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ABSTRACT 
Outside of the high-performance computing domain, many 
applications are irregular in the sense that opportunities to exploit 
parallelism change throughout the computation, due to the use of 
complex, pointer-based data structures such as lists and graphs. 
However, the parallel programming community has relatively 
little experience in parallelizing irregular applications, and we 
presently lack a deep understanding of the structure of parallelism 
and locality in the algorithms that underlie these applications. In 
this context, irregular algorithms pose a challenging problem to 
current parallelization methods and techniques. 
In recent years, the Galois project has proposed an approach for 
parallelizing irregular algorithms and applications that is based on 
a small set of simple abstractions. In this paper, we describe the 
Galois approach by means of a pattern language for parallel 
programming, thereby highlighting the key features of this 
approach, and elucidating more generally the concurrency 
patterns in irregular algorithms. 
Categories and Subject Descriptors 
D.1.3 [Programming Techniques] Concurrent Programming –
Parallel Programming D.3.3 [Programming Languages] 
Language Constructs and Features – Patterns and Frameworks 

General Terms 
Algorithms, Design 

Keywords  
Pattern Language, Irregular Algorithms, Parallel Programming, 
Reverse Engineering, Object-Oriented Frameworks 

1. INTRODUCTION 
Parallel programming has been used for a long time in specialized 
application areas such as high-performance computing (HPC) and 
databases. Over the years, we have acquired a good understanding 

of the patterns of parallelism and locality in the underlying 
algorithms of these problem domains, which led to the creation of 
programming notations, and compiler and runtime technology for 
supporting the parallel execution of these applications. 
The advent of multicore processors makes it feasible to execute 
applications in parallel. However, most applications outside of 
HPC and databases are irregular because they use complex, 
pointer-based data structures such as lists and graphs, whose 
patterns of computation are not statically determinable. In 
contrast, HPC and database applications have statically 
determinable patterns of computation as they use data structures 
such as dense arrays and relations. HPC applications like stencil 
computations and FFTs are amenable to forms of parallelism 
independent of runtime values, thus it is possible for a compiler or 
programmer to expose and schedule the parallelism before 
execution. However, parallelism in irregular applications cannot 
be exposed by compile-time techniques such as dependency 
analysis. 
Dependencies between computations in irregular applications are 
a function of runtime entities, such as the structure of input graphs 
and the values on nodes and edges, so most of the work of 
parallelizing these applications must be performed during 
execution. Unfortunately, we still lack a thorough understanding 
of the patterns of parallelism and locality in irregular algorithms, 
which hampers the design of programming notations, compilers 
and runtime systems for supporting the parallel execution of these 
applications. 
Recently, the Galois project has made some advances in this key 
area [33] by identifying the type of parallelism that best takes 
advantage of the dynamic structure of irregular algorithms. The 
Galois research shows that this generalized form of 
data-parallelism called Amorphous Data Parallelism (ADP) is 
ubiquitous in irregular applications. 
This paper extends our previous work [49] by describing the most 
important aspects of the Galois approach using the language of 
parallel programming patterns. Nevertheless, the pattern language 
is independent of the details of the Galois framework and is not 
restricted to this system in any way. Patterns represent tangible 
solutions to problems in a well-defined context within a specific 
domain and provide support for wide reuse of well proven 
concepts and techniques, independent from methodology, 
language, paradigm and architecture [4].We aim to disseminate 
this knowledge to both expert and non-expert programmers 
through patterns, thus easing the adoption of these ideas in other 
systems. The patterns from this pattern language are meant to be 
used together, in view of providing a solution for wider and more 
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complex problems than those tackled by a single pattern or a set 
of unrelated patterns. They comprise a true pattern language in 
that they provide a complete solution for a complex problem – the 
parallelization of Irregular Algorithms in this case. 
The remainder of this paper is structured as follows. Section 2 
provides an overview of Irregular algorithms and describes two 
examples in detail, which are used in subsequent sections. 
Section 3 provides a short overview of the Galois Framework. 
The Pattern Language is documented in section 4. Section 5 
discusses related work and section 6 concludes the paper. 

2. IRREGULAR ALGORITHMS 
The domain of multicore programming uses a plethora of 
techniques, methods and languages to achieve efficient parallel 
implementations of algorithms and applications, like pthreads, 
OpenMP, MPI, among others. However, writing parallel code is 
not a trivial task and it is hard to hide the complexities of 
synchronization, data races, memory consistency, distribution, 
etc. Parallelizing compilers that use points-to and shape analysis 
to parallelize sequential code are especially apt for creating the 
needed level of abstraction from parallelism concerns. 
Nonetheless, these more than often fail to uncover the true 
potential parallelism in algorithms where data-dependencies are 
only known at runtime and thus no efficient schedule can be 
foreseen. The class of algorithms that presents such irregular 
dependencies is termed Irregular Algorithms [33, 36]. 
In the majority of irregular algorithms, data is present in the form 
of graphs, trees or lists with a high degree of dependency between 
the nodes. Thus, computations performed on a node have a high 
risk of interfering with computation on other nodes. As each 
computation occurs, the set of dependencies between nodes tends 
to change accordingly. Therefore, scheduling strategies cannot be 
uncovered at compile-time, requiring iterative reevaluation of 
dependencies and rescheduling of operations.  
Irregular problems arise often in the scientific domain as most 
simulation algorithms betray irregularity. Examples of such 
algorithms include sparse matrix computations, computational 
fluid dynamics, image processing, molecular dynamics, climate 
modeling and optimization problems [23]. Implementing this 
class of algorithms on distributed-memory machines requires 
frequent fine-grain communications, to encompass changes in 
overlapping data-sets, which results in poor performance. On the 
other side of the spectrum, implementations of irregular 
algorithms on shared-memory machines alleviate these problems, 
but in turn require heavy cache coherence and synchronization 
protocols to enforce a consistent view of memory. 
This implementation complexity cannot be efficiently handled by 
traditional approaches to parallelization, which do not account for 
the unpredictable run-time behavior of irregular algorithms. 
Therefore, efficient parallel implementations of irregular 
algorithms remain a challenging problem. 
Next, two use-cases of widely known irregular algorithms are 
presented, to illustrate some of the challenges commonly 
associated with parallelizing this class of algorithms. The first use 
case presents Delaunay Triangulation [59], an algorithm to create 
Delaunay triangulations from a set of points, and the second is 
Kruskal’s Minimum Spanning Tree. These irregular algorithms 
and many others are available for a more detailed study in the 
Lonestar Benchmark Suit [34]. 

2.1 Delaunay Triangulation 
Delaunay Triangulation, also referred to as Delaunay Mesh 
Generation,  is an irregular algorithm for generating a mesh of 
triangles from a given set of points [59]. When a new point is 
added to the mesh, its surrounding triangle is split into three new 
triangles, with the new point as the central vertex (see Fig 1, a-c). 
The new triangles must be valid according to the Delaunay 
property, which states that no point can exist inside the 
circumference that intersects the vertex points of a triangle (see 
Figure 1-d). When this property is violated, the common edge is 
flipped to produce a valid triangulation (Figure 1, d-f).  

2.1.1 Irregularity 
As points are randomly added to the mesh, its resulting structure 
cannot be statically predicted. Moreover, parallel addition of 
distinct points with the same surrounding triangle is impossible 
without some sort of concurrency control and ordering. Thus, 
concurrency control excludes parallel addition of new points to a 
triangle, if it is already being processed. However, parallel 
addition of points to non-adjacent triangles is allowed.  
The random addition of points to the mesh prevents us from 
predicting how many triangles are ripe for processing in parallel 
at each step of the algorithm and thus traditional data parallelism 
is rendered ineffective. 
 

 

2.2 Kruskal’s Minimum Spanning Tree 
Kruskal’s MST is a well-known algorithm for calculating the 
minimum weight spanning-tree of a connected weighted 
undirected graph. This entails finding, at each step of the 
algorithm, the edge with the minimum weight and adding it to the 
MST. However, no cycles are allowed and so the algorithm must 
keep track of the connectedness of its sub-graphs. When a new 
edge is added to the MST, it checks if the MST edged deriving 
from both its nodes are connected. If so, the edge is discarded 

Figure 1 – Execution of Delaunay’s Triangulation algorithm 



instead of being added to the MST, as it would introduce a cycle. 
This verification is usually performed through a disjoint-set data 
structure with Union-Find operations. 

