
Parallelizing Irregular Algorithms: A Pattern Language
Pedro Monteiro

CITI, Departamento de Informática
Faculdade de Ciências e Tecnologia

Universidade Nova de Lisboa
2829-516 Caparica, Portugal

+351 212 948 536

pmfcm@campus.fct.unl.pt

Miguel P. Monteiro
CITI, Departamento de Informática

Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa
2829-516 Caparica, Portugal

+351 212 948 536

mtpm@fct.unl.pt

Keshav Pingali
Institute for Computational Engineering

and Sciences
The University of Texas at Austin

pingali@cs.utexas.edu

ABSTRACT
Outside of the high-performance computing domain, many
applications are irregular in the sense that opportunities to exploit
parallelism change throughout the computation, due to the use of
complex, pointer-based data structures such as lists and graphs.
However, the parallel programming community has relatively
little experience in parallelizing irregular applications, and we
presently lack a deep understanding of the structure of parallelism
and locality in the algorithms that underlie these applications. In
this context, irregular algorithms pose a challenging problem to
current parallelization methods and techniques.
In recent years, the Galois project has proposed an approach for
parallelizing irregular algorithms and applications that is based on
a small set of simple abstractions. In this paper, we describe the
Galois approach by means of a pattern language for parallel
programming, thereby highlighting the key features of this
approach, and elucidating more generally the concurrency
patterns in irregular algorithms.
Categories and Subject Descriptors
D.1.3 [Programming Techniques] Concurrent Programming –
Parallel Programming D.3.3 [Programming Languages]
Language Constructs and Features – Patterns and Frameworks

General Terms
Algorithms, Design

Keywords
Pattern Language, Irregular Algorithms, Parallel Programming,
Reverse Engineering, Object-Oriented Frameworks

1. INTRODUCTION
Parallel programming has been used for a long time in specialized
application areas such as high-performance computing (HPC) and
databases. Over the years, we have acquired a good understanding

of the patterns of parallelism and locality in the underlying
algorithms of these problem domains, which led to the creation of
programming notations, and compiler and runtime technology for
supporting the parallel execution of these applications.
The advent of multicore processors makes it feasible to execute
applications in parallel. However, most applications outside of
HPC and databases are irregular because they use complex,
pointer-based data structures such as lists and graphs, whose
patterns of computation are not statically determinable. In
contrast, HPC and database applications have statically
determinable patterns of computation as they use data structures
such as dense arrays and relations. HPC applications like stencil
computations and FFTs are amenable to forms of parallelism
independent of runtime values, thus it is possible for a compiler or
programmer to expose and schedule the parallelism before
execution. However, parallelism in irregular applications cannot
be exposed by compile-time techniques such as dependency
analysis.
Dependencies between computations in irregular applications are
a function of runtime entities, such as the structure of input graphs
and the values on nodes and edges, so most of the work of
parallelizing these applications must be performed during
execution. Unfortunately, we still lack a thorough understanding
of the patterns of parallelism and locality in irregular algorithms,
which hampers the design of programming notations, compilers
and runtime systems for supporting the parallel execution of these
applications.
Recently, the Galois project has made some advances in this key
area [33] by identifying the type of parallelism that best takes
advantage of the dynamic structure of irregular algorithms. The
Galois research shows that this generalized form of
data-parallelism called Amorphous Data Parallelism (ADP) is
ubiquitous in irregular applications.
This paper extends our previous work [49] by describing the most
important aspects of the Galois approach using the language of
parallel programming patterns. Nevertheless, the pattern language
is independent of the details of the Galois framework and is not
restricted to this system in any way. Patterns represent tangible
solutions to problems in a well-defined context within a specific
domain and provide support for wide reuse of well proven
concepts and techniques, independent from methodology,
language, paradigm and architecture [4].We aim to disseminate
this knowledge to both expert and non-expert programmers
through patterns, thus easing the adoption of these ideas in other
systems. The patterns from this pattern language are meant to be
used together, in view of providing a solution for wider and more

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission. A preliminary version of this paper
was presented in a writers' workshop at the 18th Conference on Pattern
Languages of Programs (PLoP). PLoP'11, October 21-23, Portland,
Oregon, USA. Copyright 2011 is held by the author(s). ACM 978-1-
4503-1283-7

complex problems than those tackled by a single pattern or a set
of unrelated patterns. They comprise a true pattern language in
that they provide a complete solution for a complex problem – the
parallelization of Irregular Algorithms in this case.
The remainder of this paper is structured as follows. Section 2
provides an overview of Irregular algorithms and describes two
examples in detail, which are used in subsequent sections.
Section 3 provides a short overview of the Galois Framework.
The Pattern Language is documented in section 4. Section 5
discusses related work and section 6 concludes the paper.

2. IRREGULAR ALGORITHMS
The domain of multicore programming uses a plethora of
techniques, methods and languages to achieve efficient parallel
implementations of algorithms and applications, like pthreads,
OpenMP, MPI, among others. However, writing parallel code is
not a trivial task and it is hard to hide the complexities of
synchronization, data races, memory consistency, distribution,
etc. Parallelizing compilers that use points-to and shape analysis
to parallelize sequential code are especially apt for creating the
needed level of abstraction from parallelism concerns.
Nonetheless, these more than often fail to uncover the true
potential parallelism in algorithms where data-dependencies are
only known at runtime and thus no efficient schedule can be
foreseen. The class of algorithms that presents such irregular
dependencies is termed Irregular Algorithms [33, 36].
In the majority of irregular algorithms, data is present in the form
of graphs, trees or lists with a high degree of dependency between
the nodes. Thus, computations performed on a node have a high
risk of interfering with computation on other nodes. As each
computation occurs, the set of dependencies between nodes tends
to change accordingly. Therefore, scheduling strategies cannot be
uncovered at compile-time, requiring iterative reevaluation of
dependencies and rescheduling of operations.
Irregular problems arise often in the scientific domain as most
simulation algorithms betray irregularity. Examples of such
algorithms include sparse matrix computations, computational
fluid dynamics, image processing, molecular dynamics, climate
modeling and optimization problems [23]. Implementing this
class of algorithms on distributed-memory machines requires
frequent fine-grain communications, to encompass changes in
overlapping data-sets, which results in poor performance. On the
other side of the spectrum, implementations of irregular
algorithms on shared-memory machines alleviate these problems,
but in turn require heavy cache coherence and synchronization
protocols to enforce a consistent view of memory.
This implementation complexity cannot be efficiently handled by
traditional approaches to parallelization, which do not account for
the unpredictable run-time behavior of irregular algorithms.
Therefore, efficient parallel implementations of irregular
algorithms remain a challenging problem.
Next, two use-cases of widely known irregular algorithms are
presented, to illustrate some of the challenges commonly
associated with parallelizing this class of algorithms. The first use
case presents Delaunay Triangulation [59], an algorithm to create
Delaunay triangulations from a set of points, and the second is
Kruskal’s Minimum Spanning Tree. These irregular algorithms
and many others are available for a more detailed study in the
Lonestar Benchmark Suit [34].

2.1 Delaunay Triangulation
Delaunay Triangulation, also referred to as Delaunay Mesh
Generation, is an irregular algorithm for generating a mesh of
triangles from a given set of points [59]. When a new point is
added to the mesh, its surrounding triangle is split into three new
triangles, with the new point as the central vertex (see Fig 1, a-c).
The new triangles must be valid according to the Delaunay
property, which states that no point can exist inside the
circumference that intersects the vertex points of a triangle (see
Figure 1-d). When this property is violated, the common edge is
flipped to produce a valid triangulation (Figure 1, d-f).

2.1.1 Irregularity
As points are randomly added to the mesh, its resulting structure
cannot be statically predicted. Moreover, parallel addition of
distinct points with the same surrounding triangle is impossible
without some sort of concurrency control and ordering. Thus,
concurrency control excludes parallel addition of new points to a
triangle, if it is already being processed. However, parallel
addition of points to non-adjacent triangles is allowed.
The random addition of points to the mesh prevents us from
predicting how many triangles are ripe for processing in parallel
at each step of the algorithm and thus traditional data parallelism
is rendered ineffective.

2.2 Kruskal’s Minimum Spanning Tree
Kruskal’s MST is a well-known algorithm for calculating the
minimum weight spanning-tree of a connected weighted
undirected graph. This entails finding, at each step of the
algorithm, the edge with the minimum weight and adding it to the
MST. However, no cycles are allowed and so the algorithm must
keep track of the connectedness of its sub-graphs. When a new
edge is added to the MST, it checks if the MST edged deriving
from both its nodes are connected. If so, the edge is discarded

Figure 1 – Execution of Delaunay’s Triangulation algorithm

instead of being added to the MST, as it would introduce a cycle.
This verification is usually performed through a disjoint-set data
structure with Union-Find operations.

2.2.1 Irregularity
In contrast to Delaunay Triangulation, this algorithm presents an
restrictive processing order, i.e. elements must be processed from
the edges with the minimum weight to the edges with the
maximum weight. This restricts the number of parallel
computations that might occur at each step.
Edges can be added in parallel to the MST if:

• They have the same weight and that weight is the current
minimum.

• If for some small n-value, an edge has weight less than or equal
to minimum+n, and adding the edge will not lead to the creation
of a cycle by a minimum weighted edge.

Thus, parallel addition of minimum weighted edges (or near to
minimum) is allowed if they don’t belong to the same sub-graph.
Provided the addition is made in disjoint sub-graphs, edges can be
added in parallel.

3. THE GALOIS FRAMEWORK
Galois is a framework for parallelization of irregular algorithms,
from which the concepts expressed by our pattern language were
derived, through a process of analysis and reverse engineering.
The effort needed to create efficient parallel versions of this class
of algorithms is not easily managed by non-expert scientific
programmers, which are more accustomed to view problems in a
sequential manner [52]. Thus, in the Galois approach [54], the
problem of exposing and exploiting Amorphous data Parallelism
is addressed through a small number of simple abstractions based
on optimistic (or speculative) parallelization.

