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1. INTENT

This pattern describes how to build products, e.g. how to make a software application using Make or Ant, in
correct order just by explicitly stating both dependencies of artifacts from their ingredients and rules to produce
each single artifact. Delegating the ordering of the building steps to a tool helps remaining flexible and allows for
automated parallelization of execution.

2. EXAMPLE

Imagine you are developing a software application. The source code and binary libraries are distributed among
several files. The final application depends on all of them, more specific source files defining e.g. derived classes
depend on more general source files in Java, which contain e.g. declarations of interfaces or abstract base
classes, or in C and C++ on so-called header files, which contain class declarations. Building the application
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requires several intermediate steps, e.g. compiling source files into object files and link editing all resulting object
files into the binary representing the application. To do so, a certain order has to be followed resulting in a build
process. This order is determined by the dependencies among the files and artifacts that go into the build. Figure 1
shows basic header and source files on the left, intermediate object files gained by compiling the source files in
the middle and the binary finally resulting from link editing the object files on the right.

Most often only a small fraction of all files the application will be built from gets changed at a time. Therefore it
is equally important to note which files do not depend on each other. Otherwise the whole build process had to
be repeated all over again whenever an arbitrary file was changed. Taking into account which files do not depend
on each other allows for partially rebuilding the application, which usually results in huge performance gains
facing the fact that changes are in general small with respect to the whole application; if derived1.cxx had to
be changed for example, then it suffices to recompile it yielding derived1.o and link editing all object files again
resulting in a new version of the binary result. Furthermore, the information which files are independent from
each other might also be used to parallelize the build process, e.g. taking advantage of multi-core processors; in
the example above, all three object files could have been compiled in parallel from their respective source files.

During application development the build process will be repeatedly executed, probably by more than one
person. Therefore it is obvious that it will pay off to reify the build process itself in software. Along with the
evolution of the application its partitioning in several files will evolve, so its build system will also evolve. Therefore
adaptability is an important consideration when designing and using build systems.

3. CONTEXT

Building non-trivial products requires a series of tasks to be applied in correct order. Examples of such products
include software applications and the results expected from running a project. The sequence can be formalized
in terms of a build process. For each final product the process is going to be enacted once. Each single task
transforms one or more inputs into most often one single output and adds value in doing so. At the core of
applying the tasks in correct order are dependencies of artifacts from more basic artifacts. This is meant both
causally and temporally: A higher-level artifact can only be assembled from lower-level ingredients, if and only if
these ingredients are already there.

This applies recursively.
The dependency relationships must not contain any cycles—an artifact must not directly or indirectly depend

on itself. Sometimes this requirement can only be fulfilled when considering coarser-grained sets of the original
artifacts instead of these artifacts themselves.

Artifacts undergo maintenance and evolution. So the dependencies relationships may also evolve.

Fig. 1: Source files and their transformation into an executable artifact
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4. PROBLEM

How to define the build process such that it proves reliable, efficient, adaptable, and parallelizable and can be
performed automatically on request?

5. FORCES

—An explicit representation of the process itself is hard to maintain.

—Software builds have to be correct. Updates to single files should imply rebuilding them and to rebuild all
artifacts that depend on them—so the relative ordering must be respected.

—Software builds should be as fast as possible. Only those files should be recompiled and link edited that really
have to.

—Build systems are necessary for build automation; build automation enables continuous integration.

—Build systems are software themselves, so they have to be treated as such, e.g. they undergo changes, will
profit from support of configuration management systems, need documentation, testing etc.

—Modern hardware provides processors with multiple cores—why not use these?

6. SOLUTION

Think from the end, what your result should be. Perceive the goal as the result of prerequisites, which in turn de-
pend on other prerequisites. So work your way backwards until you have recursively covered all the dependencies
for the build.

Instead of explicitly setting up a sequence of build steps, specify only the dependencies of artifacts and the
rules on how to transform one or more artifacts into a higher-level artifact. Let a tool then figure out the correct
sequence and build the stuff.

So you will recursively end up with a set of both declarations that define artifacts and their dependencies and
the respective atomic instructions on how to transform one or more prerequisites into (intermediate or final) arti-
facts. Figure 2 graphically depicts such dependency declarations; the arrows read “depends on”: (a) graphically
depicts that the result depends on two intermediate artifacts, (b) says, that furthermore the first intermediate ar-
tifact depends on two basic ingredients, and (c) finally tells us, that the second intermediate artifact depends on
two basic ingredients. Note that one of the three basic ingredients is required by both intermediate artifacts.

