
1

Rule Engine for Validating Complex Business Objects

DIBYENDUSEKHAR GOSWAMI, goswami.dib@gmail.com

Several systems use complex business objects which need to be validated against multiple requirements before they are deployed.

Manually validating these objects can be time-consuming and error-prone. This paper documents an approach that automated this

validation process for a complex System Configuration object used to configure a Real-Time Measurement System. The approach

enabled validation rules to be separated from business objects and enabled those rules to be specified by business users rather

than software developers. The approach uses a Rule Engine pattern to model and apply rules; it takes advantage of the hierarchical

nature of the data structure of the business object being validated.

Categories and Subject Descriptors: D.2.11 [Software Engineering]: Software Architectures—Patterns; K.6.3 [Management of

Computing and Information Systems]: Software Management—Software Development; D.2.4 [Software Engineering]:

Software/Program Verification—Validation

General Terms: Design, Documentation

Additional Key Words and Phrases: Rule engine, Business rules, Rule-based validation

1. INTRODUCTION

Consider a scenario where Alice, an oilfield engineer, is preparing a Real-Time Measurement System for
deployment. This system consists of various measurement devices that acquire, transmit and record data.
The system will be deployed in a remote drilling operation where it has very limited communication ability
with the control center and must operate autonomously. Therefore, it is of the utmost importance that the
system is configured correctly before it is deployed— that is, the System Configuration file is thoroughly
verified against all applicable requirements.

Alice attempts to validate this System Configuration file, an XML file, by manually loading it up in a viewer
and soon realizes that it is a very time-consuming and error-prone task. The System Configuration must
satisfy several diverse and possibly conflicting requirements that come from different sources (Figure 1).
The System must be configured to serve the needs of the Data Analysts, Operation Supervisors and
Acquisition Supervisors; at the same time it needs to follow all the device specifications by the
manufacturers of the different devices. Some devices are not compatible with each other when they are
not running particular firmware versions. Moreover, the validation requirements change depending upon
the location where the Measurement System is being deployed (Figure 2). Alice needs software that can
help automate and manage this task of validating the complex System Configuration file.

The above scenario is an example where:

 A business object (the System Configuration) is very complex and contains a hierarchy of configurable
components (Measurement Devices).

 Validating the state of this business object before deployment is of utmost importance to the system.

 The business requirements often validate one or more components within the business object.

 The requirements for one component can be affected by the state of another component.

 Requirements come from different sources and change rapidly with various factors like time, location,
or purpose for which the system is being used.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. A
preliminary version of this paper was presented in a writers' workshop at the 20th Conference on Pattern Languages of Programs
(PLoP). PLoP'13, October 23-26, Monticello, Illinois, USA. Copyright 2013 is held by the author(s). HILLSIDE 978-1-941652-00-8

2

A typical approach to automating the validation process is by implementing the business rules within the
body of methods of the business objects. In this approach, however, the business rules are tied to the
objects which they apply to. Hence it is hard to maintain code when business rules change very often,
because changing one rule or condition can cause side-effects and compromise code quality. Moreover,
this approach would lead to Scattered Rules (Arsanjani 2001), where business rules are typically
scattered across the application and are difficult to manage.

Another approach for validating business objects is by implementing a Validator object with various
methods to check and validate the business object (Figure 3). This approach is similar to the RULE

Figure 1: Business requirements are imposed by various sources

Data
Analyst

Operation
Supervisor

Device
Manufacturer

Data Acquisition
Engineer

I want high
resolution real-time

data

I want to monitor
system health

indicators at all times

Device D is
compatible with

Device E only if it has
the latest Firmware

Measurement X and
Y must always be

sent together for the
computation engine

Figure 2: Business requirements change with location of operation

Location 1 crew Location 2 crew

We want high
precision data with

devices that can
withstand tough

weather conditions

We want low
precision data at

faster transmission
rates

Figure 3: Code cluttered with If-Then statements with single Validator object

3

METHOD PATTERN (Arsanjani 2001). This approach is better than having rules embedded in the
business object itself as the rules are not strongly coupled with the business object and can be changed
without side-effects to the object. However, in our case, the validation rules for the business object
change depending upon multiple factors including the interaction between the different component
objects within the business object. Hence, this approach would cause the code to be cluttered with nested
If-Then statements attempting to accommodate the various scenarios under which a rule is applicable.
Moreover, business users cannot change the rules themselves. They would still have to submit requests
to the software development team whenever they need to add, delete or update any validation rules.

