
A Typology Based Approach to Assign Responsibilities to

Software Layers

LEO PRUIJT, HU University of Applied Sciences, Utrecht, Netherlands

WIEBE WIERSEMA, HU University of Applied Sciences, Utrecht, Netherlands

SJAAK BRINKKEMPER, Utrecht University, Utrecht, Netherlands

In software architecture, the Layers pattern is commonly used. When this pattern is applied, the responsibilities of a software system
are divided over a number of layers and the dependencies between the layers are limited. This may result in benefits like improved
analyzability, reusability and portability of the system. However, many layered architectures are poorly designed and documented.
This paper proposes a typology and a related approach to assign responsibilities to software layers. The Typology of Software Layer
Responsibility (TSLR) gives an overview of responsibility types in the software of business information systems; it specifies and
exemplifies these responsibilities and provides unambiguous naming. A complementary instrument, the Responsibility Trace Table
(RTT), provides an overview of the TSLR-responsibilities assigned to the layers of a case-specific layered design. The instruments aid
the design, documentation and review of layered software architectures. The application of the TSLR and RTT is demonstrated in
three cases.

Categories and Subject Descriptors: D.2.11 [Software Engineering]: Software Architectures—Patterns

General Terms: Software Architecture, Design, Patterns

Additional Key Words and Phrases: Software architecture, Layers pattern, Layered style, Layers, Responsibility, Typology

ACM Reference Format:

Pruijt, L., Wiersema, W., Brinkemper, S. 2013. A Typology Based Approach to Assign Responsibilities to Software Layers – (October
2013), 14 pages.

1. INTRODUCTION

The Layers pattern, or Layered style, is one of the most common patterns used in software architecture
(Clements et al. 2010, Harrison & Avgeriou, 2008). The concept of layering can be traced back to the
works by Dijkstra (1968) and Parnas (1972). Buschmann et al. described the Layers pattern extensively
(1996). Avgeriou and Zdun (2005) have shown that layers are also described as patterns or styles by many
other authors. For a definition we cite Larman (2005) who summarized the essential ideas of the Layers
pattern as: “Organize the large-scale logical structure of a system into discrete layers of distinct, related
responsibilities, with a clean, cohesive separation of concerns such that the 'lower' layers are low-level and
general services, and the higher layers are more application specific. Collaboration and coupling is from
higher to lower layers; lower-to-higher layer coupling is avoided”. An example of a layered design, shown in
Fig. 1, represents a strict layered design in which the following usage rules are respected: usage
relationships are from top to bottom; neither back call nor skip call usage is allowed.

Fig. 1 Example of a strict layered design

Applying the Layers pattern will improve software qualities, like analyzability, reusability and portability of
the system, but may also impose liabilities like a lower efficiency, or more rework when a change affects
several layers. When a layered view of architecture is drawn up, a number of design decisions must be

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. A preliminary
version of this paper was presented in a writers' workshop at the 20th Conference on Pattern Languages of Programs (PLoP).
PLoP'13, October 23-26, Monticello, Illinois, USA. Copyright 2013 is held by the author(s). HILLSIDE 978-1-941652-00-8

User Interface

Application

Technology

Allowed to use

Not allowed to use

Page - 2

taken, preferably explicit and documented (Kruchten, Lago, & Vliet, 2006). For example, the following
design questions should be answered:

 Which layers are distinguished?

 Which types of responsibility are assigned to each layer?

 Which usage relationships between the layers are allowed?

Unfortunately, the layered designs are often poorly defined and many violate the principles for which layers
are designed (Clements & Nord 2000, Clements et al. 2010). In practice and in student projects, we
encounter many layered designs describing or showing only the layers and the names of the layers,
without a specification of the contents, the communication rules, and a justification. Such an architectural
product gives little guidance to the developers. For instance, another layered model with three layers
(Presentation, Domain, and Technology), could represent the same-layered design, as the one shown in
Fig.1, but it could be substantially different as well. The names of the layers do not clarify the exact
responsibilities of the layers, e.g. where the control of the task is located, or where the status is maintained.
Therefore, a specification of the responsibilities of the layers is needed.
We aimed our research on the analysis of the causes of these problems and on the provision of
instruments to design layered architectures of high quality. One cause of the problems is described by
Clements et al. (2010): "The layered view of architecture, shown with a layer diagram, often is poorly
defined, and so often misunderstood". In addition, we hypothesize another cause, namely that the
terminology regarding layered designs is not clear and sometimes downright contradictory. A uniform
classification is lacking; different authors use varying and sometimes conflicting terms for layers, types of
logic and types of responsibilities. A good example is the popular concept "application logic" or "application
layer". Application logic is interpreted substantially diverse by different authors. Larman (2005) describes it
as: “handles presentation layer requests; workflow; session state; window/page transition; …”, whereas Erl
(2008) defines it as: “an automated implementation of business logic …” Even, the concept of "domain
layer" has different meanings in different layered designs.

