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ABSTRACT
Users of parallel patterns need to carefully consider many
subtle aspects of software design. In particular, implicit re-
lationships with hardware realities coupled with aggressive
strategies for optimization are daunting in this domain. This
paper proposes a new way to leverage visual cues in HiLPR,
a proposed uniform representation for parallel patterns. We
show the application of this approach to three design pat-
terns: Sparse Linear Algebra, Pipeline, and Shared Queue.
An evaluation of the combination of a pattern’s Forces with
its Solution within this representation indicates that this
approach holds promise in terms of assisting developers in
making better-informed decisions about pattern implemen-
tation.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—
Patterns

General Terms
Design

Keywords
Design Patterns, Parallel Design Patterns, Visual Represen-
tations

1. INTRODUCTION
Design patterns are a beneficial addition to our software

engineering repertoire. Patterns allows us to communicate
more effectively, as they provide us with a common language
to discuss programming design problems. Patterns describe
reality; they are ideas that have been useful in one practical
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context that can be generalized to others. They allow us to
reason about problems at a more abstract level, to describe
similarities across different problems, and to reason about
how some solutions can work together to solve even more
complicated problems. There are many examples of analy-
sis [1, 30] on the original Object-Oriented patterns [9, 10],
including: relationships between patterns [36], and composi-
tion of patterns [35]. Less attention has been applied to par-
allel pattern languages such as “Our Pattern Language” [27,
25] (OPL). The lack of this kind of in-depth analysis is not
surprising when we consider how new the language is, but
is nevertheless problematic. Analysis of OPL patterns will
help to gauge their validity, and is the main focus of this
work.
This paper identifies a problem facing the pattern com-

munity, one that manifests itself in many different forms:
a lack of structural support which would reveal critical re-
lationships within and between patterns. There is a natu-
ral variation across pattern languages, with each language
catering to the specific concerns of its discipline. These con-
cerns are reflected in the structure of the pattern, where
different languages may have vastly different structural de-
signs. Pattern languages are not static. There will be future
variation within languages, where structures require a Solu-
tion, but have no uniform description of what a solution
entails. This sort of diversity, particularly in a domain with
subtle interactions between software, hardware, and opti-
mizations, can amplify complexity. It makes it difficult not
only to use patterns, but to analyze them, work with them,
and reason about them relative to each other.
We propose HiLPR (High-Level Pattern Representation),

a uniform representation for design patterns, which was cre-
ated by tracing multiple implementation strategies used by
developers. These strategies suggested a software-hardware-
optimization strategy that we first developed through previ-
ous work [19]. This simple, consistent structure to each de-
velopment strategy, one which we determine to be implicitly
part of the implementation process. This simple structure
allows HiLPR to build upon what is already present in the
pattern—it does not force a representation where it does
not belong. The uniform representation of HiLPR should
not be considered a parallel programming pattern itself—it
is a structural addition for the parallel design patterns.
After an overview of related work (Section 2), this paper

discusses the problems associated with the lack of struc-



Figure 1: Berkeley’s “Our Pattern Language” Categorization [25]. This figure shows the current OPL pat-
terns by name, breaking them down into their categories: “Application Architectural”, “Application Compu-
tational”, “Parallel Algorithm Strategy”, “Implementation Strategy”, and “Concurrent Execution”. We refer
to this figure to show the relationship between the patterns that we have chosen to investigate.

tural support for reasoning about relationships within and
between patterns (Section 3), proposes a uniform represen-
tation as a solution (Section 4), and discusses three differ-
ent applications of the representation (Section 5). We then
consider the lessons learned through this process and discuss
additional implications for parallel patterns (Section 6), and
suggest various avenues of future work (Section 7).

2. RELATED WORK
Design patterns are a widely accepted approach to de-

scribing a general solution to a frequently occurring prob-
lem in software [15]. A single design pattern is intended
to provide a blueprint solution to a single problem and an
identification of the implementation tradeoffs that will be
encountered. That is, the structure of a portion of the pro-
gram is provided but the developer is still required to make
implementation decisions in terms of the tradeoffs presented
in the pattern coupled with application and architecture spe-
cific requirements.

Groups of patterns are often presented as a unified cata-
logue, grouped categorically, with each pattern individually
identifying relationships to other patterns. For example, the
Gang of Four (GOF) patterns are grouped into Creational,
Structural and Behavioural patterns, with each pattern in-
cluding a section entitled Related Patterns. This organiza-
tion provides a browseable set of patterns written by the
four authors working closely together to create a consistent
and uniform format across all patterns to ease use and ap-
plication of patterns in real world development.

Pattern languages [2] also provide structure to lead a user
through a collection of patterns. Though individual pat-
tern languages have been successfully defined within smaller

subdomains [6, 8], navigating a larger, disparate set of pat-
terns written by many authors can be more challenging. The
Berkeley Parallel Computing Lab [4] provides an overview of
recent efforts within the parallel community to provide such
a pattern language [20, 17, 18]. This pattern language, ini-
tially calledOur Pattern Language (OPL), began with a sim-
ple four-layered approach in which many of the individual
design pattern write-ups are under development. The pat-
terns developed so far have adopted a standardized format
comprised of sections including: problem, context, forces, so-
lution, and related patterns; each pattern is assigned to one
of the five categories: structural, computational, algorithm,
implementation, and concurrent execution. While this for-
mat does provide an uniform outline across the patterns, the
way in which each of the sections is written up can introduce
variations depending on the author and the research group
they are involved with.
This structure is beneficial in terms of grouping patterns

by purpose and generality to support pattern selection, but
navigation of these growing collections and understanding
how they apply to source code is still a challenge. Alterna-
tive classifications, intended to reduce the number of fun-
damental design patterns to consider, have been combined
with more systematic and concrete class libraries or fami-
lies of patterns to make patterns both more accessible and
traceable to code [1]. Other strategies such as Design Pat-
tern Rationale Graphs [3], reconcile design with source to
aid developers to make changes that are in keeping with an
existing design. A graphical representation of both source
and design patterns is linked by edges through an intermedi-
ate level, representing relationships between the source and
patterns. Navigation is bidirectional between source and
design by way of queries.
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Figure 2: Sparse Linear Algebra Decision Tree [19]. This figure displays our previous attempt to reorganize
the solution of Sparse Linear Algebra. It was a direct translation between the solution and a flowchart, and
turned out far more complicated than we anticipated. This allowed us to consider that a direct translation
was not useful, and provides a visual comparison for the structural additions our uniform representation
makes (Figure 4).