3.1 Programming model and data structure
library

Galois1 is based on a high-level programming pattern that was
abstracted from a study of large number of irregular algorithms,
namely Delaunay’s mesh algorithms [59], single-source shortest-
path computations and maxflow computations [9].
There are three main components in Galois: (1) a simple yet
powerful set of programming constructs that help non-expert
programmers express key properties of irregular algorithms, (2) a
library of concurrent data structures, and (3) a runtime system that
uses optimistic parallel execution. The programming model is
inherently sequential: in the current implementation, it is
sequential Java extended with two Galois set iterators that
provide implicit parallelism. These iterators are similar to set
iterators in conventional languages like Java and C++ and iterate
over unordered and ordered sets of work-items. They also allow
for adding new elements to the set at runtime. The runtime system
exploits the implicit parallelism in Galois iterators by executing
iterations speculatively in parallel, i.e. executing in parallel
assuming there is no concurrency in data access and rolling back
execution if a conflict is detected. Conflict detection and recovery
is handled by the library data structures and the runtime system.

1 http://iss.ices.utexas.edu/?p=projects/galois

This approach enables application programmers to write irregular
programs without having to reason explicitly about concurrency.
Figure 2 illustrates an abstraction of a typical irregular algorithm.
At each point during its execution, operators are applied to certain
nodes or edges in the graph (such nodes are called active
elements). Each application of an operator is termed an activity,
and may require reading or writing of other nodes and edges in
the graph (i.e. the neighborhood of that activity). In Figure 2, the
red colored nodes represent active nodes, and shaded regions
represent the neighborhoods of those active nodes. In some
algorithms, activities may modify the graph structure of the
neighborhood by adding or removing graph elements. In general,
there are many active nodes in a graph.
We distinguish two important categories of algorithms: unordered
algorithms allow the implementation to pick any active node for
execution (e.g., preflow-push maxflow and Delaunay mesh
refinement) and can be programmed using a Galois unordered set
iterator. In contrast, ordered algorithms (e.g., Prim's or Kruskal's
algorithms for computing minimal spanning trees) impose a
problem-dependent order for the processing of active nodes and
can be programmed using a Galois ordered set iterator.

Figure 2 - Data-centric view of algorithms: red nodes are
active and wait to be processed. Processing a node will
potentially access and modify other nodes within the shaded
neighborhoods. Parallel processing of active nodes will lead to
conflicts when the neighborhoods of active nodes intersect.

3.2 Baseline parallel execution model
The Galois API of concurrent data structures covers concurrent
data structures such as graphs, priority queues and sets, whose
functionality is exposed through a conventional data structure
API. For example, the graph API includes methods for returning
the neighbors of a given node, the outgoing and incoming edges
of a node, adding/deleting nodes and edges, etc. All concurrency
control is implemented within the classes of this library. Figure 2
shows how opportunities for exploiting parallelism arise in graph
algorithms: if there are many active elements at some point in the
computation, each one is a site where a processor can perform
computation, subject to neighborhood constraints. In the baseline
parallel execution model, the graph is stored in shared-memory,
and active nodes are processed by some number of threads. Like
thread-level speculation [32] and transactional memory [25], the
Galois system uses speculative parallel execution to handle the
problem of dependencies that can only be elucidated at runtime. A
free thread picks an arbitrary active node and speculatively
applies the operator to that node, making calls to the graph class
API to perform operations on the graph as needed. The
neighborhood of an activity can be visualized as a blue ink-blot
that begins at the active node and spreads incrementally whenever
a graph API call is made that touches new nodes or edges in the

graph. To enforce neighborhood constraints, each graph element
has an associated exclusive abstract lock, which is held until the
activity terminates. If a lock cannot be acquired because it is
already owned by another thread, a conflict is reported to the
runtime system, which rolls back one of the conflicting activities.
To enable rollback, each graph API method that modifies the
graph makes a copy of the data before modification. Like abstract
lock manipulation, rollbacks are a service implemented by the
library and runtime system. The activity terminates when the
application of the operator is complete and all acquired locks are
released.
Intuitively, the use of abstract locks ensures that graph API
operations from concurrently executing iterations commute with
each other, ensuring that the iterations appear to execute in some
serial order as required by the semantics of the Galois set iterator.
There are more sophisticated techniques for checking
commutativity, but these are more complex to implement [36].
Commuting graph API operations that touch the same locations in
the concrete representation must be synchronized. The
programming model enables the application programmer to turn
off abstract locking and conflict detection for the cases it is safe to
do so. This can improve performance but may introduce race
conditions if used incorrectly.

4. THE PATTERN LANGUAGE
Patterns allow the reuse of solutions and the widespread adoption
of domain knowledge. A pattern language is a set of inter-
dependent patterns that provide a complete solution to a complex
problem [4]. The patterns presented here are meant to be used
together to a solution for the parallelization of Irregular
Algorithms. However, as with other patterns, each pattern might
be used independently if the context for its usage coincides with
the context of the pattern.
Due to the plethora of new and emergent parallel programming
methods and techniques, the patterns presented here are more
along the lines of conceptual patterns and don’t follow the typical
structure of design patterns, which are more concrete. We present
patterns that provide design directions that steer the programmer
to a well-parallelized Irregular algorithm, independent of the
parallel programming method of his choice.
The concept underlying our pattern language was built on a
hierarchical design sequence, depicted in Figure 3, which captures
the reasoning steps a programmer takes to parallelize an
algorithm, whether it is irregular or not.

4.1 Parallelization steps
In the algorithm selection stage, the programmer must carefully
consider the existing algorithmic solutions for the problem at
hand. Considerations towards the algorithms suitability for
parallelization require the programmer to be aware that:

• Some algorithms are inherently sequential or are harder to
parallelize.

• The parallel programming technology used might influence
algorithm choice.

However, the choice of an algorithm might not be a final decision.
The design of an algorithm is in essence an iterative cycle of
design decisions. Thus, latter stages of the parallelization might
influence the programmer to choose a different algorithm.

Having a clearly defined problem and the solution represented by
the algorithm, the programmer should concern himself with
Finding Parallelism Opportunities, i.e. analyzing the problem
domain and the solution to identify which elements will be able to
be parallelized and how they interact with the other elements in
the domain. It is at this stage that we should take into account the
irregularity of the algorithm.
Exploiting Parallelism entails implementing the algorithm and
data structures for efficient parallel execution. The algorithm must
be expressed as a program in a way that does not obscure the
inherent parallelism that was found in the previous step. In
addition, the programmer must consider the best data structure to
supporting parallel execution.
As no efficient parallelization is completely devoid of architecture
considerations, the programmer must now consider the best
Mapping from the abstract algorithm definition to the actual
hardware architecture.
The final step consists on Optimizing parallel execution to
achieve the best possible algorithmic performance.

 Figure 3 – Algorithm parallelization design sequence. Each
stage might invalidate the solution, forcing the developer to
reconsider previous stages.

Our pattern language follows this algorithm design sequence and
presents a solution for the parallelization of workpool-based
irregular algorithms, using optimistic techniques [22].
Figure 4 presents an overview of the dependencies and
relationships among patterns. The pattern language is comprised
of six design spaces that represent pattern hierarchy and structure:

1. Parallelism Structure: the patterns in this design space
intend to help identify what can be parallelized, i.e. what is
the type of parallelism.

2. Data Structure: the base data model which is used as the
target of parallel operations.

3. Execution Structure: directs readers on how to drive
parallel execution to take advantage of latent parallelism.

4. Program Structure: Parallel execution is an addition to the
tradition of “program = structure of algorithm + data
structure” [67] and thus this design space exists as a

composition of the Parallelism, Data and Execution
structures.

5. Task Mapping: considers the scheduling of activities to the
processing elements, such as processors or threads.

6. Data Mapping: considers data distribution to maximize
non-concurrent access to data.

4.2 Pattern-specific Terminology
To ensure that the pattern language can be used for a wide range
of irregular algorithms, we next introduce an abstract terminology
for talking about irregular algorithms. This is intended to free the
reader from algorithm and implementation-specific jargon and
granting the reader the ability to view specific patterns
individually, without the need to scrutinize the entire language.
The terminology is as follows:
Active element – An active element is a well-identified,
describable unit of data that can be individualized from the

generality. Data elements are algorithm-specific and are
recognized as an often repeated name whose meaning is
associated with the algorithmic metaphor. For instance, while
iterating, an active element is the next element to be returned.
Neighborhood – Is the set of elements that might be read or
written while an active element is being computed. For instance,
considering matrix multiplication, the neighborhood of a result
cell is the row of the first matrix and column of the second that
match the cell’s index.
Operator – An operator represents the operation performed on a
piece of data. Algorithm operators can have either read or write
semantics: Reader operators do not influence the data dependency
set; Writer operators can be further classified as Morph operators,
which add or remove elements from the neighborhood, or as
Local Computation Operators, which may update the value of an
element not changing the structure of the neighborhood [53].
Available parallelism – Is a measure of the amount of parallelism
available represented by the maximum number of independent

Figure 4 – Pattern Language Overview

parallel computations that can be effectively performed at a given
moment.
Processing Unit (PU) – It represents either a processor core or
thread, depending on the technology being used. Since our
patterns consider both multi-core and multi-threaded
environments this allows us to abstract from the concrete
processing technology used.

4.3 Finding Parallelism Opportunities
In this section we describe the two main patterns: Amorphous
Data Parallelism and Workpool. The intent of these patterns is to
clarify the structure of parallelism of irregular algorithms and the
overall program structure for exploiting said parallelism.

4.3.1 Amorphous Data Parallelism

Problem: How to exploit concurrency in the presence of
unpredictable data dependencies.

Design space: Parallelism Structure

Context: Traditional data parallelism [29] exploits the
decomposition of data structures to attain concurrent behavior,
dividing the data structure into independent sets and distributing
them among processing units in a way that allows for the parallel
application of a stream of operations. This is only possible
because “regular” Data-Parallelism is derived from parallel
computation of iterative algorithms operating over static data
structures, such as dense matrices, using index-based references.

On irregular algorithms, the nature of data dependencies is
unpredictable as well as dynamic, because algorithms operate
over dynamic data structures, such as graphs and trees. Thus, the
amount of parallelism that can be achieved varies according to
how the algorithm changes its data dependencies, hence the term
“amorphous”.

If the programmer is faced with an algorithm whose data structure
is dynamic and the execution of an activity on an active element
requires access to other elements, then he is in the presence of an
Irregular algorithm, whose parallelization requires amorphous
data-parallelism. This is more true if the set of elements accessed
varies at runtime (i.e. if dependencies vary).