In this paper, we document an approach that we used to successfully automate this validation process for
a complex business object— a System Configuration object— used to configure a Real-Time
Measurement System.

In our approach, we use patterns in the Rule Object Pattern Language (Arsanjani 2001). We use the
SPECIFICATION PATTERN (Fowler and Evans) to check whether our business object satisfies a
particular rule or specification. We use the RULE OBJECT pattern to create a rule object corresponding
to every validation requirement, thus separating the validation rules from the objects that they validate.
We use the COMPOSITE RULE OBJECT pattern or the COMPOSITE SPECIFICATIONS pattern to
enable definition of complex rules by composing simple rules. We use the RULE ENGINE pattern to
externalize rules into files and load them during run-time. Together these patterns provide a robust and
extensible architecture for managing validation rules in a business context which keeps changing rapidly
with time and location. We created a Domain Specific Language which allowed users to specify rules in
(Object, Property, Constraint) sets. We also took advantage of the hierarchical nature of the business
object to create a Hierarchical Rules structure.

The remainder of this paper is organized as follows.

 The Problem (Section 2) and Forces (Section 3) sections define the problem and describe the various
factors and aspects that need to be resolved.

 The Solution (Section 4) describes our approach, starting with an overview and subsequently
explaining the details in several sub-sections.

 The Resulting Context (Section 5) describes how the various forces in the problem have been
addressed by our solution.

 The Limitations and Future Work (Section 6) explores on the limitations of this solution and what could
be done in the future to improve it.

2. PROBLEM

When the requirements for validating a complex business object come from multiple sources and change
rapidly, then the validation process can easily become unmanageable and messy. How can you automate
such a validation process so that it is robust, extensible and easy to manage?

3. FORCES

Rules can be applied at various levels of the hierarchy of the business object. Some rules validate the
whole business object whereas other rules validate various components of the object. As shown in Figure
4, the System Configuration object contains Data Format objects, which in turn contain Data Point objects.
Some rules might validate individual Data Points, whereas other might validate multiple Data Formats.
Yet other rules might validate the whole System Configuration itself.

Rules originate from various sources. As shown in Figure 2, validation rules can come from different
sources— Data Analysts, Data Acquisition Engineers, Device Manufacturers, Operation Supervisors etc.

Rules need to change rapidly depending upon several factors. Depending upon the location, time or
purpose of operation of the Measurement System, the validation rules can change. So the user should be
able to choose which rules should be applied when. Moreover, rules change when newer versions of
device hardware and software are available.

4

Rules can be pretty complicated often depending upon complex interactions between the various
components in the system. Validation rules on certain components of the business object can depend
upon the state of other components within the business object. For example, if the firmware (software)
version of a device Device-A is less than 5.0 then the Advanced Temperature Data Point cannot be used
for another device Device-B.

4. SOLUTION

The solution involves identifying the specific objects within the system that have to satisfy the different
requirements. The requirements must be expressed as rules in the object-property-constraint language
(discussed in details in the next section). Users are able to create rules via a Rule Builder library. The
Rule Engine component validates the overall data structure against the rules (requirements) specified by
the users.

Rule Engine Approach

identify the objects within the system which have to satisfy requirements.

for each object that has a requirement, identify:

 which property of the object has the requirement, and
 what is the constraint imposed by the requirement.

create a Rule Library that enables requirements to be expressed as object-property-constraint rules.

create a Rule Builder Library which enables creation of rules for objects within the system.

create a Rule Engine that validates the system against a set of rules (requirements).

