files, methods, and attributes (Booch et al. 2007). The UML class diagram for
the Core layer is shown in Figure 3.

HandlerStepAnalyzerLeaf HandlerStepAnalyzerNode
HandlerStepAnalyzer T StrategyTaskSelector
algorithm()
Tool
StrategyAssessor StrategyPedagogicalModule Factory
<+
StepAnalyzer PedagogicalModule TaskSelector TaskFactory

T & b E
! \ Assessor Y S E
; " N ; '
i ' — s ‘ Iy e !
i el NN i
1 Subject Observer i

- :

Step Task '

e eeeeeeeeeeei___4 StrategyTaskFactory
ES | _
f N
As: nt Concn:ateSte Help Knowiedge Component KowiedgeSase
_— N e — Know ledgeBase()
Hint T Feedback

Fig. 3. UML class diagram showing the pattern-based model for the “Core” layer.

It is important to note the following relationships in the diagram shown in Figure 3:

* The implementation of Step as a COMPOSITE is highly useful; it provides the capability of managing Steps
as one or as a hierarchy of several hierarchical Steps.

From Behavioral Description to A Pattern-Based Model for Intelligent Tutoring Systems: Page - 8

¢ TaskSelector, TaskFactory, Assessor, and PedagogicalModule implement the STRATEGY pattern that
permit us to define algorithms, encapsulate them, and make them interchangeable. STRATEGY pattern
lets the algorithm vary independently of the classes that use it. Implementing a new way to select a Task,
create a Task, manage the LearnerModel, or provide Help to the student can be done by one developer who
needs no knowledge about the project at all; the developer just needs to follow the pattern to: (1) create a
new class that implements the corresponding interface; (2) implement at least the algorithm method; and
(3) create as many additional methods and/or attributes as needed.

* TaskSelector obtains information from Assessor, which as well as PedagogicalModule obtains information
from StepAnalyzer. The concept of “observing” describes the relationship and clearly identifies how the
structure of communication must be implemented (methods and attributes). It is easy to notice which
component needs information from which other component.

3.3. Implementation

Including structure and functionality the current system, developed in Java, is formed by: 10 packages; 62
classes; 746 methods; 738 attributes; 22,434 lines of code; 1,150 revisions maintained in a revision control
system (SVN) created between July 2009 and July 2011 with a shifting development team of nine programmers
(maintaining a team of two programmers at a time, with an average of six months of permanency) and two
resident software engineers; 8 versions released to clients; and 140 users working with the system, who have
been high school students and undergraduate students participating in four summer-camp courses and two
university courses at Arizona State University.

The implementation of the Strategy classes included:

* StrategyTaskSelector interface implemented in SequencialTaskSelection class. SequencialTaskSelection
class defines a strategy that presents Tasks to the student in a predefined sequential order.

e StrategyTaskFactory interface implemented in TaskFromRepository class. TaskFromRepository class
defines a strategy that recovers Tasks from text files.

* No strategy implemented for Assessor, this component is still an ongoing part of the project.

¢ StrategyPedagogicalModule interface implemented in ConditionalPedagogicalStrategy class.
ConditionalPedagogicalStrategy class defines a strategy in which, conditionally, the presence of certain
events or actions from the student launches pre-established responses.

These classes, which implement Strategy interfaces, are not shown in Figure 3 due to space limitations.

Regarding the Tool component, Tool is a facade for an environment in which the student is able to learn
about systems dynamic modeling, using a graphical representation. Each model is a directed graph formed by
nodes and edges. The edges indicate flow of numeric information between nodes and the nodes represent
variables. A node encapsulates a variable’s value as an algebraic combination of the numbers coming into or
going out of it via edges. Students read text describing the problem, and then define nodes and edges, enter
values or equations in each node, run the model and compare its predictions to given facts. If any of the model’s
predictions is false (represented with red colors as feedback), students must debug the model. Students also
can ask for feedback by checking their model at each step before running the model (VanLehn 2011). Figure 4
shows the implementation of the Tool component. Tool component consists on a Canvas in which a Graph is
drawn. A Graph is composed by nodes (Vertexes) and links (Edges) that connect the nodes. Each Vertex
maintains a register of all vertexes going out and in. Each Edge maintains data of the Vertex in which it starts
and ends. Vertexes, Edges, and Graph can be selected from the Canvas and be manipulated (drag and drop,
deleted, and so on).