Forces

• Overheads of Parallelization: The benefits of parallel
execution may be compromised by the overheads of parallel
execution such as synchronization costs.

• Synchronization Costs: Coarse-grained locking has less
overhead than fine-grained locking but may also exploit less
parallelism.

• Sequential to Parallel Traceability: Clear mapping between
the sequential and parallel version of an algorithm.

Solution: Exploiting data parallelism entails understanding how
concurrent behavior will influence the structure of the data and
how to ensure independence of computations in the overall
parallelization strategy. In Amorphous Data Parallelism, available
opportunities for concurrency-free parallelism cannot be easily
predicted. Thus, to extract the maximum amount of parallelism
the programmer needs to:

1. Define the active elements that comprise the algorithm.
2. Express computations in terms of the data structure

elements.
3. Identify, at each step, which active elements are

independent and which need mutual exclusion mechanisms.
4. Apply the computations iteratively to each active element.

Furthermore, an amorphous data-parallel decomposition should
ensure that new opportunities for independent parallel execution
are driven by data-dependent computations.

Galois Implementation: In the Galois implementation of this
pattern the primary considerations are:

• The main loops of the algorithm must be refactored to use
Galois constructs, such as the foreach loop;

• Locking is implicitly handled by the Galois Runtime.
• Galois tries to ensure a transparent traceability from

sequential to parallel.

Example: Using the example of Delaunay Triangulation, the
underlying problem in this algorithm can be parallelized in an
amorphous data-parallel manner by considering each new point
as the active element. As each new point is added to the mesh, the
set of data-dependencies changes and so does the number of
independently executing active elements. Active elements are
independent if their neighborhoods do not overlap. The
neighborhood in this case is the surrounding triangle, which can
only be modified by a single active element.

Related Patterns

• Data Decomposition: Amorphous Data Parallelism is a
form of Data-parallelism [29] or Data Decomposition [46].

Known Uses: The Amorphous Data-Parallel structure of irregular
algorithms was first described by Kulkarni [33]. More recently,
the concept of Amorphous Data Parallelism was used by Chorus
[43], a high-level parallel programming model for irregular
applications. We know of no other classification of this type of
parallelism.

4.3.2 Workpool

Also Known As: Worklist, Workset

Problem: How to take advantage of parallelism when activities
have runtime-dependent effects on data and active elements are
created dynamically.

Design space: Program Structure

Context: When the set of dependencies varies at runtime in a way
that is not statically predictable, using traditional data-driven
approaches, such as data-parallelism and divide-and-conquer
strategies, will not allow the programmer to extract all available
parallelism. Considering Amorphous Data Parallelism, we must
enforce a computational strategy that allows us to exploit both
data and computationally dynamic dependencies.

Forces

• Shared vs. Distributed Workpool: shared workpools, which
are globally accessible by multiple PUs, are easier to develop
but might become a bottleneck from communication and
concurrency overheads from access to the shared pool.
Distributed workpools are decentralized, trading the
bottleneck concern for a higher development cost.

• Centralized vs. Decentralized Workpool: A centralized
workpool needs to ensure mutual exclusion, which might
hinder performance. Decentralized workpools are faster but
may require work-stealing methods for efficient work
distribution.

• Differentiated work: on some algorithms, it might be useful
to have more than one type of work element.

Solution: The solution is to use a workpool, a data structure that
holds units of work or tasks. A workpool is meant to be iterated
by PUs in a synchronized way. PUs then retrieve tasks and
process them concurrently with other PUs. Thus, parallelism and
concurrency concerns are moved from the choice of what work
remains (which is dynamic) to the actual execution of activities.

Using a Workpool model entails doing the following:

1. Define work elements, consistent with the data element
determined in Amorphous Data Parallelism.

2. Determine workpool ordering (unordered, FIFO, priority…)
3. Structure atomic mechanisms around workpool accesses.
4. Define a termination algorithm.

Processing a task may create new work units that are dynamically
added to the workpool. Policies such as pseudo-LIFO, FIFO,
random, chunked, etc. may be used to assign work dynamically to
PU’s to promote locality and reduce overheads in accessing the
workpool.
While rather similar to a sequential iteration over a data structure,
this parallel model requires a termination algorithm to ensure that
the algorithm only terminates when every processing unit is idle
and no more work is available on the workpool.
The general solution of this pattern is clarified with the code
described in Figure 6. A loop iteratively retrieves work until the
workpool is empty and every processing unit has finished
computing the work it previously acquired.
Galois Implementation: The Galois framework is directed at
workpool implementations of irregular algorithms, since this is

the ideal way to explore available Amorphous Data Parallelism in
this type of algorithms. Galois work elements are termed
Iterations. The framework provides set iterators that act as a
data-driven workpool, allowing the algorithm to concurrently
iterate over a set of Iterations. Execution begins when a master
thread starts sequential execution of the code. When it enters the
Iterator construct, the thread invokes worker threads to perform
the Iterations concurrently. The assignment of active elements to
worker threads is the responsibility a run-time scheduler.
The workpool form of an amorphous data-parallel Delaunay
Triangulation is illustrated in Figure 7.

Figure 5 – Workpool model

1 Workpool wp =//initialize workpool
2 while(algorithmRunning) do
3 atomic {
4 work =workpool.getWork()
5 }
6
7 if(work == null){
8 do send termination to all PUs
9 if(all PUs terminated){
10 algorithmRunning = false;
11 }
12 else wait for more work or termination
13 }else {
14 result = processCurrentWork(work);
15
16 if(result produced more work)
17 atomic {
18 workpool.addWork(result.work);
19 }
20 }
21 endWhile

Figure 6 – Pseudo-code of a general workpool
implementation

Figure 7 – Pseudo-code of Workpool for an amorphous
data-parallel Delaunay Triangulation

1 TriangleMesh mesh = //initialize mesh
2 Workpool wp =//initialize workpool
3 while(algorithmRunning) do
4 atomic {
5 work =workpool.getWork()
6 }
7
8 if(work == null){
9 do send termination to all PUs
10 if(all PUs terminated){
11 algorithmRunning = false;
12 }
13 else wait for more work or termination
14 }else {
15
16 if (work.isPoint()) {
17 Triangle tri;
18 tri = mesh.surroundingTriangles(work)
19 result = triangulate(tri);
20 }else its an invalid triangle
21 result = flip(work.getInvalid());
22
23 if(result produced more work)
24 atomic {
25 workpool.addWork(result.work);
26 }
27 }
28 endWhile

Related Patterns

• Amorphous Data Parallelism: active elements from
amorphous data parallelism represent work elements in the
workpool.

• Workpool Partitioning: If working on a distributed
environment, the workpool can be partitioned.

Known Uses: The term workpool was probably first used in 1989
by Lim and Johnson [40] although they refer that a similar
concept had already been described by Dally [10]. A widely
known use of the Workpool pattern is the Linda [20] model, in
which processes cooperate through a shared global data space
named tuple space. Since data elements are added to the tuple
space, allowing other processes to access and execute it, the
model functions like a Workpool. In [21], the authors describe a
parallel Branch and Bound algorithm based on a pool of nodes. A
workpool model for parallel programming was also devised in
[30], to work independently in distributed or shared memory in a
Declarative Imperative Parallel Programming model (DIPP).

4.4 Exploiting Parallelism
This section presents patterns that illustrate how to exploit latent
parallelism in irregular algorithms more fully. This entails
considering how to structure both data and execution. To solve
the former, we present the Abstract Data Structure pattern, while
the latter is addressed by patterns Optimistic Execution and In-
Order Execution.

4.4.1 Abstract Data Structure

Problem: As the choice of data structure influences the
complexity of algorithm design and execution, choosing an
appropriate data structure is essential.

Design space: Data Structure

Context: When implementing an algorithm, much effort lies in
deciding on the best data structure to represent data and what
characteristics make it suitable for exploiting parallelism.
Although data structure design is a well-researched field, we tend
to view them as black boxes around which the algorithm is
shaped. The choice of topology and structural representation of
data affects algorithm design and therefore, prior to
implementation, all aspects of data accesses and the structure of
data should be subject to careful consideration and planning.
On designing a parallel algorithm, using an Abstract Data
Structure requires the programmer to build mechanisms to
encapsulate not only the usual behavior of the data structure but
also concurrency and synchronization. If the programmer knows
the set of operations defined by the Abstract Data Structure are
safe, with regards to concurrency and synchronization, he can
safely use it.
For Irregular algorithms, this is simplified as the set of operations
available are directly related to the operators defined in the
Terminology section (4.2).

Forces

• Obliviousness vs. full knowledge: from a programmer’s
point of view, using an Abstract Data Structure removes the
complexity of understanding how data is accessed and

stored. This in turn increases the ease with which the
programmer conceptualizes the solution. However, in a
parallel environment, knowledge about the concrete data
structure used is important for performance. This is ever
more true if using data structures from libraries. Also,
algorithm-specific characteristics might influence data
structure choice

• Iteration: When iterating over the Data Structure, the
traversal approach is of utmost importance as different
algorithms have different optimal iteration strategies.

• Reusability: Using an Abstract Data Structure allows
programmers to change the data structure without changing
the algorithm.

Solution: In order for a programmer to use an Abstract Data
Structure safely and effectively in a concurrent environment he is
required to:
1. Define the data type that is to be stored in the data structure.

Depending on the algorithm, this can be a simple element
like a string or a more complex element like a graph.

2. Define which operations need to be available to support the
execution of the algorithm. In the object-oriented paradigm,
this is equivalent to defining and interface which is
implemented by the concrete data structure.

2.1. Define the operations required by the data element, such
as support for accessing the stored value, element
positioning and indexing values (see Figure 8, the
DataElement Interface). Apart from these setters and
getters, which provide data access and reference, the
element should also provide support for accessing the
neighbors of said element. Recall that a neighbor is any
data element that might be read or written when the
current data element is active (see section 4.2).