The following discussion starts with an overview of the implementation process. The later sections delve
into details of the individual steps in the implementation process. Most sections contain examples to
clarify details.

4.1 Implementation Overview

The implementation starts with expressing requirements as rules that the System Configuration must
satisfy. A rule is a constraint imposed on a particular property of an object. This object can be any
component within the business object being validated. The System Configuration itself is the root object
which contains all the other objects.

4.1.1 Expressing requirements as rules

Let us assume that a client has the requirement that when the Measurement System is stationary, then
the Temperature data should be transmitted at least once every 2 seconds. This requirement can be
expressed as a rule in the following manner.

Rule: The Temperature data point within the Stationary data format should have its Update Rate less
than 2 seconds

Object Property Constraint+ +=Rule

5

Rules can be created for any object at any level of the hierarchy within the System Configuration. As
shown in the Figure below, the System Configuration contains Data Formats and other objects. There are
multiple Data Formats and each Data Format contains multiple Data Points. The rule above applies to a
particular Data Point (Temperature) within a particular Data Format (Stationary Format) inside the System
Configuration.

The Rule Library enables creation of such rules for the various Objects in our system.

Figure 4: A rule can be created for any object inside the hierarchy

4.1.2 Validating Requirements via Rules

After requirements are entered as rules, the System Configuration object must be validated against these
rules. The Rule Engine accomplishes this task. The Rule Engine loads requirements as rules. For each
rule it checks whether the System Configuration object satisfies that rule. If a rule is not satisfied, it
appears in an error log with a diagnostic message and the details of the error (which component within
the hierarchy did not satisfy the rule etc).

Rule Validation Approach

for each rule in list of available rules, do:
 check if rule is satisfied by the system configuration.
 if rule is not satisfied:
 add rule to the list of errors.
 add description of the rule to the error log.

4.2 The Rule Interface

All rules in the Rule Library implement the Rule Interface.
Rules can be applied to various Objects within the System
Configuration. The Rule interface for an Object must
implement a method called IsSatisfiedBy(Object). This

Object Property Constraint

The Temperature data point within
the Stationary data format

Update Rate Less Than 2 sec+ +=Rule

System
Configuration

Stationary Data Format

Slow Moving Data Format

Fast Moving Data Format

…

Stationary Format
Data Points

Temperature

Temperature Blended

Pressure External

…

Data
Formats

Data Formats

Device List

Device Configurations

…

6

method validates whether the rule is satisfied by that particular object.

4.2.1 A Rule Example

Let us assume there is a requirement that when the Measurement System is moving fast, then the size of
data packets transmitted by the system should be less than 180 bits (send small data packets because of
unreliable wireless communication). We know that when the Measurement System is moving fast, then it
transmits data packets according to the data format called the Fast Moving data format. Hence, the
requirement stated above could be translated to the following rule:

Rule: The Fast Moving data format should have its Size less than 180 bits

This is a rule that validates some property of a Data Format; so it is a Data Format Rule. A Data Format
Rule must implement the Rule<Data Format> interface. It has a method IsSatisfiedBy(Data Format)
which returns whether the rule was satisfied by that particular Data Format.

If we assume that the above mentioned Rule is called the maxSizeRule and the Fast Moving data format
is represented by the object fastFormat, then:

Similarly a Data Point Rule (rule that validates a particular Data Point within a Data Format) must
implement the IsSatisfiedBy(Data Point) method.

4.3 Hierarchy of Rule Classes

In the previous section, we examined the Rule Interface for objects within the System Configuration. We
now know that rules can be created for any object. For example:

 If the System Configuration needs to be validated, a System Configuration Rule should be created.

 If a Data Format needs to be validated, a Data Format Rule should be created.

 If a Data Point needs to be validated, a Data Point Rule should be created.