Current efforts within the parallel pattern community are
also focusing on methodological patterns [16, 28] to further
guide users through this framework, capturing the fine-grain
relationships both within and between these proposed layers.
The newest version of Berkeley’s Pattern Language for Par-
allel Programming (PLPP) addresses this issue with a much
more fine-grained, control-flow type of structure [4]. The
intent is to guide developers through pattern selection at
the various levels of design. Patterns are grouped by design
decisions like choosing a high level structure, identifying key
computation patterns and choosing a concurrent approach.
In addition, this newer version of the pattern language ac-
knowledges the lower-level issues of efficiency that must be
dealt with by the programmer. This approach narrows the
scope for pattern selection.

Our previous case study investigated pattern tradeoffs
in the pervasive domain proposed RIPPL [11] (Relation-
ship Initiated Pervasive Pattern Language), a systematic
methodology for the comparison of design patterns. This
approach, grounded in the isolation of pattern tradeoffs as
outlined within the forces sections of each pattern, demon-
strated the comparison of implementation decisions across
design patterns. While this preliminary work of RIPPL fo-
cused on a uniform representation of the forces sections of
a set of patterns, the information from the other sections
of the design patterns relevant to implementation specific
decisions was not incorporated.

Our preliminary investigation of the issues surrounding
design pattern use, as applied to real world scientific ap-
plications, revealed that patterns do not necessarily reflect
the actual design decisions that are being made by develop-
ers creating optimal solutions [19]. In this study, the pattern
under investigation (Sparse Lienar Algebra [26]) did not nat-
urally align with the sequence in which the developer had to
make design decisions. To aid developers using the pattern,
we proposed a refinement: including, as part of the Solu-

tion, a visual representation of its content which highlighted
critical decision points (Figure 2). We believe this proposed
format makes the decision points within a pattern more ex-
plicit and provides developers with a consolidated view of
the implementation choices highlighted in the design pat-
tern. While this preliminary study only considered a single
pattern it provided a starting point for the consolidation of
the implementation choices scattered across design pattern
sections.
Like many other software artifacts, once the primary mod-

ularity of a design is chosen it is difficult to modularize all the
key concerns associated with that design. That is, no matter
what the dominant decomposition of the application is, there
will be core concerns that do not fall cleanly into that modu-
larity. It is this scattered nature that adds to the complexity
associated with understanding these concerns within a soft-
ware artifact. Multi-dimensional separation of concerns [34]
proposed a formal approach to modeling and implementing
software artifacts with the separation of overlapping con-
cerns across multiple dimensions [31]. Aspect-oriented pro-
gramming [22] initially provided an approach to explicitly
and modularly represent crosscutting concerns with linguis-
tic mechanisms [21]. Both of these approaches looked to
address the issues of complexity associated with a lack of
modularity within the different phases of the software life-
cycle. Further research in aspect-oriented software devel-
opment considered its application to other artifacts in the
software lifecycle including requirements [7] and design [13].
The added complexity associated with parallel-specific soft-

ware development is amplified by the dynamic impact of
large scale design decisions and fine-grained implementa-
tion choices. Though current Systems Development Life
Cycle (SDLC) models support an iterative and structured
approach to software development, they currently do not
explicitly take into account the inherent complexities of the
dynamic consequences associated with parallel development.



We believe our proposed extension of existing software devel-
opment models to introduce iterative and systematic work-
flows structured around key causal relationships of parallel
applications [12] should be represented explicitly within de-
sign artifacts. That is, the static representation of a design
pattern should incorporate a view of the points at which
dynamic results will feed back into and force changes to the
design and ultimately the implementation.

3. PROBLEM
The problem posed in this paper stems from a combi-

nation of two issues that make pattern use challenging to
follow through to implementation. The first issue focuses
on the internal structure of a pattern, and involves the way
individual sections of a pattern are written. The second is-
sue focuses on the external decomposition of a pattern, and
pertains to the challenge of understanding how to use all of
the the details which are split across the pattern sections:
Problem, Context, Forces and Solution.

3.1 Internal: Lack of Uniformity
Patterns, in their definition, are a static representation

of a solution, with each of the sections describing a specific
issue related to the implementation. For example, in Berke-
ley’s Our Pattern Language (OPL), the Context provides a
narrowing of the Problem, the Forces section is intended to
identify the tradeoffs a developer will encounter whereas the
Solution section provides a guide to the core implementation
steps. While this is a logical decomposition of a pattern,
there is an implicit relationship across these sections which
is necessary to consider during implementation, and which
also helps to develop an appreciation for the content and
complexity of the solution. Specifically, the Solution sec-
tion, by definition, is separate from explicit consideration of
the tradeoffs presented in the Forces section as a developer
moves through an implementation of the pattern.

Patterns need to be consistent, otherwise, the benefits of
gathering the information are lost when a user must learn
the idiosyncrasies of each writer. Since not all patterns are
written by the same author, there may be uniformity in the
section headings, but how those sections are written and
organized may be very different. Some Solution sections are
written with explicit steps to follow for an implementation
while others are not. Some Forces sections are broken down
into universal and implementation subsections while again,
others are not. This issue can make pattern use challenging
for a developer, as implementation information is scattered
across the sections of a pattern.