2.2.1 Irregularity 
In contrast to Delaunay Triangulation, this algorithm presents an 
restrictive processing order, i.e. elements must be processed from 
the edges with the minimum weight to the edges with the 
maximum weight. This restricts the number of parallel 
computations that might occur at each step. 
Edges can be added in parallel to the MST if: 

• They have the same weight and that weight is the current 
minimum. 

• If for some small n-value, an edge has weight less than or equal 
to minimum+n, and adding the edge will not lead to the creation 
of a cycle by a minimum weighted edge. 

Thus, parallel addition of minimum weighted edges (or near to 
minimum) is allowed if they don’t belong to the same sub-graph. 
Provided the addition is made in disjoint sub-graphs, edges can be 
added in parallel. 

3. THE GALOIS FRAMEWORK 
Galois is a framework for parallelization of irregular algorithms, 
from which the concepts expressed by our pattern language were 
derived, through a process of analysis and reverse engineering. 
The effort needed to create efficient parallel versions of this class 
of algorithms is not easily managed by non-expert scientific 
programmers, which are more accustomed to view problems in a 
sequential manner [52]. Thus, in the Galois approach [54], the 
problem of exposing and exploiting Amorphous data Parallelism 
is addressed through a small number of simple abstractions based 
on optimistic (or speculative) parallelization. 

3.1 Programming model and data structure 
library 

Galois1 is based on a high-level programming pattern that was 
abstracted from a study of large number of irregular algorithms, 
namely Delaunay’s mesh algorithms [59], single-source shortest-
path computations and maxflow computations [9].  
There are three main components in Galois: (1) a simple yet 
powerful set of programming constructs that help non-expert 
programmers express key properties of irregular algorithms, (2) a 
library of concurrent data structures, and (3) a runtime system that 
uses optimistic parallel execution. The programming model is 
inherently sequential: in the current implementation, it is 
sequential Java extended with two Galois set iterators that 
provide implicit parallelism. These iterators are similar to set 
iterators in conventional languages like Java and C++ and iterate 
over unordered and ordered sets of work-items. They also allow 
for adding new elements to the set at runtime. The runtime system 
exploits the implicit parallelism in Galois iterators by executing 
iterations speculatively in parallel, i.e. executing in parallel 
assuming there is no concurrency in data access and rolling back 
execution if a conflict is detected. Conflict detection and recovery 
is handled by the library data structures and the runtime system. 

                                                                 
1 http://iss.ices.utexas.edu/?p=projects/galois 

This approach enables application programmers to write irregular 
programs without having to reason explicitly about concurrency. 
Figure 2 illustrates an abstraction of a typical irregular algorithm. 
At each point during its execution, operators are applied to certain 
nodes or edges in the graph (such nodes are called active 
elements). Each application of an operator is termed an activity, 
and may require reading or writing of other nodes and edges in 
the graph (i.e. the neighborhood of that activity). In Figure 2, the 
red colored nodes represent active nodes, and shaded regions 
represent the neighborhoods of those active nodes. In some 
algorithms, activities may modify the graph structure of the 
neighborhood by adding or removing graph elements. In general, 
there are many active nodes in a graph. 
We distinguish two important categories of algorithms: unordered 
algorithms allow the implementation to pick any active node for 
execution (e.g., preflow-push maxflow and Delaunay mesh 
refinement) and can be programmed using a Galois unordered set 
iterator. In contrast, ordered algorithms (e.g., Prim's or Kruskal's 
algorithms for computing minimal spanning trees) impose a 
problem-dependent order for the processing of active nodes and 
can be programmed using a Galois ordered set iterator. 

 
Figure 2 - Data-centric view of algorithms: red nodes are 
active and wait to be processed. Processing a node will 
potentially access and modify other nodes within the shaded 
neighborhoods. Parallel processing of active nodes will lead to 
conflicts when the neighborhoods of active nodes intersect. 

3.2 Baseline parallel execution model 
The Galois API of concurrent data structures covers concurrent 
data structures such as graphs, priority queues and sets, whose 
functionality is exposed through a conventional data structure 
API. For example, the graph API includes methods for returning 
the neighbors of a given node, the outgoing and incoming edges 
of a node, adding/deleting nodes and edges, etc. All concurrency 
control is implemented within the classes of this library. Figure 2 
shows how opportunities for exploiting parallelism arise in graph 
algorithms: if there are many active elements at some point in the 
computation, each one is a site where a processor can perform 
computation, subject to neighborhood constraints. In the baseline 
parallel execution model, the graph is stored in shared-memory, 
and active nodes are processed by some number of threads. Like 
thread-level speculation [32] and transactional memory [25], the 
Galois system uses speculative parallel execution to handle the 
problem of dependencies that can only be elucidated at runtime. A 
free thread picks an arbitrary active node and speculatively 
applies the operator to that node, making calls to the graph class 
API to perform operations on the graph as needed. The 
neighborhood of an activity can be visualized as a blue ink-blot 
that begins at the active node and spreads incrementally whenever 
a graph API call is made that touches new nodes or edges in the 



graph. To enforce neighborhood constraints, each graph element 
has an associated exclusive abstract lock, which is held until the 
activity terminates. If a lock cannot be acquired because it is 
already owned by another thread, a conflict is reported to the 
runtime system, which rolls back one of the conflicting activities. 
To enable rollback, each graph API method that modifies the 
graph makes a copy of the data before modification. Like abstract 
lock manipulation, rollbacks are a service implemented by the 
library and runtime system. The activity terminates when the 
application of the operator is complete and all acquired locks are 
released. 
Intuitively, the use of abstract locks ensures that graph API 
operations from concurrently executing iterations commute with 
each other, ensuring that the iterations appear to execute in some 
serial order as required by the semantics of the Galois set iterator. 
There are more sophisticated techniques for checking 
commutativity, but these are more complex to implement [36]. 
Commuting graph API operations that touch the same locations in 
the concrete representation must be synchronized. The 
programming model enables the application programmer to turn 
off abstract locking and conflict detection for the cases it is safe to 
do so. This can improve performance but may introduce race 
conditions if used incorrectly. 

4. THE PATTERN LANGUAGE 
Patterns allow the reuse of solutions and the widespread adoption 
of domain knowledge. A pattern language is a set of inter-
dependent patterns that provide a complete solution to a complex 
problem [4]. The patterns presented here are meant to be used 
together to a solution for the parallelization of Irregular 
Algorithms. However, as with other patterns, each pattern might 
be used independently if the context for its usage coincides with 
the context of the pattern. 
Due to the plethora of new and emergent parallel programming 
methods and techniques, the patterns presented here are more 
along the lines of conceptual patterns and don’t follow the typical 
structure of design patterns, which are more concrete.  We present 
patterns that provide design directions that steer the programmer 
to a well-parallelized Irregular algorithm, independent of the 
parallel programming method of his choice.  
The concept underlying our pattern language was built on a 
hierarchical design sequence, depicted in Figure 3, which captures 
the reasoning steps a programmer  takes to parallelize an 
algorithm, whether it is irregular or not.  

4.1 Parallelization steps 
In the algorithm selection stage, the programmer must carefully 
consider the existing algorithmic solutions for the problem at 
hand. Considerations towards the algorithms suitability for 
parallelization require the programmer to be aware that:  

• Some algorithms are inherently sequential or are harder to 
parallelize. 

• The parallel programming technology used might influence 
algorithm choice. 

However, the choice of an algorithm might not be a final decision. 
The design of an algorithm is in essence an iterative cycle of 
design decisions. Thus, latter stages of the parallelization might 
influence the programmer to choose a different algorithm. 

Having a clearly defined problem and the solution represented by 
the algorithm, the programmer should concern himself with 
Finding Parallelism Opportunities, i.e. analyzing the problem 
domain and the solution to identify which elements will be able to 
be parallelized and how they interact with the other elements in 
the domain. It is at this stage that we should take into account the 
irregularity of the algorithm. 
Exploiting Parallelism entails implementing the algorithm and 
data structures for efficient parallel execution. The algorithm must 
be expressed as a program in a way that does not obscure the 
inherent parallelism that was found in the previous step. In 
addition, the programmer must consider the best data structure to 
supporting parallel execution. 
As no efficient parallelization is completely devoid of architecture 
considerations, the programmer must now consider the best 
Mapping from the abstract algorithm definition to the actual 
hardware architecture. 
The final step consists on Optimizing parallel execution to 
achieve the best possible algorithmic performance.  
 

 

 Figure 3 – Algorithm parallelization design sequence. Each 
stage might invalidate the solution, forcing the developer to 
reconsider previous stages. 