At the heart of the solution lies a relationship between the different types of Rule classes. There is an
inheritance hierarchy among these rule classes which is based on how the data is structured in the
business object being validated by the rules. The data structure of the System Configuration object
determines the hierarchy of Rule classes.

rule.IsSatisfiedBy (object)

true if the rule is satisfied by the object

false if the rule is not satisfied by the object

Object Property Constraint

The Fast Moving data format Size Less Than 180 bits+ +=Rule

maxSizeRule.IsSatisfiedBy (fastFormat)

true if the size of fastFormat is less than 180 bits

false if the size of fastFormat is not less than 180 bits

7

4.3.1 Data Structure of the System Configuration object

Figure 5: Data Structure of the System Configuration object

The figure above shows a part of the data structure of the System Configuration object. The System
Configuration contains a list of Data Format objects and a list of Device objects. Each Data Format object
contains multiple Data Point objects. The objects have their own properties. The Data Format object
contains properties like its Name and Size. The Data Point object has properties like its Name, Size and
Update Rate. The Device object has properties like its Name and Firmware Version (the version of the
software that is used to operate the device).

Note: In the following discussion, System Configuration is called the Parent Object for Data Format as

Data Format objects are contained within System Configuration objects. Data Format is thus the Child
Object for System Configuration. Similarly, Data Format is the Parent Object for Data Point and Data
Point is the Child Object for Data Format.

System Configuration

Data Formats

Device List

…

Data Format

Device

Data Points

Name

Size

Data Point

Firmware
version

Name

Name

Size

Update Rate

…
…

…

8

4.3.2 Hierarchy of Rule Classes

The figure above shows the Rule Class hierarchy. System Configuration Rule is the root. All rules derive
from System Configuration Rule; so all rules are System Configuration Rules.
The System Configuration contains a number of Data Formats. So, a Data Format rule is a System
Configuration Rule that validates a particular Data Format within the System Configuration.

A Data Point Rule is a Data Format Rule that validates a particular Data Point within the Data Format.
Similarly, a Data Point Rule is also a System Configuration Rule because it validates a particular Data
Point within a particular Data Format of the System Configuration.

4.3.3 A Rule Example

Let us assume a requirement that the System Status Word must be transmitted four times within a data
packet when the Measurement System is operating in the Diagnosis Mode. This helps the diagnostic
tools detect if there are any components malfunctioning within the system. We know that in Diagnosis
Mode, the Diagnostic Data Format is transmitted; hence this requirement can be expressed as the
following rule.

This is a Data Point Rule, because it validates the Count property of the System Status Word data point.
At the same time, it is also a Data Format Rule because it validates the Diagnostic data format. This rule
is also a System Configuration Rule because by validating the Diagnostic data format against the
requirement, it validates that the System Configuration satisfies the requirement.

Rule <Object> is also a Rule <Parent Object>

A Rule for an Object is also a Rule for its Parent Object because it validates a particular Object within the Parent Object.

Object Property Constraint

The System Status Word data point
within the Diagnostic data format

Count Equal To 4+ +=Rule

Figure 6: Hierarchy of Rule Classes

9

The advantage of having a hierarchical rule structure is that while rules can be created for any object
within the System Configuration, the Rule Engine can apply any rule to validate the System Configuration
object treating it as a System Configuration Rule. This way if there is one Data Point Rule, another Data
Format Rule, and a third Device Rule, the Rule Engine simply loads them all as System Configuration
Rules and applies the IsSatisfiedBy(System Configuration) method on them.

4.4 Object Identifiers

In the previous section, we examined the Hierarchy of Rule objects. We now know that all rules derive
from System Configuration Rule, but can be applied to various objects within the System Configuration.
An Object Identifier describes which object a rule applies to.

When creating a Data Format Rule:

 A Data Format Identifier must be specified which identifies the Data Format that this rule applies to.

When creating a Data Point Rule:

 A Data Point Identifier must be specified which identifies the Data Point within a Data Format that this
rule applies to.

 A Data Format Identifier must be specified which identifies the Data Format which contains the Data
Point that this rule applies to.