2.2. Define the operations that the data structure should
provide. These are methods intended for initialization,

Figure 8 – Structure of an Abstract Data Structure
for Irregular Algorithms

1 Interface DataElement{
2 getValue():Value
3 setValue(Value)
4 getPosition():Position
5 setPosition(Position)
6 getIndex():int
7 setIndex(index)
8 setNeighbor(DataElement)
9 setNeighbor(DataElement,index)
10 setNeighbors(Collection)
11 getNeighbor():DataElement
12 getNeighbor(index):DataElement
13 getNeighbors():Collection
14 removeNeighbor(Neighbor):DataElement
15 removeNeighbor(index):DataElement
16 isNeighbor(Neighbor):boolean
17 }
18
19 Interface DataStructure{
20 getElementAt(position):DataElement
21 setElementAt(DataElement,position)
22 hasElement(DataElement):Boolean
23 removeElementAt(position):DataElement
24 removeElement(DataElement):Boolean
25 iterate(Strategy):Iterator
26 }

Array-based Pointer-based

Graph Tree Grid Matrix Vector

Can be
implemented

via

Realization

Matrix Graph

Traditionally
used to

implement

Traditionally
used to
implement

Figure 9 – Realization of abstract data structures

search and traversal of the Data Structure. (see Figure 8,
the DataStructure Interface).

3. Identify the best concrete data structure with which to realize
the Abstract Data Structure. This step requires the
programmer to clearly understand the tradeoffs of each
concrete data structure and how the algorithm influences
these tradeoffs. As defined in the Terminology section (4.2),
we classify algorithm operators as Morphs, Local
Computations and Readers. The type of operator used by the
algorithm determines if and how the structure of data is
modified and how each data element is accessed. Additional
insight on the tradeoffs of different concrete data structures
is summarized in Table 1.

4. Design and build the concrete data structure, implementing
the Abstract Data Structure methods.

Variants: For irregular algorithms, data structures are essentially
organized around two types, according to topological
characteristics and how they are instantiated:
• Pointer-based Data Structures have the general form of a

Graph, where edges represent pointers to other nodes.
Graphs can be refined into Trees, special graphs without
cycles and with a root node, and Grids, where every node
connects to four other nodes. Grids can also form cubes (in
three-dimensional space) or hypercubes (above 3D space).
From the viewpoint of irregular algorithms, we see that
there is a tendency for graph-based implementations with
dynamic restructuring of nodes and edges at runtime. This
makes irregular graph algorithms ideal subjects for
Amorphous Data Parallelism.

• Array-based Data Structures have the general form of a
Matrix. If a Matrix has 1xN index space, it represents a
vector. Matrices with additional dimensions can be used to
represent cubes (NxMxT) and hypercubes (NxMx… xT).
For irregular algorithms, due to their dynamic nature,
matrices are usually not recommended. However, there are
exceptions which might merit the usage of matrices, as they
are easier to implement. Linear and Partial Differential
Equation solvers for instance, are important HPC research
algorithms which take the form of matrices and are
nonetheless Irregular (with local computation operators)
[54]. Matrix representations can also be used for algorithms
with index-based references and static neighborhoods.

The above two variant data structure types can be used to
implement one another – graphs are usually implemented using
adjacency lists or matrices; sparse-matrices minimize the number
of elements in memory if implemented as graphs. Figure 9 sums
up this equivalence.

Galois Implementation: The Galois framework is graph-oriented
and as such, supplies a few graph-based structures designed to
support the aforementioned graph characteristics. These data
structures are implemented around a Graph interface, providing
support for directed and undirected graphs, as well as complex,
simple and indexed edges. These can be further refined through
polymorphic extension.

For instance, for performance reasons, the Galois team
implemented Compressed Row Format variations of the
framework’s graphs, thus storing graphs as matrices. This is
shown to, in some cases, considerably improve algorithm
performance, even on a dynamic Irregular algorithm as Metis[63].
Example: We can implement Kruskal’s MST as a graph
algorithm and, traditionally, that is the best way to proceed.
However, with a small adjustment, it can be implemented with a
matrix-like data structure. This is possible because the graph is
undirected, which introduces sparsity in the matrix, allowing
Kruskal’s to be mapped to a triangular matrix without
compromising efficiency (see Figure 10). In this case, we have a
Graph with a Kruskal MST (a) and its matrix representation (b).
As shown in Figure 10, the matrix representation can be made in
terms of a triangular matrix and all remaining values can be zero.
This yields a fast and simple structure for Kruskal’s MST.

The same can be applied to the Delaunay triangulation algorithm,
since it also presents and high degree of sparsity. However,
because the nature of the mesh is dynamic, representing the mesh
as a matrix would instead be deterimental to the algorithm’s
performance.

Table 1 – Characteristics of data structures

 Matrix Graph

Traversal
Ability to index elements
with constant time
random access;

Iteration strategies vary;
Nodes can only traverse
to neighbor nodes;

Concurrency
Control

Locked entirely or in
blocks of elements;

Locks on individual
nodes;

Partitioning Straight forward in most
cases;

Always requires
traversal

Memory
Allocation

Memory allocated as
contiguous space;
Good locality of
references;

Per-element random
memory allocation;
Bad locality of
references;

Growth

Predefined size;
Additional elements
require re-allocation and
copy.

New elements are
added/removed by
adding/removing
pointers;

1 2

4

3

6

5

2 4

1
1

7 2 3

7
8

0 2 0 3 0 0
2 0 4 2 0 0
0 4 0 0 7 1
3 2 0 0 8 7
0 0 7 8 0 1
0 0 1 7 1 0

0 2 0 3 0 0
2 0 4 2 0 0
0 4 0 0 7 1
3 2 0 0 8 7
0 0 7 8 0 1
0 0 1 7 1 0

a) b)

Figure 10 – Graph to Matrix mapping

Related Patterns

• Amorphous Data parallelism: This pattern is used to provide
an underlying representation to the data required by the
Amorphous Data Parallelism pattern.

Known uses: There are many and varied implementations of
graph and matrix based data structures[15]. The earliest
discussion on adjacency matrixes goes back to the 60’s [31],
where matrices where used to represent electrical circuits.

4.4.2 Optimistic Execution

Also Known As: Data-Driven Speculation, Speculative Execution

Problem: How to parallelize the execution of an amorphous
data-parallel algorithm.

Design space: Execution Structure

Context: Parallelizing irregular algorithms is a difficult task
because these are characterized by chains of inter-dependent
computations. In these cases, static analysis techniques – such as
points-to and shape analysis – and semi-static approaches – based
on the inspector-executor model – cannot fully uncover potential
parallelism, while coarse-grained locking implementations restrict
the amount of available parallelism.

Forces

• Implementation Cost vs. Benefit: The cost of handling
Optimistic Execution might not merit the benefit.

• Available Parallelism vs. Number of Conflicts: The
maximum number of simultaneous independent computations
should be used to define an optimal grain size.

• Grain of Parallelism vs. Cost of Locking: Executing
multiple fine-grained computations might be computationally
worse than executing a single coarser one.

• Grain of Parallelism vs. Cost of Miss-speculation: The cost
of mis-speculation increases as the grain coarsens, as does the
amount of wasted work due to rollbacks.

Solution: To allow for efficient implementations of irregular
algorithms, parallelization using speculative or optimistic
parallelization techniques should be adopted [33].
Speculative execution of Amorphous Data Parallelism implies
executing the algorithm without full knowledge of how data
dependencies change at runtime. Therefore, execution assumes
that there is no concurrent access to data elements. The system
must continually check for access violations and take appropriate
corrective actions. When no violations are detected, the results
can be committed and the data structure updated.
To execute an irregular algorithm optimistically, the
implementation must identify active elements and handle conflicts
between activities. Active elements derive from Amorphous Data
Parallelism while conflicts depend on the computational
operators and the data structures. Therefore, we must:

1. Determine how to check for neighborhood violations, and
2. Introduce transactional semantics for all data structures by

using commit mechanisms and rollback operations.
Galois Implementation: Galois is an object-oriented optimistic

parallelization framework for irregular algorithms and therefore,
has built-in support for Optimistic Execution. These are
provided via the three main aspects of the framework: (1) a
simple yet powerful set of programming constructs that help
non-expert programmers express key properties of irregular
algorithms, (2) a library of concurrent data structures, and (3) a
runtime system that uses optimistic parallel execution.
Galois’ library provides the data structures and shared object
implementations. It is the responsibility of the library and
runtime system to ensure that set iterators retain sequential
semantics while being optimistically executed. Library classes
are also responsible for deciding which operations represent
access violations and which do not. This is introduced through
semantic commutativity [21]. The library also provides rollback
functionality, ensured by inverse method semantics, i.e. each
method that updates data has an inverse method that undoes its
action.
The runtime system is responsible for checking commutativity
constraints as well as enforcing rollback operations. An
arbitrator checks the method’s commutativity against all other
executing methods. If the method commutes, there is no race
condition and execution can proceed. Otherwise, the activity
must rollback.

Example: For Delaunay Triangulation, an optimistic
implementation would attempt to insert points concurrently using
some number of Processing Units (PUs). If a PU tries to access
data that is already locked by another unit, an access violation
exception is thrown and caught. Otherwise the result is allowed to
commit. The pseudocode for this implementation is depicted in
Figure 11.

Figure 11 – Pseudo-code of Optimistic implementation of
Delaunay Triangulation.

1 TriangleMesh mesh = //initialize mesh
2 Workpool wp =//initialize workpool
3 while(algorithmRunning) do
4 atomic {
5 work =workpool.getWork()
6 }
7
8 if(work == null){
9 do send termination to all PUs
10 if(all PUs terminated){
11 algorithmRunning = false;
12 }
13 else wait until more work or termination
14 }else {
15 try {// optimistic execution starts
16 if (work.isPoint()) {
17 Triangle tri;
18 tri = mesh.surroundingTriangles(work)
19 result = triangulate(tri);
20 }else it’s an invalid triangle
21 result = flip(work.getInvalid());
22
23 if(result produced more work)
24 atomic {
25 workpool.addWork(result.work);
26 }
27 } catch (violationException ve){
28 //do nothing
29 //graph is only updated on commit
30 }
31 }
32 endWhile

Related Patterns

• Amorphous Data Parallelism: Optimistic Execution focuses
parallel execution on independent active elements.

• In-Order Execution: If the algorithm enforces a strict
dependency chain, then the In-Order Execution pattern should
be used.

• Workpool: Rolled back work can easily be re-added to the
workpool until it can be safely executed.