The starting point of our investigation was the observation that to answer the design question “Which types
of responsibility are assigned to each layer?”, a uniform classification for the naming and characterization
of types of responsibilities in software layers could be useful. This perception resulted in the following
research questions, which were leading in our study: 1) What types of responsibilities are distinguished in
layered architectures; 2) How can these types of responsibility be named and defined unambiguously; 3)
How can a typology of responsibilities be applied in practice?
To answer these research questions, we studied leading literature about software layers to get an overview
of common types of responsibilities and the names given to them. Based on this literature, we constructed
the Typology of Software Layer Responsibility (TSLR). The TSLR gives an overview of the different types
of responsibility, gives them unambiguous names, specifies them and exemplifies them. To enhance the
application of the TSLR in practice, we designed the Responsibility Trace Table (RTT). An RTT shows the
assignment of TSLR-responsibilities to the layers of a case-specific architecture, without the need for
extensive textual descriptions. The TSLR and RTT may be used to design and document a particular
layered design and to assess the quality of existing layered designs. Finally, to evaluate and improve the
typology and its related trace table, the instruments were reviewed by experts in the field of software
architecture, applied in case studies, and used in training courses for bachelor students.

In this paper, we propose our typology in Section 2, and an approach to apply the TSLR for different
practical purposes in Section 3. Next, Section 4 illustrates the application of the TSLR and RTT by means
of three cases. Thereafter, Section 5 discusses our research approach, the artifacts and the limitations,
and Section 6 presents the conclusions and an outlook to future work.

2. TYPOLOGY OF SOFTWARE LAYER RESPONSIBILITY

The Typology of Software Layer Responsibility (TSLR) provides an inventory of distinct types of
responsibility commonly found in the software of business information systems. The TSLR identifies and
orders responsibilities, gives them unambiguous names and specifies them. The included responsibilities
are distilled from leading literature on layers in the field of software architecture.
The TSLR consists of a classification schema and a textual specification of the responsibilities. The TSLR
is not intended as a layered design itself, but is intended to be used as a reference, when a system’s

Page - 3

layered design is drawn up or reviewed. For example, a software architect may specify the responsibilities
of a system specific layered design in terms of the TSLR responsibility types, which saves work, and check
his design on completeness, which may contribute to the quality of the layered architecture. Furthermore,
the TSLR is intended to help software engineers to determine the responsibility type of a concrete fragment
of functionality within a system. An important competence, since functionalities have to be mapped to
design units with appropriate responsibilities, in conformance of the software architecture, and
consecutively to the software units that implement these design units.

2.1 Responsibility

Responsibility in the context of software architecture is defined by Clements et al. (2010) as “a general
statement about an architecture element and what it is expected to contribute to the architecture. This
includes the actions that it performs, the knowledge it maintains, the decisions it makes or the role it plays
in achieving the system’s overall quality attributes or functionality”. We adopt this definition and the notion,
from the same source, that a layer (as all software architecture modules) is characterized by its set of
responsibilities.

The TSLR provides an overview of logical responsibility types. Logical means here "free of
implementation choices", since the typology is not intended for a specific platform, orientation or
deployment strategy, like in tier models. The layered style is a modular style (Clements et al., 2010) and
does not focus on the runtime behavior, or the allocation of software components.The TSLR is primarily
aimed to be useful in the context of business information systems, since most literature used as basis for
the typology is focused on this type of systems. The typology may also be useful for embedded systems,
control systems, games, et cetera, but extensions may be necessary.

2.2 Classification Schema

The classification schema, shown in Fig. 2, provides an overview of the responsibility types distinguished
within the TSLR. The responsibility types are specified in the next sub-section.Three levels of abstraction
are distinguished within the classification schema:
(1) Top level, where Software System responsibility represents all the logical responsibilities of a software

system.