An Object Identifier gets the Object from its Parent

Object through the GetFrom(ParentObject)

method of the Object Identifier interface. Thus a
Data Format Identifier knows how to get that
particular Data Format from a System
Configuration, and a Data Point Identifier knows
how to get the required Data Point from a Data
Format.

Object Identifiers enable separation of the rule layer from the application layer. Retrieving different types
of objects from the System Configuration for rule validation does not require introduction of a lot of new
code into the original objects like System Configuration or Data Format.

rule.IsSatisfiedBy (system configuration)

true if the rule is satisfied by the system configuration

false if the rule is not satisfied by the system configuration

It does not matter whether the rule is a Data Point Rule or Data Format Rule or Device Rule

dataFormatID.GetFrom(systemConfiguration): Returns the particular DataFormat object within the
System Configuration object

dataPointID.GetFrom(dataFormat): Returns the particular DataPoint object within the
Data Format object

10

4.5 Rule Validation

4.5.1 Details of the Rule Class

As shown in the figure above, a rule for a particular object first needs to find the object within the parent
object and then determine whether the constraint is satisfied by its property.

Data Format Rule inherits from the System Configuration Rule. As shown below, it has to implement the

IsSatisfiedBy(SystemConfiguration) method. Inside this method, it extracts the particular Data
Format that the rule applies to by using the Data Format Identifier and then applies the

IsSatisfiedBy(DataFormat) method.

All Rule objects that directly derive from Data Format Rule only need to implement the
IsSatisfiedBy(DataFormat) interface. Similarly, the Data Point Rule only finds the particular Data

Point within a Data Format and implements a IsSatisfiedBy(DataPoint) method.

4.5.2 A Rule Example

Let us consider the rule example above (details in Section 4.3). This is a Data Point Rule that applies to
the System Status Word data point within the Diagnostic data format. Hence, the Data Point Identifier is
the name of the data point, System Status Word, and the Data Format Identifier is the name of the data
format, Diagnostic data format.

Figure 7: Details of Rule class

IsSatisfiedBy(parentObj: ParentObject)
obj: Object = this.objectID.GetFrom(parentObj)
return this.IsSatisfiedBy(obj)

IsSatisfiedBy(obj: Object)
return constraint.IsSatisfiedBy(property.ValueIn(obj))

Figure 8: Sequence of calls for validating a Data Point Rule

: Rule Engine

Is this rule satisfied by the

system configuration?

rule: System Configuration
Rule

rule: Data Format
Rule

rule: Data
Point Rule

Result

Result

Get the data format that this rule applies to

Is this rule satisfied by the data format?

Get the data point that this rule applies to

Is this rule satisfied by the data point?

constraint:
Constraint

Get the property and the constraint for this

rule

Is the constraint satisfied by the value of

the property in data point?

Result

Result

Object Property Constraint

The System Status Word data point
within the Diagnostic data format

Count Equal To 4+ +=Rule

11

The Figure 8 shows the sequence of calls that occur during validation of the Data Point rule example:

 The Rule Engine treats all rules as SystemConfigurationRule objects. It calls the

IsSatisfiedBy(SystemConfiguration) method to find out if this rule is satisfied by the system
configuration.

 In the SystemConfigurationRule class, the IsSatisfiedBy(SystemConfiguration) actually calls the

IsSatisfiedBy(SystemConfiguration) method of the DataFormatRule class, which in turn calls

the IsSatisfiedBy(DataFormat) method for the Diagnostic Data Format.

 The IsSatisfiedBy(DataFormat) method of the DataFormatRule class calls the

IsSatisfiedBy(DataFormat) method of the DataPointRule class.

 As the rule is actually a DataPointRule, it executes the IsSatisfiedBy(DataPoint) method for the
System Status Word data point. Inside this method it validates whether the count of this data point is
equal to 4.

4.6 Properties and Constraints

All Rule objects contain a Property and a
corresponding Constraint on that property. The
Property class represents a Property of an Object.
Examples are Size of a Data Format, Update Rate
of a Data Point etc. The Property object also knows
the value of the property in the selected object.