Known uses: Optimistic parallelization techniques were
introduced in the 70s as a form of branch speculation [64, 16]. In
1985, the Time Warp mechanism for the synchronization of
discrete-event simulation in distributed systems was introduced
by Jefferson [26]. More recently, other speculative techniques
have been introduced, such as loop-based speculation [55, 22] and
speculative multithreading [61, 45]. The latter enables
optimistically created threads by tracking memory accesses made
by loop iterations and has been introduced to a significant number
of parallelization architectures [8, 51, 44]. Additionally, a wide
variety of optimistic parallel implementations of irregular
algorithms has been proposed by the parallel programming
community [65, 34, 7] .

4.4.3 In-Order Execution
Also Known As: Ordered execution

Problem: How to increase the amount of available parallelism in
algorithms with tight data dependency chains.

Design space: Execution Structure

Context: Some irregular algorithms have strict dependency chains
that presuppose some type of ordering of execution. This
strictness not only influences the result but also constrains
correctness. On Event-driven simulation [11], for example, since
events need to be globally ordered, using unconstrained
Optimistic Execution would lead to a significant waste of
parallelization opportunities due to frequent rollbacks. An
algorithm is said to have a restricted chain of dependency when
computations require the output of previous computations or
when there are explicit ordering constraints, such as alphabetical
or numerical order.

Forces

• Amount of constraints vs. benefit: If the dependency chain
is restricted to a small number of iterations, then the cost of
introducing In-Order Execution might not merit the benefit.

• Order of rollback: If a higher priority iteration rolls back due
to a conflict with a lower priority Iteration, the algorithm
would stop progressing and eventually deadlock.

• Size of data set: The bigger the data set, the more
opportunities for independent execution exist.

Solution: The solution is to ensure that speculative execution is
restricted to the order enforced by the dependency chain. Thus,
speculative activities should only commit results to the data
structure when all preceding activities have done so. The
precedence is given by the dependency chain and is algorithm-
specific.
To achieve the maximum amount of parallelism, activities must
always be executed speculatively as in Optimistic Execution.

However, they must always commit in the order they were meant
to be executed, giving a deterministic characteristic to the parallel
execution. This ensures that no higher priority iteration ever
needs to rollback because some lower priority iteration, with
whom a conflict is detected, has already committed.
To implement in-order committal we need to introduce a
scheduling mechanism to keep track of which iterations are
queued to be committed and what is their priority. Since iterations
aren’t allowed to commit if higher priority iterations exist in the
scheduler, we ensure that lower priority conflicting iterations
always abort and high priority iterations always commit, if valid.
Example: Kruskal’s MST is a typical in-order algorithm, as edges
need to be added to the MST from lower to higher weight. In this
algorithm, any two edges are independent if they don’t have any
node in common. Independent edges can be executed
concurrently if their weight is less than or equal to any other
edges waiting to be processed and if the addition of both edges to
the MST doesn’t create a cycle. However, the possibility of
creating a cycle is not explicitly handled. Instead, if a cycle is
created, the operation that generated the cycle is aborted, by
optimistic execution, and rolled back.
Implementation of Kruskal’s by In-Order Optimistic Execution is
shown in Figure 12.
 Another good example is provided by Lamport clocks [38]. The
definition of a causal order of events requires a global ordering.
However, this is only enforced for events that span multiple
processes. Events occurring on the same process are only required

Figure 12 – Pseudo-code of In-Order Kruskal MST

1 Graph graph = //initial graph;
2 Thread worker; //worker thread
3 InOrderScheduler scheduler;
4 Worklist worklist;
5 Worklist=//edges from graph ordered by weight
6 MST mst; //minimum spanning tree;
7
8 while(algorithmRunning) do
9 atomic {
10 work =workpool.getWork()
11 }
12 if(work == null){
13 do send termination to all PUs
14 if(all PUs terminated){
15 algorithmRunning = false;
16 }
17 else wait until more work or termination
18 }else {
19 try {// optimistic execution starts
20 Node n1 =work.getInNode();
21 Node n2 =work.getOutNode();
22 if(n1 and n2 arent connected in the MST)
23 result=mst.add(edge);
24
25 //Commit this Iteration if top priority
26 //Else commit highest priority element
27 scheduler.commitInOrder(result);
28
29 } catch (violationException ve){
30 //do nothing
31 //graph is only updated on commit
32 }
33 }
34 endWhile

to enforce local order and can occur concurrently with other local
order events on other processors.

Related Patterns

• Optimistic Execution: In-Order Execution is a specific case
of Optimistic Execution.

Known uses: Out-of-order execution is analogous to in-order
iterations, where speculative execution of processor instructions
reduces the time required in future instructions [24]. Speculative
parallelization Do-loops in X10 provide similar results via
hardware transactional memory [66]. Safe futures may also be
used to allow speculative ordered execution [50].

4.5 Mapping to Hardware Architecture
This section provides intuition on the design impact produced by
different hardware architecture configurations. We introduce two
patterns, Data Partitioning and Workpool Partitioning, that
concerns the mapping of data to the memory model, and a
Dynamic Scheduling Pattern, which concerns with the mapping
of execution to the number of processing units.

4.5.1 Data Partitioning
Problem: To effectively parallelize an algorithm across multiple
processing units the programmer must break data into small,
manageable blocks, i.e. partitions, promoting locality and
reducing synchronization costs.

Design space: Data Mapping

Context: In order to efficiently parallelize algorithms in
multi/many-core environments it becomes essential to separate as
much as possible the number of shared resources, while at the
same time taking advantage of multiple PUs and maximizing data
and task locality.
Partitioning therefore becomes a key factor for large, complex
algorithms with stringent performance requirements.

Forces

• Partition size vs. independence: Larger partitions decrease
the likelihood that neighborhoods overlap multiple
partitions, but this may reduce concurrency if all active
elements within a given partition are processed by the same
PU.

• Partition size: Smaller partitions and in greater number
than that of PUs allow for better distribution of work.

• Cost of dynamic partitioning: The overhead of constant
repartitioning might reduce the benefit.

• Underlying data structure: Partitioning should be handled
in an efficient way, avoiding computational costs as much
as possible.

• Partition Data: Each partition should ideally be comprised
of data elements that share common traits and have tighter
dependencies with data in the same partition than with
others.

• Data Structure Obliviousness: The user should be
unaware of the actual data structure being partitioned, i.e.
partitioning should have a similar effect independently of
the actual data structure.

Solution: A partitioned environment needs to reduce the cost of
accessing shared elements, thus reducing synchronization To
reduce the amount of concurrent access, the workpool should
differentiate work items according to their assigned partition, thus
avoiding having to decide which work elements go to which PU.
To achieve this, the programmer must:
1. Define the number of partitions as a function of the number

of processing units (𝑵 𝑷𝒂𝒓𝒕 = 𝒏𝑷𝑼,𝒏 ∈ ℤ+)
2. Determine the type of partitioning required by the algorithm:

Static or Dynamic
3. Choose a partitioning algorithm.
4. Handle Amorphous Data Parallelism.

4.1. Decide the granularity of synchronization: i.e., whether
locks are associated with data structure elements or
with entire partitions.

4.2. Decide how to handle neighborhoods that span
multiple partitions.

4.3. Determine the update strategy, i.e., to which partition
should newly created data structure elements be added.

Galois Implementation: One of the most important ideas behind
data partitioning in Galois is that the client code should not need
to change radically when instantiating data partitioning. To enable
dynamic load-balancing, data structures are over-decomposed so
that each PU has multiple partitions to work on and can steal
partitions from other PUs if it runs out of work.
Partitionable graphs implement the Partitionable interface. Nodes
and edges in partition graphs must implement the PartitionObject
interface, which allows the programmer to access information
about the partition to which the object belongs. Additionally,
partitioning a graph entails assigning a Partitioner to the graph
class. Galois currently supports Graph Bisection, where the graph
is traversed breadth-first from an arbitrary boundary node until
half the nodes have been traversed, and one based on Metis [28].
Example: In Delaunay Triangulation partitions can’t be statically
determined, as the mesh is generated dynamically. Therefore
dynamic methods are required to efficiently partition and
distribute data. The usual solution is to start with a single partition
and as the number of data elements increases, the data-set is
repartitioned and distributed to the PUs. As each partition is
assigned to a single PU, the graph can be seen in a more abstract
way as if dependencies between nodes (Figure 13-a) were in fact
dependencies between PUs (Figure 13-b).

(a) (b)
 Figure 13 – Partitioned Delaunay mesh

As regards Kruskal’s MST, since the goal is to produce a sub-
graph of a pre-existing graph, we can statically partition the input
graph per the PUs. Thus, the partitioning algorithm can have a
higher computational cost, providing optimal distribution of nodes
per PUs. However, we need to pay special attention to bordering
nodes and the possibility of cycles. When a border node is added
to the MST in a partition, we can only know if a cycle is created if
the partitions exchange MST information among themselves.
Related Patterns

• Geometric Decomposition: decomposes data structure based
on its geometric properties, for distribution purposes [46].

• Workpool Partitioning: The workpool can be partitioned so
as to mimic the partition of the data structure.

Known Uses: There are many algorithms available for graph
partitioning. Some studies of partitioning methods are well known
to the parallel programming community: Karypis and Kumar [28]
provide an analysis of current partitioning techniques for irregular
algorithms; Wider surveys of graph partitioning algorithms are
described by Fjallstrom [17] and Elsner [14].
The concept of supporting partitioning in languages and
frameworks is around since the Ada language [27]. Recent
approaches to high performance computing, such as High
Performance Fortran (HPF) [42], Threaded Building Blocks
(TBB) [56] or Chapel [12], also provide partitioning strategies.
HPF focuses on the partitioning of arrays to distributed memory
computers, while TBB only supports static partitioning with work
stealing. Chapel belongs to a group of Partitioned Global Address
Space (PGAS) languages which have a partitioned memory model
[48]. On these languages, a data structure is accessed as if it were
local though it is in fact distributed. Chapel supports traditional
data distributions as part of its class library and allows
programmers to implement application specific distributions if
needed.