(2) Intermediate level, where compound responsibility types reside: the five main types of responsibility:
Consumer Interface responsibility, Task Specific responsibility, Domain Generic responsibility,
Infrastructure Abstraction responsibility and Infrastructure responsibility. The main types of
responsibility are distinguished on the basis of potential reuse.

(3) Bottom level, where sub-responsibilities represent singular types of responsibility. The TSLR
distinguishes thirteen sub-responsibilities within the five main types of responsibility.

Fig. 2 TSLR classification schema

Software System

responsibility

Consumer

Interface

responsibility

Interface

Construction

Event

Capturing

Event

Processing

Task

Specific

responsibility

Task

Control

Task State

Maintenance

Task Specific

Operation

Domain

Generic

responsibility

Domain Generic

Service Control

Domain Generic

Data Transfer

Domain Generic

Operation

Infrastructure

Abstraction

responsibility

Platform

Abstraction

Application

Abstraction

Infrastructure

responsibility

Platform

Service

Application

Service

Page - 4

2.3 Specification of the Responsibility Types

The main types of responsibility are specified below, together with their sub-responsibility types. For each
main type of responsibility, design criteria are specified to provide guidance, when the TSLR is used in
practice, to identify the responsibility type of a concrete fragment of functionality. The design criteria focus
on reusability, since the primary criterion to differentiate between the different main types of responsibility
is reuse.

2.3.1 Consumer Interface Responsibility

Description: Consumer Interface responsibility takes care of establishing and maintaining communication
with a consumer of a system service in a manner appropriate to the task of the consumer. The consumer
can be an end user communicating via a user interface, but also an automated client system
communicating via a service interface. Consequently, interface and events may have different forms.

Design criteria: Responsibility is...

 Included, when it is specific to the interface of a task.

 Excluded, when it is reusable across different interfaces, which support the same task.

Table 1 Sub-responsibilities of Consumer Interface responsibility

SUB-RESPONSIBILITY DESCRIPTION EXAMPLES

Interface Construction Provide an interface to the consumer
with information and/or control
appropriate to the task of the
consumer.

 GUI building

 Report layout and presentation

 Speech interface

 Service interface

Event Capturing Capture events from the consumer. Recognizing input from consumer: data, control, speech

 Knowledge about when an event is captured

Event Processing Process events from the consumer
as far as it concerns Consumer
Interface responsibility.

 Deciding what to do with the input (data, speech ...)

 Format check on input data

 Delegation

2.3.2 Task Specific Responsibility

Description: Task Specific responsibility takes care of the coordination of the task, the maintenance of the
task state and the execution of functionality specific to the task. A task is a unit of work, to be performed as
a whole, which provides the consumer with a result of value. A task is generally, in terms of Cockburn
(1997), at the user-goal level. Task Specific responsibility is potentially reusable across different interfaces
(e.g. on different platforms) of the same task.

Design criteria: Responsibility is...

 Excluded, when it is specific to a task interface.

 Included, when it is specific to a task.

 Excluded when it is potentially broadly reusable.

Table 2 Sub-responsibilities of Task Specific responsibility

SUB-RESPONSIBILITY DESCRIPTION EXAMPLES

Task Control Coordinate the task.

Decide what needs to happen
when an event takes place.

 Workflow, orchestration, page flow

 Control of task specific sub-responsibilities

 Delegation

Task State
Maintenance

Track and maintain the task state. Tracking which data is selected, inserted, or changed

 Transaction state control

Task Specific Operation Perform actions and
transformations exclusive to the
task.

 Conversion of data

 Task specific constraints

 Task specific transformations and computations, like
calculating report totals, joining data, sorting data

Page - 5

2.3.3 Domain Generic Responsibility

Description: Domain Generic responsibility is responsible for the coordination and the execution of
functionality dealing with concepts, information and rules of the business. Domain Generic responsibility
has to do purely with the problem domain and is potentially reusable across different tasks.

Design criteria: Responsibility is...

 Excluded, when it is specific to a task.

 Included, when it is specific to the business.

 Excluded when it has knowledge of infrastructure that has to be abstracted.

 Excluded, when it is reusable across different business applications.

Table 3 Sub-responsibilities of Domain Generic responsibility

SUB-RESPONSIBILITY DESCRIPTION EXAMPLES

Domain Generic Control Coordinate the activities needed to
handle requests.