From Behavioral Description to A Pattern-Based Model for Intelligent Tutoring Systems: Page - 9

Selectable selected
P
|

end]
Graph

start Vertex

outedges

inedges vertexes

edges
graphCanvas

GraphCanvas

Fig. 4. UML class diagram showing the Tool component encapsulated in the model as Tool.

4. EXPERIENCE REPORT AND EVALUATION

In this section we will describe our experience using design patterns to create an ITS model and implementing
it to create the AMT software project.

Stakeholders mentioned the following favorable qualities:

* Incremental development. Building the AMT project in an incremental way over the course of three
years allowed us to partition the implementation of new functionality into discrete tasks that were worked
on independently from others, therefore, reducing the time of deployment adding programmers in
particular moments of the project. Incremental development allows us to provide a new functionality or a
new version of a current functionality in a window time of two or three weeks.

¢ Shifting development team. Programmers, even without knowledge of patterns, were able to focus their
attention on the requirements assigned to them; each programmer worked on completing a specific
module or set of components (defined as a pattern section) and relationships between components were
almost entirely defined by patterns. We used Subversion (Collins-Sussman 2004) to maintain a common
repository of the project as a tool to support branching and merging processes.

* Communication. Since diverse stakeholders such as researchers in education technology, computer
scientists, developers, and instructional designers were involved, design patterns helped us agree on the
structure of the system and communicate it to the programmers for each individual component in the
project. The use of pattern names such as FACTORY and STRATEGY has been adopted as an abstract way
to refer functionalities between stakeholders. The names hide complexity from non-developers. Non-
developers assume an easy thing must be done, and programmers have a better idea about the boundaries
of changes, bugs, and new requirements.

However, some disputes emerged with stakeholders regarding the following:

* Size. Stakeholders point to the increase in size of code while using patterns as an issue. While using
patterns generates more code in our project, this is not only due to patterns (interfaces and abstract
classes declarations), but also because we decided to maintain the cyclomatic complexity (McCabe 1976)

From Behavioral Description to A Pattern-Based Model for Intelligent Tutoring Systems: Page - 10

for every method under 10, which means applying a “divide and conquer” strategy that generates more
methods in the system.

* Deployment Time. Since in each iteration our first step focused on the design definition (patterns),
software prototypes delayed its appearance. But once the first prototype was presented, new prototypes
emerged quicker that in previous projects.

Finally, developers mentioned the following favorable qualities:

* Collaboration. Sharing constructions between developers was a key element to counterbalance the effect
of a constant shift in the people in the development team.

* Productivity. Several prototype versions of the project were created to test new options of functionality as
well as new pedagogical approaches.

* Abstraction. Providing a “controlled” freedom to the programmers using patterns as the guidelines of a
defined design was highly relevant to handle changing and incremental requirements.

5. CONCLUSIONS AND ONGOING WORK

Many authors claim that their ITS follow a software architecture because they can identify components and
relationships among these components inside their systems. However, this does not mean that standard and
good practices, such as design patterns, have been followed. We took advantage of the growing experience in
the field of software design patterns to both design and implement an ITS model in a pattern-based approach.
Applying design patterns was useful to create a high-quality software solution that is easy to maintain and
extend. Designing with quality attributes as drivers has resulted in a design that has proven to be more
reusable, extensible, and adaptable. Using design patterns improved our communication, collaboration, and
productivity. Design patterns facilitate the knowledge transfer across a highly shifting development team and
thus the development of the system, where the creation of new versions or variants of the software was
relatively easy in terms of time and effort. Adding design patterns in the development of ITS allowed us to
create a common vocabulary among stakeholders, making the process more accurate and effective design-wise.
We applied our model to build several variants of the AMT system in three years of work, with a high rate of
changes in requirements for the product and a high shifting development team. In other words, we have been
able to create a family of AMTs around the same design.

Future research will focus on two additions: the first one will be the inclusion of a module for companions to
provide support for the student such as learning companions, affective companions, and teachable agents, and
the second one will be the inclusion of meta-tutoring components.

REFERENCES
AMT - Affective Meta Tutor. 2012. Arizona State University. http://amt.asu.edu.