(a) Result depends on two intermediate artifacts.
(b) First intermediate artifact depends on two basic ingredi-
ents.

(c) Second intermediate artifact depends on two basic ingre-
dients.

Fig. 2: A complete set of dependency declarations

Build from the End — Page 3



Given there are no cycles as required in Section 3, the dependency relation establishes a Strict Partial Order.
For such kinds of orders several topological sorting algorithms exist to connect the set into a directed acyclic

graph (see Section 6.5.3 for a reference). The graph for Figure 2 is shown in Figure 3. This graph reifies the
process from start to end. It tells you which artifacts do not depend on other artifacts—these are the starting
points—and shows possibilities to do things concurrently.

6.1 Participants

Table I shows Candidate–Responsibility–Collaboration Cards for the aforementioned participants. Each single
participant is commented on further below:

Artifact. Final and intermediate artifacts that have to be built from other Artifacts and axiomatic artifacts that
already exist.
Client. Supplies Artifact dependencies and Transformer rules to TopologicalSorter and Director and finally get
built Artifacts in return.
DirectedAcyclicGraph. Represents total order of artifacts, thus allows for enactment to build result from ingre-
dients in correct order.
Director. Orchestrates the enactment of the DirectedAcyclicGraph concurrently, taking availability of process-
ing resources into account. This is an example of the Director role from the BUILDER [Gamma et al. 1996c]
design pattern.
TopologicalSorter. Establishes directed acylic graph from dependency declarations.
Transformer. Builds higher-level Artifacts from more basic Artifacts according to some given rule.

6.2 Dynamics

Instead of planning from the beginning to the end, i.e. establishing an explicit flow, only specify the dependencies.
Do so starting from the end. Then let a tool generate DirectedAcyclicGraph. Enacting the graph afterwards lets
the tool finally build your product. Building and enacting the graph are often combined in practice.

The dynamics of this pattern is shown in Figure 4.

6.3 Rationale

Building non-trivial products can get quite complex, because the products to be built are complex. The real value
lies in the products, however, so the goal is for the main effort to go into developing the products themselves, not
into perfecting the respective build processes. A build process that refuses adaptation because of its inherent
complexity will also slow down product development. The solution for the challenge of building products proposes
to specify only the minimum—and let a tool do the rest.

Coupling production steps only by means of their dependencies is a form of loose coupling. Because of loose
coupling, the whole build process can be easily adapted and parallelized. Both aspects are elaborated on below.

Fig. 3: Directed acyclic graph corresponding to Figure 2
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Table I. : Candidate–Responsibility–Collaboration Cards

(a) Artifact

Artifact
carries date of last modification
either atomic or de-
pends on

Artifacts

(b) Client

Client
Contracts TopologicalSorter
Contracts Director

(c) DirectedAcyclicGraph

DirectedAcyclicGraph
Connects in order of de-
pendencies

all Artifacts

(d) Director

Director
Enacts DirectedAcyclicGraph
to build all Artifacts
delegating work to Transformer

(e) TopologicalSorter

TopologicalSorter
Establishes DirectedAcyclicGraph

(f) Transformer

Transformer
Builds Artifact
from Artifacts it directly de-

pends on

Fig. 4: Sequence diagram illustrating BUILD FROM THE END

This contributes to flexibility: Because the graph can always be generated again, it is an easy task to modify
dependency relations and thus modify overall production. Consider for example the effort required introducing
another intermediate artifact, thus e.g. substituting new dependencies in Figure 5 for the dependency in Fig-
ure 2b. Again note that both Figures 2c and 5b refer to the same basic ingredient. Figure 6 shows the respective
DirectedAcyclicGraph, Figure 7 the corresponding sequence diagram.

Loose coupling provides an important side effect: For the machine it is quite easy to detect opportunities
for parallelization, because the dependencies are explicitly given and no complicated dependency and aliasing
analyses have to be performed first as e.g. in automatic loop parallelization. At any single state of enactment of
the graph any nodes with dependencies that have all been satisfied can be processed in parallel.