 Control of domain generic sub-responsibilities

 Delegation

Domain Generic Data
Transfer

Retrieve and store data. Selecting and sorting data

 Storing new or changed data

Domain Generic
Operation

Execute domain generic actions
and transformations.

 Generic constraints

 Generic transformation rules

 Maintaining entity state

2.3.4 Infrastructure Abstraction Responsibility

Description: Infrastructure Abstraction responsibility is responsible for the translation of infrastructure
independent requests into requests dependent on the infrastructure. Infrastructure Abstraction
responsibility is separated from other responsibility types, when needed to meet quality requirements like
portability, analyzability, and reusability.

Design criteria: Responsibility is...

 Excluded, when it is specific to a domain or task.

 Included, when it has knowledge of infrastructure that has to be abstracted.

 Excluded, when it is part of an infrastructure platform or infrastructure application.

Table 4 Sub-responsibilities of Infrastructure Abstraction responsibility

SUB-RESPONSIBILITY DESCRIPTION EXAMPLES

Platform Abstraction Encapsulate functionality
dependent on an application
platform element.

 Adapter to a specific database

 Functionality formatted to make use of a specific object
relational mapping framework

 Adapter a specific security framework

Application Abstraction Encapsulate functionality
dependent on an infrastructure
application.

 Adapter to a specific electronic mail client

 Adapter to a specific document editor

Page - 6

2.3.5 Infrastructure Responsibility

Description: Infrastructure responsibility is responsible for broadly reusable functionality, non-specific to the
business. It may be bought, but also self-built, e.g. utilities. Since there are a huge number of infrastructural
services, the TSLR connects here with the TOGAF Technical Reference Model (TRM) (The Open Group,
2009). The TRM defines and exemplifies the concepts Infrastructure Application and Application Platform.
Furthermore, it provides a typology of the services of the Application Platform.

Design criteria: Responsibility is...
Excluded, when it is specific to a business application.
Included, when it is reusable across different applications and/or businesses.

Table 5 Sub-responsibilities of Infrastructure responsibility

SUB-RESPONSIBILITY DESCRIPTION EXAMPLES

Platform Service Provide generic application support
(by the technology components of
hardware and software).

 Data interchange service

 Data management service (DBMS, OODBMS, ORB …)

 Network service

 Operation System Service

 Software engineering service (Programming language …)

 Security service (Identification, Authentication …)

Application Service Provide general-purpose business
functionality (by Commercial Off-
The-Shelf software).

 Electronic mail client

 Document editing and presentation

 Spreadsheets

 Workflow management

2.4 Justification of the TSLR and Related Work

2.4.1 Founding Literature

The responsibility types in the TSLR are distilled from leading literature in the field of software architecture
and layers. We performed a literature study based on the search strings "software", "layer", "architecture",
"responsibility" and their synonyms in various combinations. We found the most valuable sources to be
books, well-established in the software architecture community; an experience matching with a systematic
literature review conducted by Savolainen and Myllärniemi (2009).

The first category of sources consulted in the course of this investigation describes the basics of the Layers
pattern and guidelines to design a layered architecture (e.g., Bass et al. 2012, Buschmann et al. 1996,
Clements et al. 2010, Evans 2004, Fowler et al. 2003, Larman 2005, Shaw & D. Garlan 1996). Authors
often refer to these sources, when the subject of layers is addressed. Evans (2004), Fowler et al. (2003)
and Larman (2005) extensively describe layered designs suitable for business systems. Evans
distinguishes four layers, Fowler three layers, while Larman specifies six common layers in an information
system's logical architecture. The second category of sources describe a specific layered design, useful
within the scope of this study (e.g., Allen & Frost 1997, Gorton 2006, MSDN 2009, Snoeck et al. 2000, The
Open Group 2009). The third category of sources discusses layered designs for service oriented
architectures (e.g., Erl 2008, Krafzig et al. 2005, Lankhorst 2009, Winter & Fischer 2007). Service layers
cannot be compared straightforwardly with software layers, since they do not focus on the internal
structuring of an application, but distinguish services at different levels of abstraction.