3.2 External: Decomposition into Sections
The decomposition of pattern structure can make it chal-

lenging to use all of the information provided by the pattern.
Patterns are presented in a way that lends themselves to be
read in a linear fashion, section by section. This structuring
can make using patterns difficult. To get the best infor-
mation out of the current structure, a user would read the
Forces and the Solution sections concurrently. In software
engineering, the Waterfall method is taught as a starting
point and leveraged to explain to students the benefits of an
iterative method. However, the current structure does not
capture what we believe to be a naturally iterative approach
between related issues in different sections, or even within
the Solution section itself.

4. PROPOSED SOLUTION: HiLPR
Our previous work showed that, to implement a parallel

pattern, several design decisions needed to be made. The
order in which these decisions we made impacts the result-
ing complexity of the solution, and as such, our proposed
addition to the parallel patterns is designed to guide pro-
grammers through these decisions in an order which both
supports their previous decisions and increases the complex-
ity of the current one as little as possible.
HiLPR, the concrete application which addresses the prob-

lem in Section 3, was determined by tracing through two
separate implementation approaches to the problem: a de-
sign log which tracked the programmer’s thoughts as the
solution was implemented and problems were overcome [23],
and a tutorial of the Sparse Linear Algebra problem using
OpenCL [5]. Both discussions of the Sparse Linear Alge-
bra problem have the same basic structure for managing
iterative solutions: determining the software design, manag-
ing the hardware characteristics, and optimizing for perfor-
mance. We have taken these three basic steps as a guide to
how programmers implement this particular solution, and
examined other parallel patterns to see whether the same
basic structure holds.

Software Design

Hardware
Characterization

Optimizations

Figure 3: HiLPR, as an abstract uniform represen-
tation. This figure shows the abstract structure we
suggest governs the solutions of the OPL parallel
patterns, broken into three different stages. The
arrows suggest the relationships and transitions be-
tween the stages for software development purposes.

Our initial research into Sparse Linear Algebra was ground-
ed in the implementation forces of the pattern, tying each
force to a decision point in a tree style representation of
the pattern’s solution. This result was our first considera-
tion of consolidating the important decisions found both in
the Forces and Solution sections of the pattern. This pa-
per extends that work by proposing a uniform structure to
represent the information provided across the sections of a
pattern in a localized and explicit form. Our structure is
not a new addition to the parallel pattern language, nor is
it a pattern itself. It is an organizational process that solves
an organizational problem, and further ties the application
of patterns into an agile application development lifecycle
model.
With our new overall structure to parallel pattern solu-

tions, we visually represent the process of solving the prob-
lem of a single pattern with a flowchart that contains perti-
nent information from all the sections of the pattern. We ap-



Pattern OPL Category Software Hardware Optimizations

1. Sparse Linear Computational 1. Data Structure 2. Multicore Parallelism 4. Vectorization
Algebra Application 3. Memory Bandwith 5. Cache Management

2. Pipeline Parallel 1. Define the Stages 3. Represent Dataflow 4. Handle Errors
Algorithm 2. Structure Computation 5. Processor Allocation

3. Shared Queue Implementation 1. Define ADT 2. Concurrency Protocol 3. Shared Queues
Strategy

Table 1: Overview of Case Studies. This table provides an overview of the results of this section. It shows, for
each pattern discussed, the OPL category the pattern comes from. It also displays each stage of our abstract
representation, showing how each step of the pattern solution breaks down between the stages. Notice how
the Software, Hardware, and Optimization issues differ between each pattern, and the similarities between
decisions in the same stage.

ply our process to Sparse Linear Algebra [26] (Section 5.1),
Pipeline [24] (Section 5.2), and Shared Queue [29] (Section
5.3), and show that either the Forces or the Solution sep-
arately do not contain all of the details necessary to make
well-informed decisions about pattern implementation. This
process is similar to the iterative development model of soft-
ware engineering [33], and can be considered localized to the
abstraction of parallel programming patterns.

4.1 Uniform Representation
We suggest a uniform structure that captures the three

major stages of solving parallel problems: Software Design,
Hardware Characteristics, and Optimizations—this struc-
ture, HiLPR, is shown in Figure 3.

4.1.1 Software Design
Software Design is the first stage of problem-solving for

parallel patterns. The decisions that fall into this stage are
primarily those of design and organization. This is the stage
where a plan is crafted, one which considers the software
constraints and design requirements of the problem. It is
difficult to fully assess hardware characteristics and opti-
mizations without having an intermediate design to evaluate
against. This structure is designed to guard against prema-
ture optimization, which can take a great deal of time and
effort before being shown to be completely separate from the
problem being solved.

Both theHardware Characteristics andOptimizations stages
can lead back to the Software Design stage, as difficulties
that are encountered at those stages can require modifica-
tions to the original design. Furthermore, any changes to
a program’s structure should also be reflected in the design
to help ensure consistency across all the stages of software
development.

4.1.2 Hardware Characteristics
Hardware Characteristics is the second stage of problem-

solving, prompting developers to consider the underlying
hardware upon which the solution will be implemented. It is
a crucial stage for high-performance computing, as good de-
signs that do not mesh well with the hardware structure can
lead to inferior performance compared to a less polished de-
sign that does. It is likely that the design process will move
through both this stage and the Software Design stage mul-
tiple times, becoming more refined with each iteration. This
is consistent with other software design methodologies such
as the iterative design model [33], in constrast to the current
sequential process seemingly espoused by the patterns.