Process diagrams can get remarkably complex. Even though diagrams could still be created from the generated
directed acyclic graphs, it is not really necessary because process control can also be automated. So the effort
otherwise necessary to comprehend the process flow can now be utilized to achieve the overall goal.
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(a) First intermediate artifact depends on another intermedi-
ate one and a basic ingredient.

(b) Third intermediate artifact depends on a basic ingredient.

Fig. 5: Evolution of Figure 2b

Fig. 6: Directed acyclic graph corresponding to Figure 5

Fig. 7: Sequence diagram illustrating modified process

6.4 Resulting Context

Now we end up with three entities:

(1) A list of dependency and rule specifications,

(2) a TopologicalSorter that generates the global DirectedAcylicGraph, and

(3) a Director that follows the graph and calls Transformer to build artifacts represented by the nodes in the graph
from more basic artifacts to build the overall product.

Steps 1 and 2 also form the meta-process of building the build system. Step 3 forms the process of building the
product itself.

Build from the End — Page 6



6.4.1 Consequences. The BUILD FROM THE END pattern has the following benefits:

(1) Adaptability. The process execution as a whole is not tangible any more. In fact, it depends on the dependency
specifications, the TopologicalSorter and the Director, so it may “constantly” change.

(2) Dependency specifications are lightweight. You do not rely on an explicitly defined, heavyweight process.

(3) Textual language. Many topological sorters process text files as input. Configuration management systems
in general provide powerful tools to e.g. compare different versions of such files.

(4) Concurrency can be gotten “for free”. Without any additional effort on the Client side the Director can auto-
matically employ parallelism.

The BUILD FROM THE END pattern has the following liabilities:

(1) Detail view. The Client only specifies the relative dependencies. At least without tool support for visualization
of DirectedAcyclicGraph, you may wish to have a better bird’s eye view of the whole.

(2) More complex. You rely on additional tools, the TopologicalSorter and the Director.

(3) Intermediate artifacts may become orphans. Not all tools around keep track of whether intermediate artifacts
are still necessary, so they cannot safely remove them again from the filesystem. In this case at some point
a large fraction of the whole software project will consist of superfluous files.

(4) Nondeterministic order of execution. If not all dependency relations present have been diligently fed to the
TopologicalSorter, then the Director might update less artifacts than necessary upon changing a prerequisite.
You cannot rely on any additional order of execution but those given by the dependencies stated. This is
especially true for parallelizing Directors. Therefore you have to completely specify the dependencies.

6.5 Implementation

In most cases there already are implementations of TopologicalSorter and Director and for the specific domain, so
implementation of this pattern primarily consists of specifying the artifacts, their prerequisites and the Transformer
rules in a language the TopologicalSorter can understand. Section 6.5.1 contains a complete implementation for
this simpler case.

It gets more complicated if there are no existing implementations of TopologicalSorter or the Director. This case
is only covered briefly in Section 6.5.3.

6.5.1 Example Resolved. For building software applications several tools are available. In this example GNU
Make is going to be used to build an application written in the C++ programming language. This application
has already been sketched out in Section 2; for the sake of readability the folder structure proposed there is
flattened out here. Make is an example for both a domain-specific language to specify software builds by a
combination of dependency declarations and commands to build artifacts from ingredients and a combination of
TopologicalSorter and Director that builds the final artifact based on Makefiles written in this language. Section 6.6
points to some similar tools available.

The details of the source code do not matter, it suffices to say that in file base.h a base class is declared, which
is defined in file base.cxx; files derived1.h and derived2.h include base.h, because in both files classes
specializing the base class are being declared, in turn defined in the corresponding .cxx files. The dependency
structure is being fed to Make in a file called a Makefile. Each line that starts in the first column lists an artifact
to be built—the target in Make terms—, a colon and a space separated list of so-called prerequisites considered
necessary to build the target. The instructions on how to transform the prerequisites into the target follow on lines
each indented with a tabulator (!). With Make, targets and prerequisites are not just names—by default Make
treats them as files, which may or may not exist and which may differ in their date of last modification. Make will
build or update a target if and only if it does not exist yet or at least one of its prerequisites is more recent than
the target.
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The complete picture is given in Listing 1.