Anderson, J. R, Corbett, A. T.,, Koedinger, K. R., and Pelletier, R. 1995. Cognitive Tutors: Lessons Learned. Journal of the Learning Sciences,
4(2),167-207.

Baker, R. S.]. D,, de Carvalho, A, Raspat, J., Aleven, V., Corbett, A. T., and Koedinger, K. R. 2009. Educational software features that
encourages and discourage “gaming the system”. In Proceedings of the International Conference on Artificial Intelligence in Education. 10S

Press.

Booch, G., Maksimchuk, R, Engle, M., Young, B., Conallen, J., and Houston, K. 2007. Object-Oriented Analysis and Design with Applications,
Third Edition. Addison-Wesley Professional.

Buschmann, F., Meunier, R, Rohnert, H,, Sommerlad, P., and Stal, M. 1996. A system of patterns: Pattern-oriented software architecture.
Wiley.

Collins-Sussman, B., Fitzpatrick, B. W., and Pilato, C. M. 2004. Version control with subversion. O’'Reilly Media, Inc.

Devedzic, V. and Harrer, A. 2005. Software Patterns in ITS Architectures. International Journal of Artificial Intelligence in Education, 15, 2
(April 2005), 63-94.

From Behavioral Description to A Pattern-Based Model for Intelligent Tutoring Systems: Page - 11

Gamma, E., Helm, R, Johnson, R., and Vlissides, J. 1995. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

Gamma, E,, Helm, R, Johnson, R, and Vlissides,]J. 2002. Design Patterns: abstraction and reuse of object-oriented design. In Software
pioneers. Manfred Broy and Ernst Denert (Eds.). Springer-Verlag New York, Inc., New York, NY, USA 701-717.

Graesser, A. C, Lu, S, Jackson, G. T., Mitchell, H. H., Ventura, and M., Olney, A., Louwerse, M.M. 2004. AutoTutor: A tutor with dialogue in
natural language. Behavioral Research Methods, Instruments and Computers, 36, 180-193.

IEEE. 1999. Standard Glossary of Software Engineering Terminology. 610.12-1990, Vol.1. IEEE Press.

Jacobson, I. 1997. Software Reuse: Architecture, Process and Organization for Business Success. Addison-Wesley Professional.

Katz, S., Lesgold, A., Hughes, E., Peters, D., Eggan, G., Gordin, M., and Greenberg., L. 1998. Sherlock 2: An intelligent tutoring system built
upon the LRDC Tutor Framework. In C. P. Bloom & R. B. Loftin (Eds.), Facilitating the development and use of interactive learning
environments. 227- 258.

McCabe, T. 1976. A complexity measure. I[EEE Trans. Software Engineering, 5, 45-50.

Mitrovic, A. 2003. An intelligent SQL tutor on the web. International Journal of Artificial Intelligence in Education, 13(2-4), 197-243.

Nelson, B. C. 2007. Exploring the use of individualized, reflective guidance in an educational multi-user virtual environment. Journal of
Science Education and Technology, 16(1), 83-97.

VanLehn, K. 2006. The Behavior of Tutoring Systems. International Journal of Artificial Intelligence in Education. Volume 16, Issue 3, Pages
227-265.10S Press.

VanLehn, K., Lynch, C, Schultz, K., Shapiro, J. A,, Shelby, R. H,, Taylor, L., Treacy, D., Weinstein, A., and Wintersgill, M.. 2005. The Andes
physics tutoring system: Lessons learned. International Journal of Artificial Intelligence in Education, 15(3), 147-204.

VanLehn, K., Burleson, W., Chavez-Echeagaray, M.E., Christopherson, R., Gonzalez-Sanchez,]., Hastings,]., Hidalgo-Pontet, Y., and Zhang, L..
2011. The Affective Meta-Tutoring Project: How to motivate students to use effective meta-cognitive strategies. T. Hirashima et al. (Eds.).
In Proceedings of the 19th International Conference on Computers in Education. Chiang Mai, Thailand: Asia-Pacific Society for Computers in
Education.

Vygotsky, L. S. 1978. Mind in Society: The Development of Higher Psychological Processes. Cambridge, MA: Harvard University Press.

PLoP'11, October 21-23, Portland, Oregon, USA. Copyright 2011 is held by the author(s). ACM 978-1-4503-1283-7

From Behavioral Description to A Pattern-Based Model for Intelligent Tutoring Systems: Page - 12