4.1.3 Optimizations
The final stage is Optimizations. Typically this stage will

include different ways of managing hardware to draw out
peak performance. These can include universal optimiza-
tions, such as cache management, which can be generalized
among multiple patterns, or implementation-specific opti-
mizations that are localized to the current problem. These
considerations are part of the last stage of development as
they depend most on choices made in the previous stages.
In the case where the optimization changes the structure

of the solution, such as multiple queues for the Shared Queue
example (Section 5.3), or that a necessary optimization for
performance is impossible, such as if SIMD isn’t available in
the Sparse Linear Algebra example (Section 5.1), then we
suggest returning to the Software Design stage to incorpo-
rate this information into the design. We do not suggest
simply returning to the Hardware Characteristics in these
cases; major changes to the structure of the solution should
be reflected in all stages of the design process.

5. APPLYING HiLPR TO PATTERNS
This section applies HiLPR to three different patterns:

Sparse Linear Algebra [26] (Section 5.1), Pipeline [24] (Sec-
tion 5.2), and Shared Queue [29] (Section 5.3). With these
examples, we show that developers who focus on either the
Forces or Solution separately gain an incomplete picture of
the pattern which can only be remedied by taking them to-
gether. This property requires a way to combine the infor-
mation in the Forces and Solution sections without losing
the semantics of their differences. Our uniform represen-
tation provides that structure, highlighting the relationship
between the information in each section.
In this section, we colour these images to visually repre-

sent where the data is coming from. Blue and green colour-
ing indicates that the information is directly taken from
the pattern’s Solution and Forces respectively. Black and
red colouring indicates that the information is our addi-
tion: black indicates that the addition relates to HiLPR,
while red shows additions that we have made that do not
fall under HiLPR’s structure. With this colouring, notice
how the pieces from the Solution and Forces are organized—
intertwined—in these diagrams, even though they are kept
completely separate in the pattern. We have chosen to ex-
press this information using colour, as it gives the best visual
description of the problem. After each individual case study,
we provide a table breaking down the information expressed
in the flowchart to describe its origin—Forces or Solution.
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Figure 4: Sparse Linear Algebra. This figure displays how the Sparse Linear Algebra parallel design pattern’s
solution breaks down into HiLPR’s structure. Each stage is populated with steps from the pattern’s solution,
and each step contains specific decision points that are suggested by the pattern. Our additions are in red.
They show the movement between the steps and the stages, as well as some ‘intrinsic’ decisions that the
pattern suggests but does not make explicit.

We have chosen each of these patterns based on their rela-
tionship to our previous work on the Adaptive Optics prob-
lem for the thirty-metre telescope [14]. Sparse Linear Alge-
bra is the focus and inspiration for this uniform representa-
tion, and is directly related to the Adaptive Optics problem.
Pipeline, another option to solve this problem, makes use of
Shared Queue and so we chose to study it as well.

Table 1 provides a reference for the following Case Stud-
ies. Each row in this table contains the pattern name, and
provides the original categorization of that pattern in the
OPL, as well as the numbered steps of the solution that we
have assigned to each stage of our uniform representation.

Each case study is then broken into three sections for
discussion—the Software Design, the Hardware Character-
istics, and the Optimizations—mirroring HiLPR’s abstract
uniform representation, to address how the pattern fits within
our structure.

5.1 Sparse Linear Algebra
The proposed visual representation of the Sparse Linear

Algebra Design Pattern is shown in Figure 4. The exter-
nal structure was determined by HiLPR, with the internal
structure of the solution guided by our previous work on this
pattern [19]. This representation separates out the forces as

“themes” for each of the uniform stages instead of explicitly
making them part of the decision process. This is due to
the weaker forces of Sparse Linear Algebra pattern; they are
weaker because they are not explicitly tied to implementa-
tion decisions.

5.1.1 Software Design
The first step in solving a Sparse Linear Algebra prob-

lem is to decide upon the data structure that will be used.
This step is crucial to this problem, as all future hardware
decisions and optimizations are based directly upon the rep-
resentation of the data.
This stage requires the developer to consider the“Require-

ments versus Performance” theme, which is the third force
listed in the pattern description. Our representation demon-
strates that this force influences the first decisions that a
developer must make, as the chosen data structure impacts
the program’s performance.

5.1.2 Hardware Characteristics
The next two steps of the solution both fall into the Hard-

ware Characteristics stage of the uniform representation.
These are interrelated problems, although they are expressed
sequentially in Figure 4 and Table 2, as “Multicore Paral-



lelism” impacts the choices made for “Memory Bandwidth
Management”.

The theme in this stage is one of “Storage verus Cost”,
the first force in the pattern description. This decision is es-
sentially broken down into the use of two distinct resources:
cache space and bandwidth. “Multicore Parallelism” consid-
ers how cache space may be used to reduce redundant calcu-
lations and communication overhead. Conversely, “Memory
Bandwidth Management” considers reducing the burden on
the cache by recomputing intermediate results and commu-
nicating them across processing elements.

Since the mathematical processes that underly Sparse Lin-
ear Algebra are well defined, it is difficult to speed up a pro-
gram considerably by changing the algorithm. Therefore, if
the program is still running too slowly, the uniform represen-
tation guides the programmer back to the Software Design
Stage.

5.1.3 Optimizations
In the final stage, Optimization, we consider the theme

of “Portability versus Specificity”, the second force listed
in the pattern. We consider both vectorization and cache
management as Specific optimization decisions that impact
the Portability of the software. “Vectorization” is a crucial
optimization—the ability to do simultaneous computation
on multiple sets of data is at the heart of high-performance
parallelism. If vectorization is unavailable for any reason,
the design must be seriously reconsidered, and HiLPR sug-
gests returning to the Software Design stage to do so.

The final optimization suggested by the pattern guides
developers to consider the structure of the cache. One of the
possible considerations for this step is to determine whether
the matrix can be decomposed into pieces, each of which
will be able to fit into the cache. If this is the case, there
is potential for optimzation by returning to the Software
Design Stage with the aim of incorporating this information
into the choice of the “Data Structure”.