Our pattern language follows this algorithm design sequence and 
presents a solution for the parallelization of workpool-based 
irregular algorithms, using optimistic techniques [22]. 
Figure 4 presents an overview of the dependencies and 
relationships among patterns. The pattern language is comprised 
of six design spaces that represent pattern hierarchy and structure: 

1. Parallelism Structure: the patterns in this design space 
intend to help identify what can be parallelized, i.e. what is 
the type of parallelism. 

2. Data Structure: the base data model which is used as the 
target of parallel operations. 

3. Execution Structure: directs readers on how to drive 
parallel execution to take advantage of latent parallelism.  

4. Program Structure: Parallel execution is an addition to the 
tradition of “program = structure of algorithm + data 
structure” [67] and thus this design space exists as a 



composition of the Parallelism, Data and Execution 
structures.  

5. Task Mapping: considers the scheduling of activities to the 
processing elements, such as processors or threads. 

6. Data Mapping: considers data distribution to maximize 
non-concurrent access to data. 

4.2 Pattern-specific Terminology 
To ensure that the pattern language can be used for a wide range 
of irregular algorithms, we next introduce an abstract terminology 
for talking about irregular algorithms. This is intended to free the 
reader from algorithm and implementation-specific jargon and 
granting the reader the ability to view specific patterns 
individually, without the need to scrutinize the entire language. 
The terminology is as follows: 
Active element – An active element is a well-identified, 
describable unit of data that can be individualized from the 

generality. Data elements are algorithm-specific and are 
recognized as an often repeated name whose meaning is 
associated with the algorithmic metaphor. For instance, while 
iterating, an active element is the next element to be returned. 
Neighborhood – Is the set of elements that might be read or 
written while an active element is being computed. For instance, 
considering matrix multiplication, the neighborhood of a result 
cell is the row of the first matrix and column of the second that 
match the cell’s index. 
Operator – An operator represents the operation performed on a 
piece of data. Algorithm operators can have either read or write 
semantics: Reader operators do not influence the data dependency 
set; Writer operators can be further classified as Morph operators, 
which add or remove elements from the neighborhood, or as 
Local Computation Operators, which may update the value of an 
element not changing the structure of the neighborhood [53]. 
Available parallelism – Is a measure of the amount of parallelism 
available represented by the maximum number of independent 

Figure 4 – Pattern Language Overview 



parallel computations that can be effectively performed at a given 
moment. 
Processing Unit (PU) – It represents either a processor core or 
thread, depending on the technology being used. Since our 
patterns consider both multi-core and multi-threaded 
environments this allows us to abstract from the concrete 
processing technology used. 

4.3 Finding Parallelism Opportunities 
In this section we describe the two main patterns: Amorphous 
Data Parallelism and Workpool. The intent of these patterns is to 
clarify the structure of parallelism of irregular algorithms and the 
overall program structure for exploiting said parallelism. 

4.3.1 Amorphous Data Parallelism 

Problem: How to exploit concurrency in the presence of 
unpredictable data dependencies. 

Design space: Parallelism Structure 

Context: Traditional data parallelism [29] exploits the 
decomposition of data structures to attain concurrent behavior, 
dividing the data structure into independent sets and distributing 
them among processing units in a way that allows for the parallel 
application of a stream of operations.  This is only possible 
because “regular” Data-Parallelism is derived from parallel 
computation of iterative algorithms operating over static data 
structures, such as dense matrices, using index-based references. 

On irregular algorithms, the nature of data dependencies is 
unpredictable as well as dynamic, because algorithms operate 
over dynamic data structures, such as graphs and trees. Thus, the 
amount of parallelism that can be achieved varies according to 
how the algorithm changes its data dependencies, hence the term 
“amorphous”. 

If the programmer is faced with an algorithm whose data structure 
is dynamic and the execution of an activity on an active element 
requires access to other elements, then he is in the presence of an 
Irregular algorithm, whose parallelization requires amorphous 
data-parallelism. This is more true if the set of elements accessed 
varies at runtime (i.e. if dependencies vary). 

Forces 

• Overheads of Parallelization: The benefits of parallel 
execution may be compromised by the overheads of parallel 
execution such as synchronization costs. 

• Synchronization Costs: Coarse-grained locking has less 
overhead than fine-grained locking but may also exploit less 
parallelism. 

• Sequential to Parallel Traceability: Clear mapping between 
the sequential and parallel version of an algorithm. 

Solution: Exploiting data parallelism entails understanding how 
concurrent behavior will influence the structure of the data and 
how to ensure independence of computations in the overall 
parallelization strategy. In Amorphous Data Parallelism, available 
opportunities for concurrency-free parallelism cannot be easily 
predicted. Thus, to extract the maximum amount of parallelism 
the programmer needs to: 

1. Define the active elements that comprise the algorithm. 
2. Express computations in terms of the data structure 

elements. 
3. Identify, at each step, which active elements are 

independent and which need mutual exclusion mechanisms. 
4. Apply the computations iteratively to each active element. 

Furthermore, an amorphous data-parallel decomposition should 
ensure that new opportunities for independent parallel execution 
are driven by data-dependent computations.  

Galois Implementation: In the Galois implementation of this 
pattern the primary considerations are: 

• The main loops of the algorithm must be refactored to use 
Galois constructs, such as the foreach loop;  

• Locking is implicitly handled by the Galois Runtime. 
• Galois tries to ensure a transparent traceability from 

sequential to parallel.  

Example: Using the example of Delaunay Triangulation, the 
underlying problem in this algorithm can be parallelized in an 
amorphous data-parallel manner by considering each new point 
as the active element. As each new point is added to the mesh, the 
set of data-dependencies changes and so does the number of 
independently executing active elements. Active elements are 
independent if their neighborhoods do not overlap. The 
neighborhood in this case is the surrounding triangle, which can 
only be modified by a single active element. 

Related Patterns 

• Data Decomposition: Amorphous Data Parallelism is a 
form of Data-parallelism [29] or Data Decomposition [46]. 

Known Uses: The Amorphous Data-Parallel structure of irregular 
algorithms was first described by Kulkarni [33]. More recently, 
the concept of Amorphous Data Parallelism was used by Chorus 
[43], a high-level parallel programming model for irregular 
applications. We know of no other classification of this type of 
parallelism. 

4.3.2 Workpool 

Also Known As: Worklist, Workset 

Problem: How to take advantage of parallelism when activities 
have runtime-dependent effects on data and active elements are 
created dynamically.  

Design space: Program Structure 

Context: When the set of dependencies varies at runtime in a way 
that is not statically predictable, using traditional data-driven 
approaches, such as data-parallelism and divide-and-conquer 
strategies, will not allow the programmer to extract all available 
parallelism. Considering Amorphous Data Parallelism, we must 
enforce a computational strategy that allows us to exploit both 
data and computationally dynamic dependencies. 



Forces 

• Shared vs. Distributed Workpool: shared workpools, which 
are globally accessible by multiple PUs, are easier to develop 
but might become a bottleneck from communication and 
concurrency overheads from access to the shared pool. 
Distributed workpools are decentralized, trading the 
bottleneck concern for a higher development cost. 

• Centralized vs. Decentralized Workpool: A centralized 
workpool needs to ensure mutual exclusion, which might 
hinder performance. Decentralized workpools are faster but 
may require work-stealing methods for efficient work 
distribution. 

• Differentiated work: on some algorithms, it might be useful 
to have more than one type of work element. 

Solution: The solution is to use a workpool, a data structure that 
holds units of work or tasks. A workpool is meant to be iterated 
by PUs in a synchronized way. PUs then retrieve tasks and 
process them concurrently with other PUs. Thus, parallelism and 
concurrency concerns are moved from the choice of what work 
remains (which is dynamic) to the actual execution of activities. 
 

 
Using a Workpool model entails doing the following: 

1. Define work elements, consistent with the data element 
determined in Amorphous Data Parallelism. 

2. Determine workpool ordering (unordered, FIFO, priority…) 
3. Structure atomic mechanisms around workpool accesses. 
4. Define a termination algorithm. 