The Rule object also contains a Constraint object. All Constraint objects must implement the function
constraint.IsSatisfiedBy(property.value).

There can be different types of constraints
depending upon the types of properties. Table 1
shows some examples of Numerical and String
Constraints.

When creating a rule, the creator specifies the Property and the Constraint on the property.

In the rule examples in Sections 4.1.1, and 4.2.1, the rules were created with a LessThan constraint on
the UpdateRate and Size properties. In the rule example in Section 4.3.3, the EqualTo constraint was

constraint.IsSatisfiedBy(property.ValueIn(object)):
Returns whether the constraint has been satisfied by
the value of a particular property in the object

 Table 1: Typical Constraints

NUMERICAL CONSTRAINT STRING CONSTRAINTS

LessThan Contains

GreaterThan StartsWith

EqualTo EndsWith

NotEqualTo EqualTo

WithinRange

property.ValueIn(object): Returns the value of a property in a particular object

12

used on a Count property. Rules related to names and other strings use the string constraints. For
example, if there was a rule applicable to all Data Points that contained the word Temperature, then the
Contains string constraint can be used.

The Constraints and Properties depend upon the domain of application and are an important part of the
Domain Specific Language.

4.7 Rule composition

4.7.1 Rule Composition Operators

The Rule interface follows the COMPOSITE PATTERN (Eric Gamma et. al. 1994) which enables
combination of rules with other rules. The composite rules also implement the Rule interface. Hence they
behave just like any other rules. This is similar to the COMPOSITE SPECIFICATIONS pattern described
in Specifications (Fowler and Evans) or the COMPOSITE RULE OBJECT pattern described in the Rule
Object Pattern Language (Arsanjani 2001).

The And, Or, Not and Then methods enable rule composition by creating AndRule, OrRule, NotRule and
IfThenRule objects respectively. The figure below shows how the IfThenRule class implements the Rule
interface.

Figure 9: Rule Composition via the Composite Pattern

Figure 10: Example of IfThenRule implementation

13

Rule Type How to create Description

Or Rule rule1.Or(rule2) Satisfied when either rule1 or rule2 are satisfied

And Rule rule1.And(rule2) Satisfied when both rule1 and rule2 are satisfied

Not Rule rule1.Not() Satisfied when rule1 is not satisfied

If Then Rule rule1.Then(rule2) Condition: If rule1 is satisfied, then rule2 must be satisfied

The Table below shows details of the different composite rule types.

The various operators like Or, And, Not and IfThen augment the Domain Specific Language as they
enable creation of complex rules by combining simple using these operators.

4.7.2 Rule Composition Examples

Requirement: When the device is stationary then it must send Average Temperature data.

We know that there are two types of Average Temperature measurements – Average Temperature, and
Blended Temperature. The Stationary Data Format must contain at least one of them.

Object Property Constraint

The Stationary data format Data Point List Contains Average Temperature
Data Point

+ +=Rule 1

Object Property Constraint

The Stationary data format Data Point List Contains Blended Temperature
Data Point

+ +=Rule 2

Rule 1 Rule 2Or=Rule

Rule combination operators can be chained any number of times

rule1.And(rule2).Or(rule3).Not(rule4)…And(ruleN) is still a SystemConfigurationRule.

14

Requirement: The Advanced Computed Pressure measurement of the Smart Pressure Measurement
device is valid only for firmware versions 4.0 and above. This is a requirement from the Device
Manufacturer because new measurements for the Smart Pressure Measurement device are valid only for
the newer firmware versions. So, if the firmware version on the device is an older one, then its data
formats should not contain the new measurements.

Note: The above rule only checks the Stationary Data Format. To check all data formats via a single rule,

they can be combined via the And operator: format1Rule.And(format2Rule).And(format3Rule)…

5. RESULTING CONTEXT

Our approach resolved the various forces of our validation problem.

The use of Rule objects creates a clean separation between the business objects and the rules that
validate those objects. The Hierarchical Rules structure (Section 4.3) enables creation of rules at any
level of the hierarchy within the System Configuration object. Since all rules derive from
SystemConfigurationRule, hence the Rule Engine does not need to treat them differently. All rules
validate some parts or the whole of the System Configuration object.