4.5.2 Workpool Partitioning
Problem: How to minimize the cost of accessing the Workpool.

Design space: Data Mapping

Context: An efficient distribution of an algorithm is not
guaranteed simply by partitioning data structures. To achieve a
proper division of work per processing unit, programmers should
reduce access to non-partitioned data structures, which create
synchronization bottlenecks and reduce concurrency. On
workpool-based irregular parallel algorithms, this bottleneck
derives from synchronized accesses to the workpool. Its high cost
can severely degrade the performance of the parallel algorithm.

Forces
• Communication vs. Computation: If the workpool remains

centralized, the scheduler needs to be aware of which
partition the work is assigned. However, this increases
computational cost of scheduling procedures. On distributed
workpools, the scheduler has to keep track of multiple local
workpools, which is communication intensive.

• Work Distribution: Due to the dynamic characteristics of
Irregular Algorithms, the amount of work produced by
partitions might be unbalanced, thus requiring work-stealing
or work-sharing methods for efficient work distribution.

Solution: Not having to decide which work needs to be processed
by which partition reduces the amount of synchronization needed,
thus reducing the cost of accessing the shared workpool. The
workpool should be partitioned to reflect the partition of the data
structure, enhancing the locality of the algorithms and reducing
the need for synchronization.
The solution however is non-trivial as it depends on the specific
characteristics of the algorithm being implemented.
The overall solution is as follows:
1. Define the number of partitions as the exact number of

processing units.
2. Define how work elements are assigned to each processing

unit.
2.1. Define how work elements will be marked as

belonging to a PU.
2.2. Determine which partition gets each new work

element. When a PU adds work to the workpool,
partitioning ensures that the same PU will eventually
process the work it produced.

3. Determine how to move work elements to and from the PU.
3.1. Use an asynchronous fetch mechanism to get work

from the PUs and add it to the workpool. However,
this mechanism needs to prioritize PUs, reducing the
possibility of starvation and maximizing parallel work.

3.2. Use a synchronous mechanism for PUs to receive work
elements from the workpool. PUs should not get work
elements directly by accessing the workpool as this
introduces high synchronization costs and cause PUs to
waste resources waiting for work. Instead, work should
be assigned to the PUs preemptively (see Dynamic
Scheduling).

Variants: We can consider two main variant forms of workpool
partitioning (see Figure 14):

Partitioned Global workpool – The workpool remains
globally accessible although work elements are partition-aware,
i.e. each PU only receives work for the partitions it currently
holds. Having work elements marked with the partition they
belong to enables the workpool to be implemented as if it were
composed of n workpools, one for each partition. Thus, there is
little access contention and the cost of performing workpool
operations is reduced. This form of workpool is more effective
if there is a need for a centralized management resource, whose
role can be assumed by the workpool. This is the case of In-
Order Execution, as the global workpool can localize the
knowledge of the execution order, or work scheduling.

Processing
Units

(a) (b)

Figure 14 – Workpool partitioning

Partitioned Local workpool – The workpool itself is
partitioned and each PU maintains its own local workpool. This
implementation allows the PUs to increase data locality since
new work produced is placed on the local workpool. This
solution works better if work elements are added to the
workpool dynamically, as having local work items reduces both
the cost of updating the workpool and that of retrieving new
work elements.

Galois Implementation: In Galois, the assignment of work to PUs
is performed in a partition-sensitive manner. The workpool itself
remains global. The programmer must first instruct the runtime
system to recognize the different partitions. Contrary to normal
workpool elements, partitionable elements know which PU
currently holds the partition they belong to. Iteration Coalescing,
an optimization of the Galois framework [47] adds local
workpools to improve locality of references.

Example: On Delaunay Triangulation, if we consider that no new
element is added to the workpool, then using a simple shared
global workpool presents advantages because a measure of
locality is offered by the workpool partitioning. In addition, using
a global workpool allows the algorithm to concentrate its
computational resources on triangulating the mesh, instead of
coordinating the multiple workpools.
If we instead consider that every bad triangle produced when a
point is added to the mesh is inserted in the workpool as a new
work item, then using a local workpool provides locality
advantages. Triangles that needed to be re-triangulated would be
added to the workpool of the PU that originated the bad triangles.

Related Patterns

• Partitioning: the data structure must be partitioned.

• Dynamic Scheduling: scheduling can be used to
preemptively assign work elements to PUs.

Known uses: A similar approach to workpool partitioning is
proposed by Chandra et al [6]. Their dynamic partitioning strategy
named Dispatch builds processor-local workpools, which are then
used to reconstruct the global work distribution lists. A similar
approach was used by Bai et al [2] to developed a software
transactional memory executor that partitions transactions among
processors by grouping them based on their search keys. The
Chapel programming language [12] uses an asynchronous
partitioned global address space programming model that
provides virtual partitioning of data structures in memory spaces.
This is an analogous yet different approach to partitioning. In
Chapel, each processor node retrieves tasks from a task pool but
can also invoke work on other processor nodes using On clauses.
These force computations to occur in the processor node that
holds the object in memory. Processor nodes can also fetch data
from remote locations.

4.5.3 Dynamic Scheduling
Problem: How to dynamically assign work to processing units.

Design space: Task Mapping

Context: When considering parallel implementations of
algorithms, the programmer must always take care to create an
efficient mapping between the tasks (or work elements) to be
executed and the processing units that will eventually execute

them. Scheduling essentially entail predicting at runtime how
work elements should be assigned to PUs so that it can be done
preemptively, without PUs having to wait for new work elements
to process. This mapping, or scheduling, has concrete effects on
the algorithm’s performance, essentially aiming to optimize
concurrency, locality and load-balancing.
There are a multitude of scheduling techniques for static, semi-
static and dynamic scheduling [39, 60]. For irregular algorithms,
static and semi-static scheduling techniques fail to introduce valid
and efficient schedules that would allow the algorithm to fully
exploit of its potential parallelism, since dependencies are only
known at runtime [33].

Forces

• Assignment Overhead: If computations are too fine-grained,
the cost of scheduling might not justify the benefits.

• Scheduler overhead: There is a high computational overhead
on arbitrating conflicts for strict dependencies.

• Know the domain: There needs to be a tight understanding of
the neighborhood of the algorithm and how that neighborhood
is influenced by computations. If the neighborhood of an
active element remains the same throughout execution then
the programmer should use that fact to cluster sets of closely
dependent computations to be processed by a single PU. If the
neighborhood is dynamic, then the mechanism to assign
computations to PUs needs also be dynamic.

• Know the architecture: Knowing the underlying hardware
architecture, how many and what type of cores exist and how
memory is managed, allows us to understand how to best
maximize the number of parallel computations. As
computations are assigned to PUs dynamically, the number of
active PUs may vary throughout the execution.

• Know the dependencies: Computational dependencies
ultimately define the order of processing on each PU. It is
essential to understand how new work elements influence the
existing schedule and the locality of resources.

Solution:

To create a valid and ideal schedule configuration between
computations and PUs, the programmer must:
1. Define a way to predict how distinct work elements are

needed by each PU. This prediction is tuned by the
programmer for each specific algorithm according to its
characteristics and has essentially two forms:

1.1. There is a well-defined computational path and each
work element processed causes the PU to process work
elements that access neighboring nodes. This is the case
of algorithms like maxflow computations and sparse
matrix computations, where processing follows a fixed-
step sequential path, although that path is not known at
compile time. It is worth to mention that this is not the
same as In-Order Execution, as the order in which
neighborhood elements are processed might not matter.
With these characteristics, the schedule should try to
cluster sets of closely dependent computations to be
processed by the same PU.

1.2. There is no defined computational path and scheduling
can be random or it can follow the structure of data

partitioning, thus taking advantage of data locality. This
is best for non-deterministic algorithms like Delaunay
mesh generation and refinement.

2. Reduce the number of collisions between PUs by trying not
to simultaneously assign work elements to different
partitions if processing those work elements will cause the
PUs to access the same data. Recall that, by Optimistic
Execution, when a collision is raised the offending PU is
forced to abort and rollback, thus wasting resources.

3. Add workload balancing by defining mechanisms that will
allow the scheduler to override the assignment of work
elements to PUs based on execution schedule and allocate
work based on load balancing concerns. There are two main
reasons to allow this:
3.1. A PU might be starving but there are work elements

still left to process, although ideally those work
elements should be process by another PU.

3.2. A PU might have too much potential work queuing to
be processed, while other PUs have little to no work
available.

On implementing these scheduling mechanisms, the programmer
should take a special care to make them as light as possible. If
scheduling wastes resources then it might be best not to have
scheduling. Also, to ensure correctness, the schedule achieved
needs to be able to reduce to a sequential implementation, thus
ensuring that all PUs have a consistent view of the system state.
Galois Implementation: The runtime system has a scheduler that
is responsible for fetching work from the set iterators and creating
optimistic parallel iterations. The scheduler depends on three
scheduling functions to schedule computations to the available
PUs efficiently:

• A Clustering function groups closely inter-dependent work
items. Clusters may be of different sizes.

• A Labeling function maps clusters to PUs. Each cluster is
assigned to a single PU but a PU can have multiple clusters.
Labeling can be performed on demand, as each PU fetches
work from the Workpool.

• An Ordering function finds the sequential order in which each
cluster’s work items are within a PU.

Figure 15 presents the conceptual scheduling mechanics of the
Galois Framework.

A number of preset scheduling functions are provided by Galois
[35] but the programmer has the option to implement their own
scheduling functions in order to adapt Galois to the specifics of
the algorithm.
Example: Considering the Delaunay Triangulation algorithm, if
at a given step in the algorithm we have an initial mesh and a
given number of points that still need to be added to the mesh, a
scheduling on such conditions would:

1. Cluster the remaining points according to the data partition
where they will be inserted. This activity provides
clustering based on interdependencies, since neighborhoods
of points on the same partition have an added probability of
interfering with each other. (see Figure 16);

2. As clusters are built partition-wise, they are executed by the
PU that holds the data partition.

3. As can be seen in Figure 17, the sequential ordering of
work items within a cluster (a) can be performed by using a
dependency graph (b).

Related Patterns

• Partitioning: Partitioning might help cluster
computations.