Processing a task may create new work units that are dynamically 
added to the workpool. Policies such as pseudo-LIFO, FIFO, 
random, chunked, etc. may be used to assign work dynamically to 
PU’s to promote locality and reduce overheads in accessing the 
workpool. 
While rather similar to a sequential iteration over a data structure, 
this parallel model requires a termination algorithm to ensure that 
the algorithm only terminates when every processing unit is idle 
and no more work is available on the workpool. 
The general solution of this pattern is clarified with the code 
described in Figure 6. A loop iteratively retrieves work until the 
workpool is empty and every processing unit has finished 
computing the work it previously acquired.  
Galois Implementation: The Galois framework is directed at 
workpool implementations of irregular algorithms, since this is 

the ideal way to explore available Amorphous Data Parallelism in 
this type of algorithms. Galois work elements are termed 
Iterations. The framework provides set iterators that act as a 
data-driven workpool, allowing the algorithm to concurrently 
iterate over a set of Iterations. Execution begins when a master 
thread starts sequential execution of the code. When it enters the 
Iterator construct, the thread invokes worker threads to perform 
the Iterations concurrently. The assignment of active elements to 
worker threads is the responsibility a run-time scheduler.  
The workpool form of an amorphous data-parallel Delaunay 
Triangulation is illustrated in Figure 7. 
 

 
 

 

Figure 5 – Workpool model 

1 Workpool wp =//initialize workpool 
2 while(algorithmRunning) do 
3   atomic { 
4     work =workpool.getWork() 
5   } 
6  
7   if(work == null){ 
8     do send termination to all PUs 
9     if(all PUs terminated){ 
10       algorithmRunning = false; 
11     } 
12     else wait for more work or termination 
13   }else { 
14   result = processCurrentWork(work); 
15  
16   if(result produced more work)     
17     atomic { 
18       workpool.addWork(result.work); 
19     } 
20   } 
21 endWhile 
 

Figure 6 – Pseudo-code of a general workpool 
implementation 

Figure 7 – Pseudo-code of Workpool for an amorphous 
data-parallel Delaunay Triangulation 

1 TriangleMesh mesh = //initialize mesh 
2 Workpool wp =//initialize workpool 
3 while(algorithmRunning) do 
4   atomic { 
5     work =workpool.getWork() 
6   } 
7  
8   if(work == null){ 
9     do send termination to all PUs 
10     if(all PUs terminated){ 
11        algorithmRunning = false; 
12     } 
13     else wait for more work or termination 
14   }else { 
15      
16     if (work.isPoint()) { 
17        Triangle tri; 
18        tri = mesh.surroundingTriangles(work) 
19        result = triangulate(tri);  
20     }else its an invalid triangle 
21        result = flip(work.getInvalid()); 
22  
23     if(result produced more work) 
24        atomic { 
25           workpool.addWork(result.work); 
26        } 
27   } 
28 endWhile 

 



Related Patterns 

• Amorphous Data Parallelism: active elements from 
amorphous data parallelism represent work elements in the 
workpool. 

• Workpool Partitioning: If working on a distributed 
environment, the workpool can be partitioned. 

Known Uses: The term workpool was probably first used in 1989 
by Lim and Johnson [40] although they refer that a similar 
concept had already been described by Dally [10]. A widely 
known use of the Workpool pattern is the Linda [20] model, in 
which processes cooperate through a shared global data space 
named tuple space. Since data elements are added to the tuple 
space, allowing other processes to access and execute it, the 
model functions like a Workpool. In [21], the authors describe a 
parallel Branch and Bound algorithm based on a pool of nodes. A 
workpool model for parallel programming was also devised in 
[30], to work independently in distributed or shared memory in a 
Declarative Imperative Parallel Programming model (DIPP). 

4.4 Exploiting Parallelism 
This section presents patterns that illustrate how to exploit latent 
parallelism in irregular algorithms more fully. This entails 
considering how to structure both data and execution. To solve 
the former, we present the Abstract Data Structure pattern, while 
the latter is addressed by patterns Optimistic Execution and In-
Order Execution. 

4.4.1 Abstract Data Structure 

Problem: As the choice of data structure influences the 
complexity of algorithm design and execution, choosing an 
appropriate data structure is essential.  

Design space: Data Structure 

Context: When implementing an algorithm, much effort lies in 
deciding on the best data structure to represent data and what 
characteristics make it suitable for exploiting parallelism. 
Although data structure design is a well-researched field, we tend 
to view them as black boxes around which the algorithm is 
shaped. The choice of topology and structural representation of 
data affects algorithm design and therefore, prior to 
implementation, all aspects of data accesses and the structure of 
data should be subject to careful consideration and planning.  
On designing a parallel algorithm, using an Abstract Data 
Structure requires the programmer to build mechanisms to 
encapsulate not only the usual behavior of the data structure but 
also concurrency and synchronization. If the programmer knows 
the set of operations defined by the Abstract Data Structure are 
safe, with regards to concurrency and synchronization, he can 
safely use it. 
For Irregular algorithms, this is simplified as the set of operations 
available are directly related to the operators defined in the 
Terminology section (4.2). 

Forces 

• Obliviousness vs. full knowledge: from a programmer’s 
point of view, using an Abstract Data Structure removes the 
complexity of understanding how data is accessed and 

stored. This in turn increases the ease with which the 
programmer conceptualizes the solution. However, in a 
parallel environment, knowledge about the concrete data 
structure used is important for performance. This is ever 
more true if using data structures from libraries. Also, 
algorithm-specific characteristics might influence data 
structure choice 

• Iteration: When iterating over the Data Structure, the 
traversal approach is of utmost importance as different 
algorithms have different optimal iteration strategies. 

• Reusability: Using an Abstract Data Structure allows 
programmers to change the data structure without changing 
the algorithm.  

Solution: In order for a programmer to use an Abstract Data 
Structure safely and effectively in a concurrent environment he is 
required to: 
1. Define the data type that is to be stored in the data structure. 

Depending on the algorithm, this can be a simple element 
like a string or a more complex element like a graph. 

2. Define which operations need to be available to support the 
execution of the algorithm. In the object-oriented paradigm, 
this is equivalent to defining and interface which is 
implemented by the concrete data structure. 

2.1. Define the operations required by the data element, such 
as support for accessing the stored value, element 
positioning and indexing values (see Figure 8, the 
DataElement Interface). Apart from these setters and 
getters, which provide data access and reference, the 
element should also provide support for accessing the 
neighbors of said element. Recall that a neighbor is any 
data element that might be read or written when the 
current data element is active (see section  4.2).  

2.2. Define the operations that the data structure should 
provide. These are methods intended for initialization, 

Figure 8 – Structure of an Abstract Data Structure 
for Irregular Algorithms 

1 Interface DataElement{ 
2     getValue():Value 
3     setValue(Value) 
4     getPosition():Position 
5     setPosition(Position) 
6     getIndex():int 
7     setIndex(index) 
8     setNeighbor(DataElement) 
9     setNeighbor(DataElement,index) 
10     setNeighbors(Collection) 
11     getNeighbor():DataElement 
12     getNeighbor(index):DataElement 
13     getNeighbors():Collection 
14     removeNeighbor(Neighbor):DataElement 
15     removeNeighbor(index):DataElement 
16     isNeighbor(Neighbor):boolean 
17 } 
18  
19 Interface DataStructure{ 
20     getElementAt(position):DataElement 
21     setElementAt(DataElement,position) 
22     hasElement(DataElement):Boolean 
23     removeElementAt(position):DataElement 
24     removeElement(DataElement):Boolean 
25     iterate(Strategy):Iterator 
26 } 
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Figure 9 – Realization of abstract data structures 

search and traversal of the Data Structure. (see Figure 8, 
the DataStructure Interface). 

3. Identify the best concrete data structure with which to realize 
the Abstract Data Structure. This step requires the 
programmer to clearly understand the tradeoffs of each 
concrete data structure and how the algorithm influences 
these tradeoffs. As defined in the Terminology section (4.2), 
we classify algorithm operators as Morphs, Local 
Computations and Readers. The type of operator used by the 
algorithm determines if and how the structure of data is 
modified and how each data element is accessed. Additional 
insight on the tradeoffs of different concrete data structures 
is summarized in Table 1. 

4. Design and build the concrete data structure, implementing 
the Abstract Data Structure methods. 

Variants: For irregular algorithms, data structures are essentially 
organized around two types, according to topological 
characteristics and how they are instantiated: 
• Pointer-based Data Structures have the general form of a 

Graph, where edges represent pointers to other nodes. 
Graphs can be refined into Trees, special graphs without 
cycles and with a root node, and Grids, where every node 
connects to four other nodes. Grids can also form cubes (in 
three-dimensional space) or hypercubes (above 3D space). 
From the viewpoint of irregular algorithms, we see that 
there is a tendency for graph-based implementations with 
dynamic restructuring of nodes and edges at runtime. This 
makes irregular graph algorithms ideal subjects for 
Amorphous Data Parallelism.  