5.1.4 Summary
Finally, we provide a summary of the Sparse Linear Al-

gebra case study, breaking the information from our image
down into Table 2. This table lists each step of the solu-
tion of the pattern, dividing the information between the
forces and solution sections. We use double horizontal lines
in the table to partition the stages of our representation.
Note that the Forces for Sparse Linear Algebra are not in
the same order as discussed in the pattern. By tying them to
the decision points where they are relevant, we order them
chronologically with regard to the overall solution.

Solution Forces

1. Data Structure Requirements v. Performance

2. Multicore Parallelism Storage

3. Memory Bandwidth Cost

4. Vectorization Portability v. Specificity

5. Cache Management Portability v. Specificity

Table 2: Summary of Sparse Linear Algebra

5.2 Pipeline
The visual representation of the Pipeline parallel design

pattern, shown in Figure 5, highlights interesting differences
between the organization of its solution compared to Sparse
Linear Algebra. Sparse Linear Algebra is easily organized
into HiLPR at a high level, where the specific steps that
make up the pattern are harder to find in its solution [19].
Pipeline already has an internal organization in its solu-

tion. These steps conform to the stages of the visual rep-
resentation: the first two, “Define the Stages” and “Struc-
ture the Computation” are software questions that fit into
the Software Design Stage; the next, “Represent Dataflow”
is a hardware question that fits into the Hardware Char-
acteristics Stage; and the final two steps, “Handle Errors”
and“Processor Allocation & Task Scheduling”are Optimiza-
tions that, while not easily applied to other patterns, as they
specifically discuss the pipeline stuctures and the organiza-
tion, place them into the final stage.

5.2.1 Software Design
The Software Design stage is dominated by one decision:

whether the Pipeline should, in general, have few or many
stages. Although defining the stages is a part of the solu-
tion, the discussion on the length of the pipeline is found in
the Forces section, as the only universal force described by
the pattern. This force specifically discusses the tradeoffs
with regards to the characteristics of the resulting pipeline:
deep pipelines have better throughput while short pipelines
reduce latency.
The second step of the solution, “Structuring the Com-

putation”, provides two main choices, both of which are
from the solution. The first is to use the SPMD (Single
Program, Multiple Data) pattern where each stage of the
pipeline would be considered a case inside a switch state-
ment; the second is the modular approach, using object-
oriented frameworks as the pipeline, with each stage mapped
to an object. We have added a third option that has not yet
been considered: allowing each stage to be a parallel pro-
gram. This suggestion occurs in the pattern in the next
design stage. At that point, it is too late to consider as the
decision will have already been made, which is why it has
been moved it forward in the uniform representation.

5.2.2 Hardware Characteristics
The second stage of the representation, Hardware Charac-

teristics, contains two of the steps of the Pipeline solution.
This first step in this stage is to “Represent the Dataflow”
of the pipeline, which, through the forces that are realized
in this section, refers to hardware management. The first
decision to be made is presented in the Forces section of the
pattern, and is the second of the two implementation forces.
The decision focuses on what sort of hardware the solution
will be implemented upon.
Next, we can consider another of the pattern’s Forces,

whether the solution will contain multiprocessors on one
node or whether it will use several nodes on one cluster.
Choosing to use general-purpose hardware, likely for porta-
bility requirements, will limit the developers choices.
After these decisions, HiLPR redirects us to the solution

to cpmsoder how data is going to move between the stages—
a difficult decision without having some understanding of the
underlying hardware. The choices that the pattern suggests
are message passing using MPI (Message Passing Interface),
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Figure 5: Pipeline. This figure displays the Pipeline parallel design pattern’s solution, divided between
HiLPR’s stages. Each step within a stage, like in Sparse Linear Algebra, contains different choices suggested
by the pattern. Step 3, “Represent Dataflow”, has a larger number of choices than any of the other steps,
and therefore is shown differently, with each horizontal line representing a choice even though there are no
connecting lines between them.

buffered channels in a Shared Queue structure, implement-
ing each stage as parallel programs, or using a networked
file system to manage the underlying data.

5.2.3 Optimizations
The first optimization for a Pipeline is deciding how to

handle errors. Since the problems that the Pipeline paral-
lel design pattern solves tend to be distributed programs,
error handling is more complicated than for a single, self-
contained program. The solution of the pattern considers
this as being important, and suggests having some sort of
parallel pipeline stage to handle errors that only executes if
any of the other stages send error notifications. We suggest
returning to the “Define Stages” step if an error handling
stage is used to consider the implications that a new stage
has on the overall structure of the solution.

The final step of the solution is to consider how to allo-
cate the processors and tasks between the various stages.
In this case, the pattern breaks the problem into all three
cases: fewer processing elements than stages, the same num-
ber of processing elements as stages, and more processing
elements than stages. The middle case is considered sim-
ple, the first case complex, with suggestions on how to dis-
tribute between the processing elements. The last case al-
lows for greater realizations of concurrency, suggesting that
the stage-definition could be further optimized, represented
in our flowchart as the arrow leading back to the first stage.

5.2.4 Summary
Finally, we provide a summary of the Pipeline case study,

breaking the information from our image down into Table
3. This table lists each step of the solution of the pattern,
dividing the information between the forces and solution sec-
tions. We use double horizontal lines in the table to partition
the stages of our representation. Although each step does
not have a corresponding force, those that do are incom-
plete without them. Unlike Sparse Linear Algebra, where
the forces outlined the “themes” of each stage, the Pipeline
forces contain information crucial to implementing the solu-
tion.

Solution Forces

1. Define Stages Deep versus Short

2. Structure
Computation

3. Dataflow Special or General Hardware
Managing Data Multiple Processors or Nodes

4. Handle Errors

5. Processor Allocation,
Task Scheduling

Table 3: Summary of Pipeline
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Figure 6: Shared Queue. This figure displays the parallel design pattern Shared Queue as it fits into HiLPR.
Shared Queue is tightly connected to its forces, each of which change the internal structure of the steps. A
complex queue is much more complicated than a simple one, shown by the number of additional decisions
that must be made. A Shared Queue that uses multiple queues also begins the process again—which may
appear redundant, but is actually necessary so that the modification for multiple queues have a baseline of
one queue to be compared against.