Known uses: There are myriads of scheduling techniques and
algorithms for parallel processing. Programming languages such
as HPF [42] and ZPL [5] schedule computations along with data
structures to improve locality. X10 allows user defined scheduling
of computations to cores [66]. Gramps, a programming model for
graphic pipelines uses multi-level scheduling to minimize on-chip
cache support fort intermediate pipelining results [62]. Carbon
[37] is a purely hardware scheduler that allows task queuing and
scheduling, although it lacks customization of scheduling
strategies. The dynamic scheduling of parallel computations in
multiprocessor systems with identical parallel processors is
tackled by Liu [41]. In its approach, dynamism in scheduling is a
function of the number of available processors can vary in time.

5. RELATED WORK
The tradition of using patterns as tools for documentation and
reusability was made popular by the Gang of Four design
patterns. However, their book provides solutions based on object-

Ordering

Clustering

Labeling Clusters + Processing Units

Dependency-based ordering of
elements on a cluster, for each
Processing unit

Data + Computations

Figure 15 – Scheduling in the Galois Framework

Figure 16 – Partition-wise work clustering.

(a) (b)
 Figure 17 – Inter-cluster dependency graph

oriented concepts such as inheritance and polymorphism and,
although adaptable, each pattern presents precise classes,
operations and hierarchies that the programmer should follow to
achieve the intended solution [19]. Our patterns are different in
that they discuss problems in terms of abstract principles and
leave the task of deciding the actual implementation to the
programmer, i.e. the Pattern Language presents advice and
considerations about how a programmer should introduce the
solution and why.
We identify three main pattern languages and catalogues focusing
on parallel programming. Schmidt et al [58] present a set of
patterns for concurrency and networking that does not focus on
semantics and domain-dependent concepts and does in fact
represent a pattern language. However, as they acknowledge, each
pattern is self-contained and independently described. For this
reason, we do not consider this as a fully-fledged pattern
language, but rather a pattern catalogue with some inter-pattern
dependencies. Their patterns represent specific parallelization
constructs, while we focus on parallelization methods. It should
also be noted that Schmidt et al use the JAWS web server as a
basis for their patterns, similarly to Galois in our pattern language.
The pattern language proposed here has close relations to some of
the pattern languages for parallel processing proposed by the
software pattern community – such is the case of pattern
repository of the Hillside group [29] and the pattern language of
Mattson et al [46]. However, our view is that most pattern
languages and catalogs mostly represent solutions for regular
problems and handle irregularity as special cases, in which case
the solution needs to conform to a different set of characteristics.
Our pattern language contrasts with this view and is specifically
focused on irregular problems, which are considerably more
complex. In this paper, we instead classify the solution to regular
problems as a subset of the solution of irregular problems. There
are nonetheless some pattern languages designed for specific
irregular algorithms, as is the case of Dig et al pattern language
for N-Body methods [13].
Aside from patterns, there are other approaches that describe
higher level strategies for irregular algorithms: Fonlupt et al [18]
describes a set of load balancing redistribution strategies,
illustrating several algorithm formulations. Biswas et al [3]
describe computing strategies in relation to specific hardware
architecture. Rünger and Schwind [57] describe parallelization
strategies for algorithms that contain both regular and irregular
characteristics. Ansejo et al [1] present general use optimization
strategies. These strategies are not as high-level as patterns but
present pattern mining opportunities for future work.

6. CONCLUSIONS
This paper describes a pattern language for the parallelization of
irregular algorithms. This class of algorithms is mainly used in the
scientific community but not much work has been to identify and
document abstractions that simplify the parallelization of such
complex problems.
The patterns documented here result from a reverse engineering
effort of the Galois System [34]. Other frameworks and languages
have considerably different methodologies for handling
irregularity. In future, we intend to explore these alternatives as
well, and relate them to the patterns described here to enrich and
mature the language and enhance its potential applicability to
cover a broader set of techniques and methods targeting parallel

irregular algorithms.

ACKNOWLEDGMENTS
We would like to thank Robert Hanmer, whose comments have
been incredibly helpful and insightful. His shepherding helped us
significantly improve the quality of our paper. We would also like
to thank our program committee member Hironori Washizaki.
This work was partially supported by project PRIA – Parallel
Refinements for Irregular Applications (UTAustin/CA/0056/
2008) funded by Portuguese FCT/MCTES and FEDER.

REFERENCES
[1] Asenjo, R., Corbera, F., Gutiérrez, E., et al., Optimization

techniques for irregular and pointer-based programs. in,
(2004), 2-13.

[2] Bai, T., Shen, X., Zhang, C., et al. A key-based adaptive
transactional memory executor International Parallel &
Distributed Processing Symposium, IPDPS 2007, Long
Beach, CA, 2007, 1-8.

[3] Biswas, R., Oliker, L. and Shan, H. Parallel computing
strategies for irregular algorithms. Annual Review of
Scalable Computing.

[4] Buschmann, F., Meunier, R., Rohnert, H., et al. A system of
patterns: Pattern-oriented software architecture, Wiley New
York, 1996.

[5] Chamberlain, B., Choi, S., Lewis, E., et al. ZPL: A machine
independent programming language for parallel computers.
IEEE T. Software Eng., 26 (3). 197.

[6] Chandra, S., Parashar, M. and Ray, J. Dynamic structured
partitioning for parallel scientific applications with
pointwise varying workloads Proc. 20th IEEE/ACM
International Parallel and Distributed Processing
Symposium, Rhodes Island, Greece, 2006.

[7] Chrisochoides, N., Lee, C. and Lowekamp, B. Mesh
generation and optimistic computation on the grid. in
Performance analysis and grid computing, Kluwer
Academic Publishers, 2004, 231-250.

[8] Codrescu, L., Wills, D. and Meindl, J. Architecture of the
Atlas chip-multiprocessor: Dynamically parallelizing
irregular applications. IEEE T. Comput., 50 (1). 67-82.

[9] Cormen, T.H., Leiserson, C.E. and Rivest, R.L.
Introduction to algorithms. MIT Press, Cambridge,Mass. ;
London, 1990.

[10] Dally, W. A VLSI architecture for concurrent data
structures. Kluwer Academic Publishers, 1987.

[11] Das, S., Adaptive protocols for parallel discrete event
simulation. in, (1996), IEEE Computer Society Washington,
DC, USA, 186-193.

[12] Diaconescu, R. and Zima, H. An approach to data
distributions in Chapel. Int. J. High. Perform. C, 21 (3).
313.

[13] N-Body Pattern Language,
http://parlab.eecs.berkeley.edu/wiki/patterns/n-
body_methods, February, 2010

[14] Elsner, U. Graph partitioning: a survey Tech. Rep. 97-27,
Technische Universität Chemnitz, Chemnitz, Germany,
1997.

[15] Even, S. Graph algorithms. WH Freeman & Co. New York,
NY, USA, 1979.

[16] Fisher, J.A. Very Long Instruction Word architectures and

http://parlab.eecs.berkeley.edu/wiki/patterns/n-body_methods
http://parlab.eecs.berkeley.edu/wiki/patterns/n-body_methods

the ELI-512 Proc. 10th annual international symposium on
Computer architecture, ACM, Stockholm, Sweden, 1983,
140-150.

[17] Fjallstrom, P. Algorithms for graph partitioning: A survey.
Computer and Information Science, 3 (10).

[18] Fonlupt, C., Marquet, P. and Dekeyser, J. Data-parallel load
balancing strategies. Parallel Computing, 24 (11). 1665-
1684.

[19] Gamma, E., Helm, R., Johnson, R., et al. Design Patterns:
Elements of Reusable Object-Oriented.

[20] Gelernter, D. Generative communication in Linda. ACM T.
Progr. Lang. Sys., 7 (1). 80-112.

[21] Gendron, B. and Crainic, T. Parallel branch-and-bound
algorithms: survey and synthesis. Operations Research, 42
(6). 1042-1066.

[22] Gupta, M. and Nim, R. Techniques for speculative run-time
parallelization of loops Proc. ACM/IEEE conference on
Supercomputing, IEEE Computer Society, San Jose, CA,
1998, 1-12.

[23] Gutierrez, E., Asenjo, R., Plata, O., et al. Automatic
parallelization of irregular applications. Parallel Comp., 26
(13-14). 1709-1738.

[24] Hennessy, J., Patterson, D., Goldberg, D., et al. Computer
architecture: a quantitative approach. Morgan Kaufmann,
2003.

[25] Herlihy, M. and Moss, J., Transactional memory:
Architectural support for lock-free data structures. in,
(1993), ACM, 300.

[26] Jefferson, D. Virtual time. ACM T. Progr. Lang. Sys., 7 (3).
425.

[27] Jha, R., Kamrad, J. and Cornhill, D. Ada program
partitioning language: A notation for distributing Ada
programs. IEEE T. Software Eng., 15 (3). 271-280.

[28] Karypis, G. and Kumar, V. A Fast and High Quality
Multilevel Scheme for Partitioning Irregular Graphs. SIAM
J. Sci. Comput., 20 (1). 359-392.

[29] Keutzer, K. and Mattson, T. Our Pattern Language (OPL):
A Design Pattern Language for Engineering (Parallel)
Software ParaPLoP, 2009.

[30] Knopp, J. and Reich, M., A Workpool Model for Parallel
Computing. in First International Workshop on High Level
Programming Models and Supportive Environments
(HIPS), (Honolulu, HI, USA, 1996), IEEE Computer Press.

[31] Koffman, E. and Wolfgang, P. Objects, abstraction, data
structures and design using C++.

[32] Krishnan, V. and Torrellas, J. A chip-multiprocessor
architecture with speculative multithreading. Computers,
IEEE Transactions on, 48 (9). 866-880.

[33] Kulkarni, M. The Galois System: Optimistic Parallelization
of Irregular Programs, Cornell University, 2008.

[34] Kulkarni, M., Burtscher, M., Pingali, K., et al., Lonestar: A
suite of parallel irregular programs. in IEEE International
Symposium on Performance Analysis of Systems and
Software, (2009), 65-76.

[35] Kulkarni, M., Carribault, P., Pingali, K., et al., Scheduling
strategies for optimistic parallel execution of irregular
programs. in, (2008), ACM, 217-228.

[36] Kulkarni, M., Pingali, K., Walter, B., et al. Optimistic
parallelism requires abstractions. Commun. ACM, 52 (9).
89-97.

[37] Kumar, S., Hughes, C.J. and Nguyen, A. Carbon:
architectural support for fine-grained parallelism on chip

multiprocessors Proc. 34th International Symposium on
Computer architecture, ACM, San Diego, California, USA,
2007, 162-173.