• Array-based Data Structures have the general form of a 
Matrix. If a Matrix has 1xN index space, it represents a 
vector. Matrices with additional dimensions can be used to 
represent cubes (NxMxT) and hypercubes (NxMx… xT). 
For irregular algorithms, due to their dynamic nature, 
matrices are usually not recommended. However, there are 
exceptions which might merit the usage of matrices, as they 
are easier to implement. Linear and Partial Differential 
Equation solvers for instance, are important HPC research 
algorithms which take the form of matrices and are 
nonetheless Irregular (with local computation operators) 
[54]. Matrix representations can also be used for algorithms 
with index-based references and static neighborhoods. 

The above two variant data structure types can be used to 
implement one another – graphs are usually implemented using 
adjacency lists or matrices; sparse-matrices minimize the number 
of elements in memory if implemented as graphs. Figure 9 sums 
up this equivalence. 

 

Galois Implementation: The Galois framework is graph-oriented 
and as such, supplies a few graph-based structures designed to 
support the aforementioned graph characteristics. These data 
structures are implemented around a Graph interface, providing 
support for directed and undirected graphs, as well as complex, 
simple and indexed edges. These can be further refined through 
polymorphic extension. 

 
For instance, for performance reasons, the Galois team 
implemented Compressed Row Format variations of the 
framework’s graphs, thus storing graphs as matrices. This is 
shown to, in some cases, considerably improve algorithm 
performance, even on a dynamic Irregular algorithm as Metis[63]. 
Example: We can implement Kruskal’s MST as a graph 
algorithm and, traditionally, that is the best way to proceed. 
However, with a small adjustment, it can be implemented with a 
matrix-like data structure. This is possible because the graph is 
undirected, which introduces sparsity in the matrix, allowing 
Kruskal’s to be mapped to a triangular matrix without 
compromising efficiency (see Figure 10). In this case, we have a 
Graph with a Kruskal MST (a) and its matrix representation (b). 
As shown in Figure 10, the matrix representation can be made in 
terms of a triangular matrix and all remaining values can be zero. 
This yields a fast and simple structure for Kruskal’s MST. 

 

 
The same can be applied to the Delaunay triangulation algorithm, 
since it also presents and high degree of sparsity. However, 
because the nature of the mesh is dynamic, representing the mesh 
as a matrix would instead be deterimental to the algorithm’s 
performance. 

Table 1 – Characteristics of data structures 

 Matrix Graph 

Traversal 
Ability to index elements 
with constant time 
random access; 

Iteration strategies vary; 
Nodes can only traverse 
to neighbor nodes; 

Concurrency 
Control 

Locked entirely or in 
blocks of elements; 

Locks on individual 
nodes; 

Partitioning Straight forward in most 
cases; 

Always requires 
traversal 

Memory 
Allocation 

Memory allocated as 
contiguous space; 
Good locality of 
references; 

Per-element random 
memory allocation; 
Bad locality of 
references; 

Growth 

Predefined size; 
Additional elements 
require re-allocation and 
copy. 

New elements are 
added/removed by 
adding/removing 
pointers; 
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Figure 10 – Graph to Matrix mapping 



Related Patterns 

• Amorphous Data parallelism: This pattern is used to provide 
an underlying representation to the data required by the 
Amorphous Data Parallelism pattern. 

Known uses: There are many and varied implementations of 
graph and matrix based data structures[15]. The earliest 
discussion on adjacency matrixes goes back to the 60’s [31], 
where matrices where used to represent electrical circuits. 

4.4.2 Optimistic Execution 

Also Known As: Data-Driven Speculation, Speculative Execution 

Problem: How to parallelize the execution of an amorphous 
data-parallel algorithm. 

Design space: Execution Structure 

Context: Parallelizing irregular algorithms is a difficult task 
because these are characterized by chains of inter-dependent 
computations. In these cases, static analysis techniques – such as 
points-to and shape analysis – and semi-static approaches – based 
on the inspector-executor model – cannot fully uncover potential 
parallelism, while coarse-grained locking implementations restrict 
the amount of available parallelism.  

Forces 

• Implementation Cost vs. Benefit: The cost of handling 
Optimistic Execution might not merit the benefit.  

• Available Parallelism vs. Number of Conflicts: The 
maximum number of simultaneous independent computations 
should be used to define an optimal grain size. 

• Grain of Parallelism vs. Cost of Locking: Executing 
multiple fine-grained computations might be computationally 
worse than executing a single coarser one. 

• Grain of Parallelism vs. Cost of Miss-speculation: The cost 
of mis-speculation increases as the grain coarsens, as does the 
amount of wasted work due to rollbacks. 

Solution: To allow for efficient implementations of irregular 
algorithms, parallelization using speculative or optimistic 
parallelization techniques should be adopted [33].  
Speculative execution of Amorphous Data Parallelism implies 
executing the algorithm without full knowledge of how data 
dependencies change at runtime. Therefore, execution assumes 
that there is no concurrent access to data elements. The system 
must continually check for access violations and take appropriate 
corrective actions. When no violations are detected, the results 
can be committed and the data structure updated. 
To execute an irregular algorithm optimistically, the 
implementation must identify active elements and handle conflicts 
between activities.  Active elements derive from Amorphous Data 
Parallelism while conflicts depend on the computational 
operators and the data structures. Therefore, we must: 

1. Determine how to check for neighborhood violations, and 
2. Introduce transactional semantics for all data structures by 

using commit mechanisms and rollback operations. 
Galois Implementation: Galois is an object-oriented optimistic 

parallelization framework for irregular algorithms and therefore, 
has built-in support for Optimistic Execution. These are 
provided via the three main aspects of the framework: (1) a 
simple yet powerful set of programming constructs that help 
non-expert programmers express key properties of irregular 
algorithms, (2) a library of concurrent data structures, and (3) a 
runtime system that uses optimistic parallel execution.  
Galois’ library provides the data structures and shared object 
implementations. It is the responsibility of the library and 
runtime system to ensure that set iterators retain sequential 
semantics while being optimistically executed. Library classes 
are also responsible for deciding which operations represent 
access violations and which do not. This is introduced through 
semantic commutativity [21]. The library also provides rollback 
functionality, ensured by inverse method semantics, i.e. each 
method that updates data has an inverse method that undoes its 
action. 
The runtime system is responsible for checking commutativity 
constraints as well as enforcing rollback operations. An 
arbitrator checks the method’s commutativity against all other 
executing methods. If the method commutes, there is no race 
condition and execution can proceed. Otherwise, the activity 
must rollback.  

Example: For Delaunay Triangulation, an optimistic 
implementation would attempt to insert points concurrently using 
some number of Processing Units (PUs). If a PU tries to access 
data that is already locked by another unit, an access violation 
exception is thrown and caught. Otherwise the result is allowed to 
commit. The pseudocode for this implementation is depicted in 
Figure 11. 
 

 
 

Figure 11 – Pseudo-code of Optimistic implementation of  
Delaunay Triangulation. 

1 TriangleMesh mesh = //initialize mesh 
2 Workpool wp =//initialize workpool 
3 while(algorithmRunning) do 
4   atomic { 
5     work =workpool.getWork() 
6   } 
7  
8   if(work == null){ 
9     do send termination to all PUs 
10     if(all PUs terminated){ 
11       algorithmRunning = false; 
12     } 
13     else wait until more work or termination 
14   }else { 
15     try {// optimistic execution starts 
16     if (work.isPoint()) { 
17       Triangle tri; 
18       tri = mesh.surroundingTriangles(work) 
19       result = triangulate(tri);  
20     }else it’s an invalid triangle 
21       result = flip(work.getInvalid()); 
22  
23     if(result produced more work) 
24       atomic { 
25         workpool.addWork(result.work); 
26       } 
27 } catch (violationException ve){ 
28    //do nothing 
29    //graph is only updated on commit 
30      } 
31   } 
32 endWhile 



Related Patterns 

• Amorphous Data Parallelism: Optimistic Execution focuses 
parallel execution on independent active elements. 

• In-Order Execution: If the algorithm enforces a strict 
dependency chain, then the In-Order Execution pattern should 
be used. 

• Workpool: Rolled back work can easily be re-added to the 
workpool until it can be safely executed. 