Listing 1: Makefile

SHELL = /bin/sh

.SUFFIXES:

.INTERMEDIATE: derived1.o derived2.o base.o

.PHONY: all

all: result

result: derived1.o derived2.o base.o

g++ $< -o $@

derived1.o: derived1.cxx

g++ -c $< -o $@

derived2.o: derived2.cxx

g++ -c $< -o $@

base.o: base.cxx

g++ -c $< -o $@

derived1.cxx: derived1.h

derived2.cxx: derived2.h

base.cxx: base.h

derived1.h: base.h

derived2.h: base.h

base.h: Makefile

Note some details of this implementation: The special target .SUFFIXES switches off built in suffix rules to allow
for a more explicit control of what is going on. .INTERMEDIATE marks its prerequisites as intermediate files, i.e. if
Make has built them, it will remove them again right before terminating. .PHONY says that all is just a name and
not a file—all is a special name in Make, because it is the default target to run if no alternative targets are given
on the command line. The next line is just for convenience and states that result has to be built before we can
say to have succeeded in building all. Given the Makefile has been saved under one of the names considered
default by Make, e.g. Makefile, it therefore suffices to just type make from a command line shell. The remainder
of the Makefile is specific to the example application. The result: lines tell Make how to link edit result from
three object files; $< is a shorthand for all respective direct prerequisites, while $@ always denotes the respective
target. Next follow three blocks that tell Make how to compile .cxx files into object files. The rest of the Makefile
shown is just another representation of the preprocessor directives in the source and header files to include
header files—these lines could also have been dynamically generated with help of the C++ compiler—in the case
of the GNU Compiler Collection using the command line options -M -MG—and including the respective compiler
output into the Makefile, see [Miller 1997] for a description of this technique. Note that the Makefile imlicitly got
declared as a prerequisite for anything else to ensure full rebuilds to take place after editing the Makefile, e.g.
changing compilation options.
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This Makefile shows several occurrences for plain dependency specifications without Transformer rules. In all
of those cases the target either has been declared .PHONY or has to be provided by the Client as it is not meant
to be generated by the build process; in the latter case the dependency declarations serve just to pass the most
recent date of last modification of the prerequisites on to the respective target, if and only if this target itself was
last modified before that date. Doing so ensures that no updates of indirect prerequisites get missed by the build
process.

6.5.2 Relationship of Example and Participants. The software building example laid out in Sections 2 and
6.5.1 map to the participants defined in Section 6.1 as shown in Table II.

6.5.3 Implementing Build Tools from Scratch

The Future is Parallel, and the Future of Parallel
is Declarative.

SIMON PEYTON JONES

One of the simplest implementations of a combination of TopologicalSorter and Director uses Kahn’s algo-
rithm. The result of of sorting is a linear list of build steps to perform that respects the partial order given by the
dependency relations. So when iterating through such a list it is always guaranteed that all prerequisites have al-
ready been visited before visiting the artifact that needs all of them. Kahn’s algorithm does not explicitly represent
the DirectedAcyclicGraph, however. Therefore the Director cannot execute independent tasks concurrently. For
parallelization of Directors, more sophisticated TopologicalSorters are therefore necessary.

6.6 Known Uses

Examples of this pattern can be found in existing software.

6.6.1 Ant. Apache Ant is well-known in the Java community. Its buildfiles conform to an XML schema. The
actions to perform are called tasks, and they are portable, because they have been written in Java. With help of
the Java classloader even tasks not part of the standard Ant distribution can be plugged in at runtime.

In the Java ecosystem the Java compiler itself already handles certain subtasks typical for build tools. Given Ant
builds a Java application, Ant itself therefore only has to handle higher-level tasks such as triggering compilation
as a whole and assembling JAR files.

6.6.2 Jam. Originally developed by Perforce Software, its variant BJam is the core of Boost.Build, the build
system of the Boost C++ libraries. Both Jam and BJam qualify as open-source software. With a build system
implemented on top of Jam or its derivatives dependencies of more than one target from multiple prerequisites
can be concisely expressed. Furthermore, the commands to actually transform prerequisites into targets can be
factored out into so-called actions.

Table II. : Relationship of Examples and Participants

Code Participant

base.h, base.cxx, base.o, derived1.h,
derived1.cxx, derived1.o, derived2.h,
derived2.cxx, derived2.o, result

Artifact

The person who has written the Makefile and calls Make Client
Implicit. Can be made explicit when calling Make e.g.
with its -d option.