5.3 Shared Queue
HiLPR’s representation of Shared Queue is shown in Fig-

ure 6. Shared Queue, like Pipeline, has a solution section
that is broken up into three different steps, each of which
correspond to one of our stages.

5.3.1 Software Design
The first stage, Software Design, aligns with the first step

of the solution, which is to define the behaviour of the ab-
stract data type for the Shared Queue. The solution takes
the reader through the two main decisions to consider, both
the structure of the queue and the operations that may be
performed on it.

5.3.2 Hardware Characteristics
The second stage, Hardware Characteristics, handles the

second step of the pattern—the“Concurrency Protocol”that
will manage the parallel structure of the solution. The first
choice that must be made is suggested in the Solution, but
more fully outlined in the first of the Forces: whether the
concurrency should be implemented with simple structures,
or complex ones. A simple protocol gives the benefit of being
less error prone, while a complicated protocol will allow for

much greater fine-tuning and optimizations, with the added
risks that complexity entails. If it is decided that the simple
path should be followed, the speed of execution is not likely a
major issue, and the bulk of the pattern will be unnecessary
to the developer. On the other hand, if the developer wishes
to manage the complexity for the greater performance bene-
fits, there are a series of decisions which much be made that
are now found in the Solution.
The first decision for a complex “Concurrency Protocol”

is whether the queue should be blocking or non-blocking.
A non-blocking queue is a simple structure that does not
require additional insight to use. A blocking queue, how-
ever, increases the complexity again, which causes a set of
different questions that need to be considered. If a queue
blocks, it means that the threads that are trying to access
it are waiting for some sort of notification. A programmer
must decided whether all of the threads need to be notified
when access is restored or only those threads that are wait-
ing. The second decision is whether to use nested locks to
manage queue access or not.

5.3.3 Optimizations
The final stage, Optimizations looks at the final step in the



pattern—“Considering Shared Queues”. The pattern sug-
gests that performance bottlenecks may be avoided if mul-
tiple queues are used. Multiple queues, however, are not
always possible depending on the system. Should the user
wish to use multiple queues, we suggest that they return
back to the first stage, since this may change many of the
other decisions that had been previously made—like previ-
ous Optimizations in Sparse Linear Algebra and Pipeline,
we cannot simply begin the design process assuming that
there will be multiple queues. Without the single queue im-
plementation to compare against, we are unable to properly
gauge the performance benefits of using the more compli-
cated structure.

5.3.4 Summary
Finally, we provide a summary of the Shared Queue case

study, breaking the information from our image down into
Table 4. This table lists each step of the solution of the
pattern, dividing the information between the forces and
solution sections. We use double horizontal lines in the table
to partition the stages of our representation. Notice the
second step of the solution—should the “simple” side of the
force be followed, much of the complexity disappears.

Solution Forces

1. Define ADT Deep versus Short

2. Concurrency Protocol Simple versus Complex
Queue Behaviour
Thread Behaviour
Locking Behaviour

3. Shared Queues Single versus Multiple

Table 4: Summary of Shared Queue

6. LESSONS LEARNED & DISCUSSION
This section discusses the evaluation of HiLPR, including

a comparison to our previous work, the benefits of adoption,
and the scalability benefits.

6.1 Comparison to Previous Work
To evaluate HiLPR, we compare it to previous work in

visualizing pattern solutions [19], and discuss how we solve
the issues presented by those visualizations.

The previous work expressed concern when the implemen-
tation chose multiple optimizations where it appeared that
the Sparse Linear Algebra design pattern only suggested
that one was necessary. Furthermore, the chosen optimiza-
tions fell on both sides of the matrix > cache and the matrix
≤ cache divide proposed by their flowchart (Figure 2), im-
plying that the decision process was not as stringent as it
appeared. With HiLPR, the iterative process manages these
concerns. HiLPR specifies multiple forms of optimization,
and as such, does not invite that same sort of cognitive dis-
sonance.

Another concern that had been expressed was that the
proof of concept implementation followed a significantly dif-
ferent path than what was suggested by the pattern. This
issue has been solved through the iterative method expressed
in the visual representation of HiLPR. Further confirmation
of our process comes from its successful application to addi-
tional parallel patterns.

For comparison, consider the previous flowchart (Figure
2). Although both this one and the current flowchart (Fig-
ure 4) for the Sparse Linear Algebra design pattern seem
quite different, they are actually similar in structure. For
example, the decision point titled“Memory Bandwidth”pre-
viously had two choices: reducing the size of the data struc-
ture and managing access to the cache. In our current work,
although “Memory Bandwidth” is no longer one of the first
steps, the two choices that follow are still the same. The
first returns to the previous stage, where data structure de-
cisions are considered, while the second continues on to the
final stage, where cache management is one of the suggested
optimizations.

6.2 Benefits of a Uniform Representation
The current organization of the patterns (Problem, Con-

text, Forces, Solution) is a good method of grouping like-
information, but makes it difficult to use the pattern to actu-
ally solve a programming design problem. HiLPR regroups
information into a sequential series of algorithmic steps that
are designed to help guide a programmer through an effi-
cient solution-process. This is an addition to the pattern
language, not a redesign, and certainly not an additional
pattern itself. Both representations have their purpose.
Futhermore, some people find that diagrams can help them

gain an intuitive feel of a process better than reading a
text. HiLPR provides that benefit, without taking away
from those who are already comfortable with patterns as
they are.
We anticipate that HiLPR is applicable to many patterns

in the OPL, as we have applied it to a range of the OPL’s
categories (shown in Table 1). However, we feel that we
can also glean more information about patterns that do not
neatly fall into HiLPR’s structure, as we will discuss in Sec-
tion ??, which describes a pattern that does not fit the rep-
resentation.