Known uses: Optimistic parallelization techniques were 
introduced in the 70s as a form of branch speculation [64, 16]. In 
1985, the Time Warp mechanism for the synchronization of 
discrete-event simulation in distributed systems was introduced 
by Jefferson [26]. More recently, other speculative techniques 
have been introduced, such as loop-based speculation [55, 22] and 
speculative multithreading [61, 45]. The latter enables 
optimistically created threads by tracking memory accesses made 
by loop iterations and has been introduced to a significant number 
of parallelization architectures [8, 51, 44]. Additionally, a wide 
variety of optimistic parallel implementations of irregular 
algorithms has been proposed by the parallel programming 
community [65, 34, 7] . 

4.4.3 In-Order Execution 
Also Known As: Ordered execution 

Problem: How to increase the amount of available parallelism in 
algorithms with tight data dependency chains. 

Design space: Execution Structure 

Context: Some irregular algorithms have strict dependency chains 
that presuppose some type of ordering of execution. This 
strictness not only influences the result but also constrains 
correctness. On Event-driven simulation [11], for example, since 
events need to be globally ordered, using unconstrained 
Optimistic Execution would lead to a significant waste of 
parallelization opportunities due to frequent rollbacks. An 
algorithm is said to have a restricted chain of dependency when 
computations require the output of previous computations or 
when there are explicit ordering constraints, such as alphabetical 
or numerical order. 

Forces 

• Amount of constraints vs. benefit: If the dependency chain 
is restricted to a small number of iterations, then the cost of 
introducing In-Order Execution might not merit the benefit. 

• Order of rollback: If a higher priority iteration rolls back due 
to a conflict with a lower priority Iteration, the algorithm 
would stop progressing and eventually deadlock. 

• Size of data set: The bigger the data set, the more 
opportunities for independent execution exist. 

Solution: The solution is to ensure that speculative execution is 
restricted to the order enforced by the dependency chain. Thus, 
speculative activities should only commit results to the data 
structure when all preceding activities have done so. The 
precedence is given by the dependency chain and is algorithm-
specific. 
To achieve the maximum amount of parallelism, activities must 
always be executed speculatively as in Optimistic Execution. 

However, they must always commit in the order they were meant 
to be executed, giving a deterministic characteristic to the parallel 
execution. This ensures that no higher priority iteration ever 
needs to rollback because some lower priority iteration, with 
whom a conflict is detected, has already committed. 
To implement in-order committal we need to introduce a 
scheduling mechanism to keep track of which iterations are 
queued to be committed and what is their priority. Since iterations 
aren’t allowed to commit if higher priority iterations exist in the 
scheduler, we ensure that lower priority conflicting iterations 
always abort and high priority iterations always commit, if valid. 
Example:  Kruskal’s MST is a typical in-order algorithm, as edges 
need to be added to the MST from lower to higher weight. In this 
algorithm, any two edges are independent if they don’t have any 
node in common. Independent edges can be executed 
concurrently if their weight is less than or equal to any other 
edges waiting to be processed and if the addition of both edges to 
the MST doesn’t create a cycle. However, the possibility of 
creating a cycle is not explicitly handled. Instead, if a cycle is 
created, the operation that generated the cycle is aborted, by 
optimistic execution, and rolled back.  
Implementation of Kruskal’s by In-Order Optimistic Execution is 
shown in Figure 12. 
 Another good example is provided by Lamport clocks [38]. The 
definition of a causal order of events requires a global ordering. 
However, this is only enforced for events that span multiple 
processes. Events occurring on the same process are only required 

Figure 12 – Pseudo-code of In-Order Kruskal MST 

1 Graph graph = //initial graph; 
2 Thread worker;  //worker thread 
3 InOrderScheduler scheduler; 
4 Worklist worklist; 
5 Worklist=//edges from graph ordered by weight 
6 MST mst; //minimum spanning tree; 
7  
8 while(algorithmRunning) do 
9   atomic { 
10     work =workpool.getWork() 
11   } 
12   if(work == null){ 
13     do send termination to all PUs 
14     if(all PUs terminated){ 
15       algorithmRunning = false; 
16     } 
17     else wait until more work or termination 
18   }else { 
19     try {// optimistic execution starts 
20       Node n1 =work.getInNode(); 
21       Node n2 =work.getOutNode(); 
22       if(n1 and n2 arent connected in the MST) 
23         result=mst.add(edge);  
24  
25       //Commit this Iteration if top priority 
26       //Else commit highest priority element 
27       scheduler.commitInOrder(result); 
28  
29     } catch (violationException ve){ 
30     //do nothing 
31     //graph is only updated on commit 
32      } 
33   } 
34 endWhile 

 



to enforce local order and can occur concurrently with other local 
order events on other processors. 

Related Patterns 

• Optimistic Execution: In-Order Execution is a specific case 
of Optimistic Execution.  

Known uses: Out-of-order execution is analogous to in-order 
iterations, where speculative execution of processor instructions 
reduces the time required in future instructions [24]. Speculative 
parallelization Do-loops in X10 provide similar results via 
hardware transactional memory [66]. Safe futures may also be 
used to allow speculative ordered execution [50]. 

4.5 Mapping to Hardware Architecture 
This section provides intuition on the design impact produced by 
different hardware architecture configurations. We introduce two 
patterns, Data Partitioning and Workpool Partitioning, that 
concerns the mapping of data to the memory model, and a 
Dynamic Scheduling Pattern, which concerns with the mapping 
of execution to the number of processing units. 

4.5.1 Data Partitioning 
Problem: To effectively parallelize an algorithm across multiple 
processing units the programmer must break data into small, 
manageable blocks, i.e. partitions, promoting locality and 
reducing synchronization costs. 

Design space: Data Mapping 

Context: In order to efficiently parallelize algorithms in 
multi/many-core environments it becomes essential to separate as 
much as possible the number of shared resources, while at the 
same time taking advantage of multiple PUs and maximizing data 
and task locality. 
Partitioning therefore becomes a key factor for large, complex 
algorithms with stringent performance requirements. 

Forces 

• Partition size vs. independence: Larger partitions decrease 
the likelihood that neighborhoods overlap multiple 
partitions, but this may reduce concurrency if all active 
elements within a given partition are processed by the same 
PU. 

• Partition size: Smaller partitions and in greater number 
than that of PUs allow for better distribution of work. 

• Cost of dynamic partitioning: The overhead of constant 
repartitioning might reduce the benefit. 

• Underlying data structure: Partitioning should be handled 
in an efficient way, avoiding computational costs as much 
as possible. 

• Partition Data: Each partition should ideally be comprised 
of data elements that share common traits and have tighter 
dependencies with data in the same partition than with 
others. 

• Data Structure Obliviousness: The user should be 
unaware of the actual data structure being partitioned, i.e. 
partitioning should have a similar effect independently of 
the actual data structure. 

Solution: A partitioned environment needs to reduce the cost of 
accessing shared elements, thus reducing synchronization To 
reduce the amount of concurrent access, the workpool should 
differentiate work items according to their assigned partition, thus 
avoiding having to decide which work elements go to which PU. 
To achieve this, the programmer must: 
1. Define the number of partitions as a function of the number 

of processing units (𝑵 𝑷𝒂𝒓𝒕 = 𝒏𝑷𝑼,𝒏 ∈  ℤ+)  
2. Determine the type of partitioning required by the algorithm: 

Static or Dynamic 
3. Choose a partitioning algorithm. 
4. Handle Amorphous Data Parallelism.  

4.1. Decide the granularity of synchronization: i.e., whether 
locks are associated with data structure elements or 
with entire partitions.  

4.2. Decide how to handle neighborhoods that span 
multiple partitions.  

4.3. Determine the update strategy, i.e., to which partition 
should newly created data structure elements be added. 

Galois Implementation: One of the most important ideas behind 
data partitioning in Galois is that the client code should not need 
to change radically when instantiating data partitioning. To enable 
dynamic load-balancing, data structures are over-decomposed so 
that each PU has multiple partitions to work on and can steal 
partitions from other PUs if it runs out of work. 
Partitionable graphs implement the Partitionable interface. Nodes 
and edges in partition graphs must implement the PartitionObject 
interface, which allows the programmer to access information 
about the partition to which the object belongs. Additionally, 
partitioning a graph entails assigning a Partitioner to the graph 
class. Galois currently supports Graph Bisection, where the graph 
is traversed breadth-first from an arbitrary boundary node until 
half the nodes have been traversed, and one based on Metis [28]. 
Example: In Delaunay Triangulation partitions can’t be statically 
determined, as the mesh is generated dynamically. Therefore 
dynamic methods are required to efficiently partition and 
distribute data. The usual solution is to start with a single partition 
and as the number of data elements increases, the data-set is 
repartitioned and distributed to the PUs. As each partition is 
assigned to a single PU, the graph can be seen in a more abstract 
way as if dependencies between nodes (Figure 13-a) were in fact 
dependencies between PUs (Figure 13-b).  