[38] Lamport, L. Time, clocks, and the ordering of events in a
distributed system. in Commun. ACM, ACM, 1978, 558-
565.

[39] Leung, J. Handbook of scheduling: algorithms, models, and
performance analysis. Chapman & Hall, 2004.

[40] Lim, J. and Johnson, R. The heart of object-oriented
concurrent programming. ACM SIGPLAN Notices, 24 (4).
167.

[41] Liu, Z. Dynamic scheduling of parallel computations.
Theor. Comput. Sci., 246 (1-2). 239-252.

[42] Loveman, D.B. High Performance Fortran. IEEE Parallel
Distrib. Technol., 1 (1). 25-42.

[43] Lublinerman, R., Chaudhuri, S. and Cerny, P. Parallel
programming with object assemblies Proc. 24th ACM
SIGPLAN Conference on Object Oriented programming
systems languages and applications, ACM, Orlando,
Florida, USA, 2009, 61-80.

[44] Marcuello, P. and González, A., Control and data
dependence speculation in multithreaded processors. in
Proc. Workshop on Multithreaded Execution, Architecture
and Compilation, (1998), 98-102.

[45] Marcuello, P. and González, A. A Quantitative Assessment
of Thread-Level Speculation Techniques Proc.14th
International Symposium on Parallel and Distributed
Processing, IEEE Computer Society, 2000, 595.

[46] Mattson, T., Sanders, B. and Massingill, B. Patterns for
parallel programming. Addison-Wesley Professional, 2004.

[47] Méndez-Lojo, M., Nguyen, D., Prountzos, D., et al.
Structure-driven optimizations for amorphous data-parallel
programs Proc. 15th ACM SIGPLAN symposium on
Principles and practice of parallel programming, ACM,
Bangalore, India, 2010, 3-14.

[48] Model, S. Programming in the Partitioned Global Address
Space Model. Tutorial at Supercomputing.

[49] Monteiro, P. and Monteiro, M. A Pattern Language for
Parallelizing Irregular Algorithms 2nd Annual Conference
on Parallel Programming Patterns (ParaPLoP), Carefree,
Arizona, 2010.

[50] Navabi, A., Zhang, X. and Jagannathan, S. Quasi-static
scheduling for safe futures Proc. 13th ACM SIGPLAN
Symposium on Principles and practice of parallel
programming, ACM, Salt Lake City, UT, USA, 2008, 23-
32.

[51] Oplinger, J., Heine, D., Liao, S., et al. Software and
hardware for exploiting speculative parallelism with a
multiprocessor. Computer Systems Laboratory Tech. Rep.
CSL-TR-97-715, Stanford University.

[52] Pancake, C. and Bergmark, D. Do parallel languages
respond to the needs of scientific programmers? IEEE
Computer, 23 (12). 13-23.

[53] Pingali, K., Kulkarni, M., Nguyen, D., et al. Amorphous
Data-parallelism in Irregular Algorithms, The University of
Texas at Austin, Department of Computer Sciences, Austin,
TX, USA, 2009.

[54] Pingali, K., Nguyen, D., Kulkarni, M., et al. The tao of
parallelism in algorithms. SIGPLAN Not., 46 (6). 12-25.

[55] Rauchwerger, L. and Padua, D., The LRPD test: Speculative
run-time parallelization of loops with privatization and
reduction parallelization. in Proc. Programming Language

Design and Implementation, (1995), ACM New York, NY,
USA, 218-232.

[56] Reinders, J. Intel Threaded Building Blocks, O’Reilly Press,
2007.

[57] Rünger, G. and Schwind, M., Parallelization Strategies for
Mixed Regular-Irregular Applications on Multicore-
Systems. in Proc. 8th International Symposium on
Advanced Parallel Processing Technologies, (Rapperswil,
Switzerland, 2009), Springer-Verlag, 375-388.

[58] Schmidt, D., Stal, M., Rohnert, H., et al. Pattern-Oriented
Software Architecture: Patterns for Concurrent and
Networked Objects, Volume 2. Wiley, 2000.

[59] Shewchuk, J. Delaunay refinement algorithms for triangular
mesh generation. Comp. Geom.-Theor. Appl., 22 (1-3). 21-
74.

[60] Sinnen, O. Task scheduling for parallel systems. Wiley-
Blackwell, 2007.

[61] Steffan, J., Colohan, C., Zhai, A., et al. A scalable approach
to thread-level speculation. ACM Comp. Ar., 28 (2). 1-12.

[62] Sugerman, J., Fatahalian, K., Boulos, S., et al. GRAMPS: A
programming model for graphics pipelines. ACM T.
Graphic, 28 (1). 4.

[63] Sui, X., Nguyen, D., Burtscher, M., et al. Parallel graph
partitioning on multicore architectures. Languages and
Compilers for Parallel Computing. 246-260.

[64] Tomasulo, R. An efficient algorithm for exploiting multiple
arithmetic units. IBM J. Res. Dev., 11 (1). 25-33.

[65] Verma, C. Multithreaded Delaunay Triangulation. College
of William and Mary, Williamsburg, VA.

[66] von Praun, C., Ceze, L. and Cascaval, C. Implicit
parallelism with ordered transactions Proc. ACM SIGPLAN
symposium on Principles and practice of parallel
programming, ACM, San Jose, California, USA, 2007, 79-
89.

[67] Wirth, N. Algorithms + Data Structures=programs.
Prentice Hall Englewood Cliffs, New Jersey, 1985.

	ABSTRACT
	Keywords
	1. INTRODUCTION
	2. IRREGULAR ALGORITHMS
	2.1 Delaunay Triangulation
	2.1.1 Irregularity

	2.2 Kruskal’s Minimum Spanning Tree
	2.2.1 Irregularity

	3. THE GALOIS FRAMEWORK
	3.1 Programming model and data structure library
	3.2 Baseline parallel execution model

	4. THE PATTERN LANGUAGE
	4.1 Parallelization steps
	4.2 Pattern-specific Terminology
	4.3 Finding Parallelism Opportunities
	4.3.1 Amorphous Data Parallelism
	Problem: How to exploit concurrency in the presence of unpredictable data dependencies.
	Design space: Parallelism Structure
	Context: Traditional data parallelism [29] exploits the decomposition of data structures to attain concurrent behavior, dividing the data structure into independent sets and distributing them among processing units in a way that allows for the paralle...
	On irregular algorithms, the nature of data dependencies is unpredictable as well as dynamic, because algorithms operate over dynamic data structures, such as graphs and trees. Thus, the amount of parallelism that can be achieved varies according to h...
	Forces
	Solution: Exploiting data parallelism entails understanding how concurrent behavior will influence the structure of the data and how to ensure independence of computations in the overall parallelization strategy. In Amorphous Data Parallelism, availab...
	Galois Implementation: In the Galois implementation of this pattern the primary considerations are:
	Example: Using the example of Delaunay Triangulation, the underlying problem in this algorithm can be parallelized in an amorphous data-parallel manner by considering each new point as the active element. As each new point is added to the mesh, the se...
	Related Patterns
	Known Uses: The Amorphous Data-Parallel structure of irregular algorithms was first described by Kulkarni [33]. More recently, the concept of Amorphous Data Parallelism was used by Chorus [43], a high-level parallel programming model for irregular app...

	4.3.2 Workpool
	Also Known As: Worklist, Workset
	Problem: How to take advantage of parallelism when activities have runtime-dependent effects on data and active elements are created dynamically.
	Design space: Program Structure
	Forces
	Related Patterns

	4.4 Exploiting Parallelism
	4.4.1 Abstract Data Structure
	Problem: As the choice of data structure influences the complexity of algorithm design and execution, choosing an appropriate data structure is essential.
	Design space: Data Structure
	Context: When implementing an algorithm, much effort lies in deciding on the best data structure to represent data and what characteristics make it suitable for exploiting parallelism. Although data structure design is a well-researched field, we tend...
	Forces
	Related Patterns

	4.4.2 Optimistic Execution
	Also Known As: Data-Driven Speculation, Speculative Execution
	Problem: How to parallelize the execution of an amorphous data-parallel algorithm.
	Design space: Execution Structure
	Context: Parallelizing irregular algorithms is a difficult task because these are characterized by chains of inter-dependent computations. In these cases, static analysis techniques – such as points-to and shape analysis – and semi-static approaches –...
	Forces
	Related Patterns
	Known uses: Optimistic parallelization techniques were introduced in the 70s as a form of branch speculation [64, 16]. In 1985, the Time Warp mechanism for the synchronization of discrete-event simulation in distributed systems was introduced by Jeffe...

	4.4.3 In-Order Execution
	Also Known As: Ordered execution
	Problem: How to increase the amount of available parallelism in algorithms with tight data dependency chains.
	Design space: Execution Structure
	Forces
	Related Patterns
	Known uses: Out-of-order execution is analogous to in-order iterations, where speculative execution of processor instructions reduces the time required in future instructions [24]. Speculative parallelization Do-loops in X10 provide similar results vi...

	4.5 Mapping to Hardware Architecture
	4.5.1 Data Partitioning
	Design space: Data Mapping
	Forces
	Galois Implementation: One of the most important ideas behind data partitioning in Galois is that the client code should not need to change radically when instantiating data partitioning. To enable dynamic load-balancing, data structures are over-deco...
	Related Patterns

	4.5.2 Workpool Partitioning
	Design space: Data Mapping
	Forces
	 Communication vs. Computation: If the workpool remains centralized, the scheduler needs to be aware of which partition the work is assigned. However, this increases computational cost of scheduling procedures. On distributed workpools, the scheduler has �
	 Work Distribution: Due to the dynamic characteristics of Irregular Algorithms, the amount of work produced by partitions might be unbalanced, thus requiring work-stealing or work-sharing methods for efficient work distribution.
	Variants: We can consider two main variant forms of workpool partitioning (see Figure 14):
	Galois Implementation: In Galois, the assignment of work to PUs is performed in a partition-sensitive manner. The workpool itself remains global. The programmer must first instruct the runtime system to recognize the different partitions. Contrary to ...
	Related Patterns

	4.5.3 Dynamic Scheduling
	Design space: Task Mapping
	Forces
	Related Patterns

	5. RELATED WORK
	6. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