The Object-Property-Constraint language makes it easy to represent as well as create rules. Users can
create rules via a simple User Interface that enables them to choose the Objects, their corresponding
Properties and what Constraints they would apply to those Properties. The RuleBuilder library handles
the job of exporting to and importing rules from XML files. Thus the different sources for the validation
requirements can create the rules that are relevant to them. The Device Manufacturer can create the
rules relevant to the devices. The Data Analysts, or Operation Supervisors can create rules relevant to
their operations. The Software Development team does not need to create and maintain rules. Their
responsibility is limited to maintaining the Domain Specific Language that is used to create rules.

The use of a Rule Engine helps externalize rules and load them during run-time. Thus, different users can
specify their own rule files that help them validate the business objects according to their customized
requirements.

The use of Rule Composition enables creation of complex rules by composing simple rules via the And,
Or, Not and IfThen operators. These operators are a part of the Domain Specific Language and can vary
depending upon the domain of application. Thus, all complex interactions between various components

Object Property Constraint

The Smart Pressure Measurement
Device

Firmware Version Less Than 4.0+ +=IfRule

Object Property Constraint

The Stationary data format Data Point List Contains Advanced Computed
Pressure Data Point

+ +=Rule 1

IfRule ThenRuleThen=Rule

Not(Rule 1)=ThenRule

15

can be easily managed by isolating the conditions for each component and combining them via the
operators.

6. LIMITATIONS AND FUTURE WORK

As with most Rule-Engine approaches, for our approach, the user-defined rules would need to be kept
simple and small in number (Fowler 2009). Thousands of complicated rules would be harder to manage
and would cause the system to be ineffective. There are several best practices established around
creation and management of business rules (Gladys 2003, Ronald 2003, Wan-Kadir and Loucopoulos
2004, 2008). These must be followed in order to ensure the success of our approach. Currently our
approach is only used to perform validation on the business object but we do not address the issue of
what should be done if the state of the object is not valid. Currently our rule objects have a
ErrorDescription property which generates an error message whenever the validation rule fails. The
approach would be very useful if it could automatically correct the state of the business object based on
the rules that failed. Constraint-based optimization approaches can be explored.

7. ACKNOWLDEGEMENTS

The author would like to thank colleagues Keith Ray, Andrey Gorodnov and Ed Tollefsen at
Schlumberger for vital suggestions and inputs throughout the development of the project. The author
would like to thank Lise Hvatum, who, through her constant feedback and encouragement helped the
author clarify and describe the patterns and ideas in his work. She has been a patient and dedicated
mentor throughout the development of this paper and this analysis would not have been possible without
her. The author is also grateful for the invaluable comments and suggestions from Filipe Correia, Joshua
Kerievsky, Juan Reza, Jeffrey Overbey and Russ Rubis at the author's workshop session at PLOP 2013.