 

(a)                          (b) 
 Figure 13 – Partitioned Delaunay mesh 



As regards Kruskal’s MST, since the goal is to produce a sub-
graph of a pre-existing graph, we can statically partition the input 
graph per the PUs. Thus, the partitioning algorithm can have a 
higher computational cost, providing optimal distribution of nodes 
per PUs. However, we need to pay special attention to bordering 
nodes and the possibility of cycles. When a border node is added 
to the MST in a partition, we can only know if a cycle is created if 
the partitions exchange MST information among themselves. 
Related Patterns 

• Geometric Decomposition: decomposes data structure based 
on its geometric properties, for distribution purposes [46]. 

• Workpool Partitioning: The workpool can be partitioned so 
as to mimic the partition of the data structure. 

Known Uses: There are many algorithms available for graph 
partitioning. Some studies of partitioning methods are well known 
to the parallel programming community: Karypis and Kumar [28] 
provide an analysis of current partitioning techniques for irregular 
algorithms; Wider surveys of graph partitioning algorithms are 
described by Fjallstrom [17] and Elsner [14]. 
The concept of supporting partitioning in languages and 
frameworks is around since the Ada language [27]. Recent 
approaches to high performance computing, such as High 
Performance Fortran (HPF) [42], Threaded Building Blocks 
(TBB) [56] or Chapel [12], also provide partitioning strategies. 
HPF focuses on the partitioning of arrays to distributed memory 
computers, while TBB only supports static partitioning with work 
stealing. Chapel belongs to a group of Partitioned Global Address 
Space (PGAS) languages which have a partitioned memory model 
[48]. On these languages, a data structure is accessed as if it were 
local though it is in fact distributed. Chapel supports traditional 
data distributions as part of its class library and allows 
programmers to implement application specific distributions if 
needed. 

4.5.2 Workpool Partitioning 
Problem: How to minimize the cost of accessing the Workpool. 

Design space: Data Mapping 

Context: An efficient distribution of an algorithm is not 
guaranteed simply by partitioning data structures. To achieve a 
proper division of work per processing unit, programmers should 
reduce access to non-partitioned data structures, which create 
synchronization bottlenecks and reduce concurrency. On 
workpool-based irregular parallel algorithms, this bottleneck 
derives from synchronized accesses to the workpool. Its high cost 
can severely degrade the performance of the parallel algorithm. 

Forces 
• Communication vs. Computation: If the workpool remains 

centralized, the scheduler needs to be aware of which 
partition the work is assigned. However, this increases 
computational cost of scheduling procedures. On distributed 
workpools, the scheduler has to keep track of multiple local 
workpools, which is communication intensive. 

• Work Distribution: Due to the dynamic characteristics of 
Irregular Algorithms, the amount of work produced by 
partitions might be unbalanced, thus requiring work-stealing 
or work-sharing methods for efficient work distribution. 

Solution: Not having to decide which work needs to be processed 
by which partition reduces the amount of synchronization needed, 
thus reducing the cost of accessing the shared workpool. The 
workpool should be partitioned to reflect the partition of the data 
structure, enhancing the locality of the algorithms and reducing 
the need for synchronization.  
The solution however is non-trivial as it depends on the specific 
characteristics of the algorithm being implemented. 
The overall solution is as follows: 
1. Define the number of partitions as the exact number of 

processing units.  
2. Define how work elements are assigned to each processing 

unit.  
2.1. Define how work elements will be marked as 

belonging to a PU. 
2.2. Determine which partition gets each new work 

element. When a PU adds work to the workpool, 
partitioning ensures that the same PU will eventually 
process the work it produced. 

3. Determine how to move work elements to and from the PU. 
3.1. Use an asynchronous fetch mechanism to get work 

from the PUs and add it to the workpool. However, 
this mechanism needs to prioritize PUs, reducing the 
possibility of starvation and maximizing parallel work. 

3.2. Use a synchronous mechanism for PUs to receive work 
elements from the workpool. PUs should not get work 
elements directly by accessing the workpool as this 
introduces high synchronization costs and cause PUs to 
waste resources waiting for work. Instead, work should 
be assigned to the PUs preemptively (see Dynamic 
Scheduling). 

Variants: We can consider two main variant forms of workpool 
partitioning (see Figure 14): 

Partitioned Global workpool – The workpool remains 
globally accessible although work elements are partition-aware, 
i.e. each PU only receives work for the partitions it currently 
holds. Having work elements marked with the partition they 
belong to enables the workpool to be implemented as if it were 
composed of n workpools, one for each partition. Thus, there is 
little access contention and the cost of performing workpool 
operations is reduced.  This form of workpool is more effective 
if there is a need for a centralized management resource, whose 
role can be assumed by the workpool. This is the case of In-
Order Execution, as the global workpool can localize the 
knowledge of the execution order, or work scheduling. 

Processing  
Units 

 

(a)             (b) 

Figure 14 – Workpool partitioning 



Partitioned Local workpool – The workpool itself is 
partitioned and each PU maintains its own local workpool. This 
implementation allows the PUs to increase data locality since 
new work produced is placed on the local workpool. This 
solution works better if work elements are added to the 
workpool dynamically, as having local work items reduces both 
the cost of updating the workpool and that of retrieving new 
work elements. 

Galois Implementation: In Galois, the assignment of work to PUs 
is performed in a partition-sensitive manner. The workpool itself 
remains global. The programmer must first instruct the runtime 
system to recognize the different partitions. Contrary to normal 
workpool elements, partitionable elements know which PU 
currently holds the partition they belong to. Iteration Coalescing, 
an optimization of the Galois framework [47] adds local 
workpools to improve locality of references. 

Example: On Delaunay Triangulation, if we consider that no new 
element is added to the workpool, then using a simple shared 
global workpool presents advantages because a measure of 
locality is offered by the workpool partitioning. In addition, using 
a global workpool allows the algorithm to concentrate its 
computational resources on triangulating the mesh, instead of 
coordinating the multiple workpools. 
If we instead consider that every bad triangle produced when a 
point is added to the mesh is inserted in the workpool as a new 
work item, then using a local workpool provides locality 
advantages. Triangles that needed to be re-triangulated would be 
added to the workpool of the PU that originated the bad triangles. 

Related Patterns 

• Partitioning: the data structure must be partitioned. 

• Dynamic Scheduling:  scheduling can be used to 
preemptively assign work elements to PUs. 

Known uses: A similar approach to workpool partitioning is 
proposed by Chandra et al [6]. Their dynamic partitioning strategy 
named Dispatch builds processor-local workpools, which are then 
used to reconstruct the global work distribution lists. A similar 
approach was used by Bai et al [2]  to developed a software 
transactional memory executor that partitions transactions among 
processors by grouping them based on their search keys. The 
Chapel programming language [12] uses an asynchronous 
partitioned global address space programming model that 
provides virtual partitioning of data structures in memory spaces. 
This is an analogous yet different approach to partitioning. In 
Chapel, each processor node retrieves tasks from a task pool but 
can also invoke work on other processor nodes using On clauses. 
These force computations to occur in the processor node that 
holds the object in memory. Processor nodes can also fetch data 
from remote locations. 

4.5.3 Dynamic Scheduling 
Problem:  How to dynamically assign work to processing units. 

Design space: Task Mapping 

Context: When considering parallel implementations of 
algorithms, the programmer must always take care to create an 
efficient mapping between the tasks (or work elements) to be 
executed and the processing units that will eventually execute 

them. Scheduling essentially entail predicting at runtime how 
work elements should be assigned to PUs so that it can be done 
preemptively, without PUs having to wait for new work elements 
to process. This mapping, or scheduling, has concrete effects on 
the algorithm’s performance, essentially aiming to optimize 
concurrency, locality and load-balancing.  
There are a multitude of scheduling techniques for static, semi-
static and dynamic scheduling [39, 60]. For irregular algorithms, 
static and semi-static scheduling techniques fail to introduce valid 
and efficient schedules that would allow the algorithm to  fully 
exploit of its potential parallelism, since dependencies are only 
known at runtime [33]. 

Forces 

• Assignment Overhead: If computations are too fine-grained, 
the cost of scheduling might not justify the benefits. 

• Scheduler overhead: There is a high computational overhead 
on arbitrating conflicts for strict dependencies. 