DirectedAcyclicGraph

Make TopologicalSorter, Director
g++ $< -o $@, g++ -c $< -o $@ Transformer
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6.6.3 Make. Make has been used as the guiding example thoughout this paper. The actions to perform are
called commands, and these are going to be executed by the shell, so they are specific to the platform Make runs
on—thus Makefiles are not portable. There are several implementations of Make which differ in the exact syntax
of Makefiles. Some like GNU Make allow for very brief Makefiles due to built-in suffix and pattern rules that help
reduce repetitive expressions in Makefiles. [Stallman and McGrath 1998; Miller 1997] contain a lot of useful tips.
There is a Perl project called Makefile-GraphViz that visualizes Makefiles.

6.6.4 Tup. Tup—an acronym for “the updater”—is a build system that stores the dependency relations in an
embedded database, here SQLite. Tup provides advanced capabilities to visualize the directed acylic graph. The
algorithms have been documented in [Shal 2009].

6.6.5 Project Management Methods and Tools. This pattern is being used even outside the domain of soft-
ware development, and has been used for a very long time. Examples include the Critical Path method and the
Program Evaluation and Review Technique (PERT). The visual representation of the directed acyclic graph is
often called the project network within this context. Software that assists in project management like Microsoft
Project and TaskJuggler can transform activities and their dependencies into the project network while also re-
specting resource constraints. Employing advanced and flexible project planning methods is a step towards orga-
nizational maturity higher than CMM(I) 2 (“Repeatable / Managed”) and beyond Software Subcultural Pattern 2
(“Routine”) [Weinberg 1992, pp 24–35,103–104].

Project management takes a more coarse-grained view than building products, however. Otherwise project
managers would not see the wood for the trees. Typical categories are for example requirements engineering
and architecture. These are that coarse that they mutually depend on each other and are executed in parallel—
architects wait for requirements engineers, and those need the input from architects in turn. This is especially
true in early, more elaborative phases of a project, e.g. in Unified Process in the phase called Elaboration.

6.7 Related Computational Models and Patterns

This pattern is related to Dependency Network, one of the alternative computational models described in
[Fowler 2011]. While FOWLER puts emphasis on certain aspects of the domain-specific language the artifacts
and prerequisites have to be described in and makes a difference between product-oriented (e.g. Make) and
task-oriented (e.g. Ant) styles of Dependency Networks, the core of this pattern says that using the solution pro-
posed can let you focus on the final result you are trying to accomplish; furthermore the opportunity of automatic
parallization is being stressed here.

The TopologicalSorter is an example of INTERPRETER [Gamma et al. 1996d], that builds DirectedAcyclicGraph
from the dependency specifications given. The Director is a role taken from the BUILDER

[Gamma et al. 1996c] design pattern and is an INTERPRETER, too, that builds COMMANDs [Gamma et al. 1996a]
ordered by DirectedAcyclicGraph and feds them into a COMMAND PROCESSOR [Buschmann et al. 2000a].

6.8 Summary

If your perspective is from the end goal, it will be less likely that you get bogged down in details. BUILD FROM

THE END gives you both a tool to do so and lets you concentrate on developing the product instead of perfecting
the build tool, because the input to tools like Make and Ant is quite lightweight—the real work is then done by the
tool.
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Glossary

This section contains thumbnails and definitions of the most important patterns and terms used in this paper.

Builder. The BUILDER pattern separates the creation of a complex object from its representation. BUILDERs
allow for creation of a variety of representations, and the set of representations the builder can build can
evolve over time without modifying the representations.[Gamma et al. 1996c]

Command. The COMMAND pattern encapsulates commands as objects. COMMANDs can be placed in a
queue and are an essential ingredient for undo functionality.[Gamma et al. 1996a]

Command Processor. A COMMAND PROCESSOR manages the execution of COMMANDs. It mediates between
the invocation and the actual execution of a COMMAND and might provide further services to e.g. undo a
COMMAND again.[Buschmann et al. 2000a]

Interpreter. If problems of a certain kind repeatedly occur, then it might pay off to define a formal language
problems of this kind can be expressed in and build an interpreter that can interpret problems represented in
this language.[Gamma et al. 1996d]
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Portability. Portability has two aspects: Portability with regard to environments or platforms means that an
application requires no or only a few local changes to run on another platform than once planned for. The
term platform can refer to operating system, hardware architecture or even a set of third party software the
application interfaces with, e.g. a database management system. Portability in time means that an application
can still be compiled after years have passed.
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