16

REFERENCES

Arsanjani, A. 1998. GOOD: Grammar-oriented Object design, Position Paper for OOPSLA Workshop on Metadata and Active
Object Models, 1998, Vancouver, British Columbia.
Arsanjani, A. 2001. Rule object 2001: A pattern language for adaptive and scalable business rule construction, In Proceedings of the
8th Conference on Pattern Languages of Programs (PLOP 2001). IEEE Computer Society, 370 - 402.
Fowler, M. 1997. Analysis Patterns: Reusable Object Models. Addison-Wesley.
Fowler, M. 2003. Patterns of Enterprise Application Architecture, Addison-Wesley Professional.
Fowler, M. 2009. Should I use a Rule Engine. Retrieved May 01, 2014 from MartinFowler.com:
http://martinfowler.com/bliki/RulesEngine.html
Fowler, M., Parsons, R. 2011. Domain Specific Languages. Addison-Wesley.
Fowler, M and Evans, E. Specifications. Retrieved May 01, 2014 from Martin Fowler: Articles:
http://www.martinfowler.com/apsupp/spec.pdf
Gladys S. W. Lam. 2003. The Hidden Secrets about a Business Rule, Business Rules Journal, Vol. 4, No. 7 (July 2003)
Gamma, E., Helm, R., Johnson, R., Vlissides, J. 1994. Design Patterns: Elements of reusable Object-oriented Software. Addison-
Wesley.
Loucopoulos, P., Kadir, W. M. 2008. BROOD: Business Rules-driven Object Oriented Design. Journal of Database Management
(JDM), 19(1), 41-73.
W. M. N. Wan-Kadir and Pericles Loucopoulos. 2004. Relating evolving business rules to software design. J. Syst. Archit. 50, 7 (July
2004), 367-382. DOI=10.1016/j.sysarc.2003.09.006 http://dx.doi.org/10.1016/j.sysarc.2003.09.006
Ronald G. Ross. 2003. Principles of the Business Rule Approach. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA
Yoder, J.W., Balaguer, F., Johnson, R. 2001. Adaptive Object Models for Implementing Business Rules. Position Paper for Third
Workshop on Best-Practices for Business Rules Design and Implementation, OOPSLA (2001)

17

Appendix

1. Definition of Terms

Real-Time
Measurement System

A system or suite that consists of various measurement devices that acquire,
transmit and record data. Most of the systems referred to in this paper are
deployed in environments where the measurement system and the backend
control and recording system are far apart and with very limited
communication ability (i.e. low bandwidth and possibly intermittent
connectivity and a risk of signal distortion). Examples are systems used in
wireless submarine ROV operations, space operations with communication
between an earth station and remote equipment, and measurement and
logging while drilling operations.

Device This represents a physical measurement device. A device typically has
multiple sensors which can measure physical properties like temperature,
pressure, resistivity etc. The software or firmware that a device runs can be
updated to provide enhanced functionalities and advanced measurements.
Hence, the firmware version of a device is very important entity

Data Format This represents the structure of a data packet that is transmitted by the Real-
Time Measurement System to the backend control and recording system. The
Measurement System has different data formats for the different types of data
depending upon the purpose and location of its deployment. The resolution of
the data captured also varies depending upon the movement of the
Measurement System. So, if the System is moving fast, it automatically starts
sending 'Fast Moving Data Format' data packets. Or, if the System is in
Diagnosis mode, it starts sending 'Diagnosis Data Format' data packets.

Data Point This represents a single data field within a Data Format. A data point can
represent several entities. Typically, a data point is a physical measurement
(like Temperature, Pressure etc.) or System Health Monitoring data (like
Status words from various devices). A Data Point has several properties like
Name, Identifier, Size, Device List (which devices are capable of acquiring
this data) etc.

2. Validating House Design Plans - A Similar Problem

Though our approach was applied for validation of System Configurations for a Real-Time Measurement
System, this pattern could possibly be used for validation of any data structure that contains a complex
hierarchy of other data structures.

The solution documented in this paper could be used to validate the design plans for a house. A House
Design could contain details of the designs for several rooms. Each of these rooms would have Room
Design plans. Rooms could in turn have design plans for smaller objects like Doors, Windows, and
Furniture etc. The requirements for the House Design can come from various people - the customer, the
interior decorator, the builder and so on. There could be requirements for the entire house (the number of
stories it should have, the percentage of land it should occupy, options and specifications for a pool, the
number of bedrooms it should have, etc..). Also there could be requirements for some very specific
objects like the window of the master bedroom (size, position, aspect ratio and so on).

18

Using our approach requirements can be implemented as rules at any level of the House Design data
structure. All rules are House Design requirements, whether it is a rule imposed on the size of the main
window of the master bedroom or on the number of floors of the house. For applying rules on component
objects, there are object identifiers like “master bedroom” which help to identify the particular Room
Design object that a rule applies to. There could be a “main window” object within the Room Design which
could be used to impose a rule on a smaller component of the design.