•  Know the domain: There needs to be a tight understanding of 
the neighborhood of the algorithm and how that neighborhood 
is influenced by computations. If the neighborhood of an 
active element remains the same throughout execution then 
the programmer should use that fact to cluster sets of closely 
dependent computations to be processed by a single PU. If the 
neighborhood is dynamic, then the mechanism to assign 
computations to PUs needs also be dynamic. 

• Know the architecture: Knowing the underlying hardware 
architecture, how many and what type of cores exist and how 
memory is managed, allows us to understand how to best 
maximize the number of parallel computations. As 
computations are assigned to PUs dynamically, the number of 
active PUs may vary throughout the execution. 

• Know the dependencies: Computational dependencies 
ultimately define the order of processing on each PU. It is 
essential to understand how new work elements influence the 
existing schedule and the locality of resources. 

Solution:  

To create a valid and ideal schedule configuration between 
computations and PUs, the programmer must: 
1. Define a way to predict how distinct work elements are 

needed by each PU. This prediction is tuned by the 
programmer for each specific algorithm according to its 
characteristics and has essentially two forms: 

1.1. There is a well-defined computational path and each 
work element processed causes the PU to process work 
elements that access neighboring nodes. This is the case 
of algorithms like maxflow computations and sparse 
matrix computations, where processing follows a fixed-
step sequential path, although that path is not known at 
compile time. It is worth to mention that this is not the 
same as In-Order Execution, as the order in which 
neighborhood elements are processed might not matter. 
With these characteristics, the schedule should try to 
cluster sets of closely dependent computations to be 
processed by the same PU. 

1.2. There is no defined computational path and scheduling 
can be random or it can follow the structure of data 



partitioning, thus taking advantage of data locality. This 
is best for non-deterministic algorithms like Delaunay 
mesh generation and refinement. 

2. Reduce the number of collisions between PUs by trying not 
to simultaneously assign work elements to different 
partitions if processing those work elements will cause the 
PUs to access the same data. Recall that, by Optimistic 
Execution, when a collision is raised the offending PU is 
forced to abort and rollback, thus wasting resources. 

3. Add workload balancing by defining mechanisms that will 
allow the scheduler to override the assignment of work 
elements to PUs based on execution schedule and allocate 
work based on load balancing concerns. There are two main 
reasons to allow this:  
3.1. A PU might be starving but there are work elements 

still left to process, although ideally those work 
elements should be process by another PU. 

3.2. A PU might have too much potential work queuing to 
be processed, while other PUs have little to no work 
available.  

On implementing these scheduling mechanisms, the programmer 
should take a special care to make them as light as possible. If 
scheduling wastes resources then it might be best not to have 
scheduling. Also, to ensure correctness, the schedule achieved 
needs to be able to reduce to a sequential implementation, thus 
ensuring that all PUs have a consistent view of the system state. 
Galois Implementation: The runtime system has a scheduler that 
is responsible for fetching work from the set iterators and creating 
optimistic parallel iterations. The scheduler depends on three 
scheduling functions to schedule computations to the available 
PUs efficiently: 

• A Clustering function groups closely inter-dependent work 
items. Clusters may be of different sizes. 

• A Labeling function maps clusters to PUs. Each cluster is 
assigned to a single PU but a PU can have multiple clusters. 
Labeling can be performed on demand, as each PU fetches 
work from the Workpool. 

• An Ordering function finds the sequential order in which each 
cluster’s work items are within a PU. 

 
Figure 15 presents the conceptual scheduling mechanics of the 
Galois Framework. 

 

A number of preset scheduling functions are provided by Galois 
[35] but the programmer has the option to implement their own 
scheduling functions in order to adapt Galois to the specifics of 
the algorithm. 
Example: Considering the Delaunay Triangulation algorithm, if 
at a given step in the algorithm we have an initial mesh and a 
given number of points that still need to be added to the mesh, a 
scheduling on such conditions would: 

1. Cluster the remaining points according to the data partition 
where they will be inserted. This activity provides 
clustering based on interdependencies, since neighborhoods 
of points on the same partition have an added probability of 
interfering with each other. (see Figure 16); 

2. As clusters are built partition-wise, they are executed by the 
PU that holds the data partition. 

3. As can be seen in Figure 17, the sequential ordering of 
work items within a cluster (a) can be performed by using a 
dependency graph (b). 

 

 

Related Patterns 

• Partitioning: Partitioning might help cluster 
computations. 

Known uses: There are myriads of scheduling techniques and 
algorithms for parallel processing. Programming languages such 
as HPF [42] and ZPL [5] schedule computations along with data 
structures to improve locality. X10 allows user defined scheduling 
of computations to cores [66]. Gramps, a programming model for 
graphic pipelines uses multi-level scheduling to minimize on-chip 
cache support fort intermediate pipelining results [62]. Carbon 
[37] is a purely hardware scheduler that allows task queuing and 
scheduling, although it lacks customization of scheduling 
strategies. The dynamic scheduling of parallel computations in 
multiprocessor systems with identical parallel processors is 
tackled by Liu [41]. In its approach, dynamism in scheduling is a 
function of the number of available processors can vary in time. 

5. RELATED WORK 
The tradition of using patterns as tools for documentation and 
reusability was made popular by the Gang of Four design 
patterns. However, their book provides solutions based on object-

Ordering 

Clustering 

Labeling Clusters + Processing Units 

Dependency-based ordering of 
elements on a cluster, for each 
Processing unit 

Data + Computations 

Figure 15 – Scheduling in the Galois Framework 

Figure 16 – Partition-wise work clustering.  

(a)                (b) 
 Figure 17 – Inter-cluster dependency graph 



oriented concepts such as inheritance and polymorphism and, 
although adaptable, each pattern presents precise classes, 
operations and hierarchies that the programmer should follow to 
achieve the intended solution [19]. Our patterns are different in 
that they discuss problems in terms of abstract principles and 
leave the task of deciding the actual implementation to the 
programmer, i.e. the Pattern Language presents advice and 
considerations about how a programmer should introduce the 
solution and why. 
We identify three main pattern languages and catalogues focusing 
on parallel programming. Schmidt et al [58] present a set of 
patterns for concurrency and networking that does not focus on 
semantics and domain-dependent concepts and does in fact 
represent a pattern language. However, as they acknowledge, each 
pattern is self-contained and independently described. For this 
reason, we do not consider this as a fully-fledged pattern 
language, but rather a pattern catalogue with some inter-pattern 
dependencies. Their patterns represent specific parallelization 
constructs, while we focus on parallelization methods. It should 
also be noted that Schmidt et al use the JAWS web server as a 
basis for their patterns, similarly to Galois in our pattern language.  
The pattern language proposed here has close relations to some of 
the pattern languages for parallel processing proposed by the 
software pattern community – such is the case of pattern 
repository of the Hillside group [29] and the pattern language of 
Mattson et al [46]. However, our view is that most pattern 
languages and catalogs mostly represent solutions for regular 
problems and handle irregularity as special cases, in which case 
the solution needs to conform to a different set of characteristics. 
Our pattern language contrasts with this view and is specifically 
focused on irregular problems, which are considerably more 
complex. In this paper, we instead classify the solution to regular 
problems as a subset of the solution of irregular problems. There 
are nonetheless some pattern languages designed for specific 
irregular algorithms, as is the case of Dig et al pattern language 
for N-Body methods [13].  
Aside from patterns, there are other approaches that describe 
higher level strategies for irregular algorithms: Fonlupt et al [18] 
describes a set of load balancing redistribution strategies, 
illustrating several algorithm formulations. Biswas et al [3] 
describe computing strategies in relation to specific hardware 
architecture. Rünger and Schwind [57] describe parallelization 
strategies for algorithms that contain both regular and irregular 
characteristics. Ansejo et al [1] present general use optimization 
strategies. These strategies are not as high-level as patterns but 
present pattern mining opportunities for future work. 

6. CONCLUSIONS 
This paper describes a pattern language for the parallelization of 
irregular algorithms. This class of algorithms is mainly used in the 
scientific community but not much work has been to identify and 
document abstractions that simplify the parallelization of such 
complex problems.  
The patterns documented here result from a reverse engineering 
effort of the Galois System [34]. Other frameworks and languages 
have considerably different methodologies for handling 
irregularity. In future, we intend to explore these alternatives as 
well, and relate them to the patterns described here to enrich and 
mature the language and enhance its potential applicability to 
cover a broader set of techniques and methods targeting parallel 

irregular algorithms. 
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