6.3 Composition
With HiLPR, we can consider methods of analyzing pat-

terns and pattern composition. We discuss how the visual
representation can allow us to reason about the level of ab-
straction in a pattern, and then specifically consider a case
based off of the patterns previously discussed in this paper.

6.3.1 Hierarchy of Abstraction
HiLPR allows us to consider the categorization of patterns

such as Sparse Linear Algebra and Pipeline with relation to
each other. Sparse Linear Algebra is currently classified as
an “Application Computational” pattern, while Pipeline is
an “Algorithm Strategy” pattern. However, when we com-
pare representations made from the patterns in the same
manner, we see that the type of discussion is very different.
Consider: Sparse Linear Algebra’s flowchart contains a

detailed set of discussions and optimizations for solving the
problem of solving a sparse matrix system. As a pattern,
Sparse Linear Algebra cannot be used for anything other
than solve Sparse Matrices—it is that specific. Pipeline, on
the other hand, solves the problem of a much more general
flow of data through different stages.

6.3.2 Sparse Linear Algebra within Pipeline
Although there may be instances of Pipeline that are low-

level, in the same vein as Sparse Linear Algebra—we are



Sensor Data Preconditioning Sparse Linear 
Algebra Postconditioning Actuators
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Figure 7: Composition of Pipeline/Sparse Linear Algebra in an Adaptive Optics context. This figure shows
a concrete example where one pattern can be placed into the structure of another pattern, becoming a piece
of its solution. This example of composition now allows us to consider the relationship between the two
patterns.

also capable of applying the pattern to the problem shown
in Figure 7. This figure contains an instance of Pipeline
that traces the dataflow from collection by sensors, prepar-
ing it for manipulation, solving the resulting sparse matrix,
preparing that data for use, and modifying the actuators
based on the data—the process required by the adaptive
optics problem [14]. Here we have an instance of a Pipeline
containing an instance of Sparse Linear Algebra.

Furthermore, while we can imagine Sparse Linear Algebra
being a stage of Pipeline (Figure 7) while the other way
around does not make any sense, as a general pattern has
difficulty playing a role within a specific one.

This propety even appears in their visual representations.
Pipeline considers how to manage nebulous“stages”, any one
of which may be another, more specific pattern. Sparse Lin-
ear Algebra, though, is very direct. We cannot fit Pipeline
into Sparse Linear Algebra’s flowchart, since the data does
not flow—the computation is well defined and not organized
for that structure.

6.4 Scalability
This section is titled scalability, as on a small scale is-

sues such as the composition of patterns are trivial, but any
sort of growth—like an increase in the number of patterns—
and these issues become exceedingly difficult to manage.
We evaluate scalability issues for both parallel patterns and
HiLPR. We discuss the challenges of applying the visual
representation, both to current patterns and those not yet
written. We then further elaborate on the benefits that the
representation provides to future patterns and to the inter-
action between pattern languages.

6.4.1 ...of applying HiLPR to the OPL
Applying the representation to patterns that are already

written is easy—requiring less work than a knowledgeable
programmer would need to write a pattern in the first place.
Our process requires that we go through each pattern, read
and understand the content and concept, then apply this or-
ganizational structure to it. This is not unreasonable. Con-
sider: patterns writing requires that a skilled and knowl-
edgable programmer go through each problem, understand
and write the content and concept, and apply the pattern
Problem, Context, Forces, Solution structure to it. The sim-
ilarities between the processes can be leveraged to not only
make the application of the representation easy, but to help
write new patterns.

6.4.2 ...that HiLPR gives to new patterns
The process of the uniform representation focuses on im-

plementing a Solution based on the Forces and Context of
the pattern. While a pattern is being written, HiLPR’s
structure can be generated alongside as part of the writing
process, forming the visual representation with little addi-
tional work. Doing both processes concurrently provides an-
other benefit for authors of new patterns. Patterns contain
a lot of information, and while writing them, it can be dif-
ficult to know where exactly to start. Guided by the visual
structure, writers can leverage the structure as a common
starting point.

6.4.3 ...that HiLPR gives to the OPL
As the language of parallel patterns grows, it becomes

more difficult to reason about concepts such as composition,
as the number of possible combinations grows exponentially
with each new pattern. As we will describe in Section 6.3.2,
HiLPR gives us a new vocabulary to help compare two pat-
terns. The visual representation includes clues that will be
crucial as more patterns are added. Additionally, comparing
multiple patterns becomes easier, since the salient structure
of the uniform representation is the same across patterns
and the internal steps that a pattern follows are abstracted
to be a guide for implementation, without all of the details.

6.4.4 ...that we see between pattern languages
We can consider the differences that HiLPR could find be-

tween pattern languages. For example, although the OPL
patterns need to consider the underlying hardware as a cru-
cial step for their parallel computation, we would not find
the same result with the Gang of Four’s Object-Oriented
patterns [10]. However, the other stages of the representa-
tion (Software Design and Optimizations) apply. This al-
lows us consider the structural differences between different
pattern languages. Other pattern languages may require ad-
ditional stages to fully explain their processes, which would
allow comparisons between the structure of those languages
and the OPL.

7. FUTURE WORK
We suggest that HiLPR allows for further exploration of

how we categorize and compose patterns. This work is based
on the relationships that can exist between patterns, which
give us clues to how they fit together in composition.

7.1 Pattern Categorizations
The way that patterns are organized into their categories

changes how we think about them with relation to each
other.We must consider categorization carefully—based on
current OPL categorizations, we would not suggest placing



an instance of Sparse Linear Algebra within an implemen-
tation of Pipeline, but we have shown in Section 6.3.2 that
it is a reasonable decision. This section explores levels of
abstraction as they apply to parallel patterns.

7.1.1 Level of Abstraction in Patterns
HiLPR allows us to more easily determine the level of ab-

straction implicit to a parallel design pattern. This is an
important step for understanding pattern composition, as
patterns on the same level can compose in different ways
then patterns between levels. Take Three Layer Cake [32]
(Figure 8) as an example: Message Passing is a highly ab-
stract method of managing parallelism and SIMD (Single
Instruction, Multiple Data) is a low-level implementation
method. Three Layer Cake suggests that SIMD, being so
low level, should not be creating Fork-Join or Messages to
pass, and Fork-Join, in the middle, should also not be spawn-
ing Messages. This structure is a heirarchy, from the most
abstract to the least. If we can leverage this sort of heirar-
chy as clues to composition, and our representation as a clue
to the position a pattern holds in the heirarchy, we have a
structure that can define certain sorts of composition easily,
in a way that was previously difficult.

Figure 8: Three Layer Cake [32]. This pattern is
built of three other parallel design patterns. Each
individual pattern is shown below the composition.
The outer most layer is Message Passing, inside the
message is Fork-Join, which eventually gives way to
SIMD.

7.2 Relationships between patterns
We can further consider pattern composition and abstrac-

tion through another means—by examining the various re-
lationships between patterns. This parallels work done on
the original GOF patterns.

7.2.1 GOF Relationships
Zimmer’s [36]“relationships between design patterns”sug-

gested the following relationships to help analyze pattern
selection and composition:

• X uses Y

• X is similar to Y

• X can be combined with Y

We consider these relationships an interesting idea that can
also be applied to parallel patterns to help consider the ques-
tion of composition. The following section suggests an ad-
ditional relationship that wil make this set more complete
with regards to parallel patterns.

7.2.2 Uniform Relationships
Based on HiLPR, we can add an additional relationship

for parallel patterns that is more explicit than those Zimmer
suggested for Object-Oriented patterns. This relationship is
“X includes Y”. This relationship is different from X uses
Y, for in that relationship, X requires Y to function. In this
relationship, X does not require Y—X is more abstract than
Y, and one of the pieces of X could be another pattern—
in this case, Y. We show an example of this with Pipeline
and Sparse Linear Algebra (in this case, Pipeline includes
Sparse Linear Algebra) in Figure 7. This relationship is also
different from one where X can be combined with Y, which
gives an equal participation to both patterns as patterns
that typically work together.
In our proposed relationship, X has no particular ties to

Y—consider again Three Layer Cake [32]. We can say that
Message Passing includes Fork-Join—this does not mean
that the only message that can be passed is a Fork-Join,
only that Fork-Join is one of many that could be composed
into a message.

7.3 Tool Support for Patterns
Using HiLPR with parallel design patterns, tool support

for patterns becomes easier to manage as the visual repre-
sentation provides a clear structure for developers to work
with. This section considers the purpose that these tools
may serve, based on the properties of each stage of the uni-
form representation. A summary can be seen in Table 5.
Inclusion in this table does not mean that these tools do not
exist, or that they must be built entirely from scratch. What
we describe are three pieces of an integrated environment.

Stage Tool Properties

Software Design Integrated Design Analysis

Hardware Characteristics System Characterization

Optimizations Automated Platform
Dependencies

Table 5: Properties of Pattern Tool Support. This
table shows a summary of HiLPR’s stages and the
properties that tool support could provide. Each
property is organized by the stage where it will be
most useful.

The first stage, Software Design, could have tool support
that fufills much the same purpose as the overall structure of



our uniform representation: keeping information organized
and up-to-date. A tool for this stage would assist managing
the other tools, and could preliminarily check design changes
against the other stages to determine what areas of the pro-
gram are most affected. These areas could then be examined
in further detail.

The second stage, Hardware Characteristics, could be in-
tegrated with the underlying hardware, providing an easier
manner in which to check the design against the implemen-
tation system. This tool would be responsible for ensuring
that the design meshes well with the hardware, and would
interrupt the Software Design tool should changes in the
previous stage become unmanageable.

The final stage, Optimizations, can be broken into two
general types of queries. The first are design decisions: for
example, a Shared Queue using multiple queues. These op-
timizations are difficult to provide tool support for. On the
other hand, the other type of optimization is ripe for tool en-
hancement. These are platform-specific optimizations, pre-
cisely fine-tuned to the program’s characteristics, that do
not vastly modify the structure of the program itself. These
optimizations are time-consuming and elaborate, but they
also have well-defined metrics for success. These are the
sorts of optimizations that tool support could help to auto-
mate.

8. CONCLUSIONS
This paper addresses the problem of diversity between dif-

ferent patterns in the OPL, and the needs of programmers
versus the structure of the patterns. We propose HiLPR,
a visual and uniform representation to apply to the OPL
patterns which will address both of these issues. HiLPR
breaks the solution to a pattern into three stages: Software
Design, Hardware Characterization, and Optimization. We
show how the visual representation can be applied to mul-
tiple patterns in different categories in the OPL, defend the
validity of this process based on a comparison with previous
work and an analysis of our result, and describe the benefits
of having this particular uniformity across these patterns.

We discuss further benefits beyond implementation, which
will make it easier to write and compare new patterns for
relationships and composition. We show how patterns that
do not fit HiLPR can still gain some benefit, and are in and
of themselves important results that suggest they may be
meta-patterns. We also discuss how this method allows us
to consider the content of the pattern, and whether some of
the Forces are strong guides for implementation.

Finally, we recommend interesting avenues of research that
build upon work analyzing the Gang of Four patterns, work
that we have been unable to extend to the OPL patterns
until now. We further leverage the visual representation to
discuss the effectiveness of the current OPL pattern catego-
rizations, and use it as a framework to consider the strengths
and weaknesses of the current organizational strategy.
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