2.4.2 Design Decisions with Regard to the Main Types of Responsibility

The names of the main types of responsibility within the TSLR are intended to be as clear and
unambiguous as possible. Terms used in the founding literature, like application logic, business logic and
even domain do not make clear what is meant by them, and the terms are used for quite different
responsibilities (Larman, 2005). An interesting example of different definitions of “domain” and “business
logic” by two authors in the same book makes clear that the responsibilities can differ considerably. Fowler

Page - 7

describes domain as "logic that is the real point of the system”, “also referred to as business logic" (Fowler
et al. 2003, p. 20). On the other hand, Stafford divides "business logic into two kinds: domain logic, having
to do purely with the problem domain (such as strategies for calculating revenue recognition on a contract),
and application logic, having to do with application responsibilities"(Fowler et al. 2003, p. 134).

To prevent confusion, new, semantic-rich names are chosen within the TSLR.
Consumer Interface responsibility is selected as name, because it is a semantically rich name.
Furthermore, it is not frequently used and burdened, like Presentation and User Interface, which are often
used as names for layers not only given Consumer Interface responsibilities, but also given task specific
responsibilities.
Task Specific responsibility is business logic, exclusive for a task and not commonly reusable. It maps to
the second kind of business logic in Stafford's description. The term "Task Specific responsibility" is
derived from the term task-centric service as used by Erl (2008).
Domain Generic responsibility within the TSLR maps to the first kind of business logic in Stafford's
description. The term is chosen to make clear that this type of business logic is broadly reusable within the
software system, contrary to Task Specific responsibility. The distinction between Task Specific
responsibility and Domain Generic responsibility is also described by Alan and Frost (1997) as the
distinction between user and business service, and by Larman (2005) as the distinction between the
application layer and domain layer.

The distinction between Infrastructure Abstraction responsibility and Infrastructure responsibility also
requires some explanation. Evans (2004) distinguishes one Infrastructure layer only. On the other hand,
Larman (2005) distinguishes three layers containing broadly reusable logic (Business Infrastructure,
Technical Services, Foundation), but the criteria used, are a bit vague. Within the TSLR, the Infrastructure
Abstraction responsibility is specific to the business application, while Infrastructure responsibility is not
specific and enables reuse across different business applications.

2.4.3 TSLR Meta-model

The meta-model of the TSLR, as shown in Fig. 3, matches the structure of the proposed typology. The
meta-model allows for possible future extensions in width and depth and may be used to provide tool
support. The composite pattern (Gamma, Helm, Johnson, & Vissedes, 1995) is used to allow extentions in
the hierarchical structure. Each Responsibility in the typology has a name and description.
CompoundResponsibilities represent the main types of responsibility, each composed of a set of
SingularResponsibilities, and designCriteria help to determine which responsibilities are included or
excluded. SingularResponsibilities represent specific responsibilities in our typology, and they are
illustrated by examples.

For reasons of comprehensibility, designCriteria and examples are modeled as attributes, although they
may contain multiple values.

Fig. 3 TSLR meta-model

-designCriteria

CompoundResponsibility

-name

-description

Responsibility

1

*

-examples

SingularResponsibility

Page - 8

3. APPROACH TO APPLY THE TSLR WITH THE RESPONSIBILITY TRACE TABLE

The TSLR is intended to aid the design, documentation and review of layered software architectures. The
Responsibility Trace Table (RTT) enhances the application of the TSLR in practice. In this section, the RTT
is introduced and exemplified at first. Next, the application areas of the TSLR and RTT are discussed.

3.1 Responsibility Trace Table

An RTT shows the assignment of the TSLR-responsibilities to the software layers of a case-specific
layered design. The main types of responsibility with their sub-responsibilities are represented as columns
and the software layers as rows. An X within an intersecting cell of a TSLR responsibility and a layer shows
the assignment of the TSLR-responsibility to the layer. The advantage of the trace table is that it provides
an overview of the responsibilities of the software layers, without the need for extensive textual
descriptions, since the responsibilities are defined within the TSLR. An example of an RTT is included as
Table 6. It shows the responsibilities of the three principal layers as described by Fowler et al. (2003) and
shown in Fig. 4. The analysis of this layered design is discussed in the next section.

Fig. 4 Layered design based on the three principal layers(Fowler et al., 2003)

Table 6 Responsibility Trace Table linking Fowler's three principal layers to the responsibilities defined by the TSLR

Main Type of

Responsibility
→

Consumer
Interface

Task Specific Domain Generic Infrastructure
Abstraction

Infrastructure

TSLR

Responsibility
→

Software Layer
↓

In
te

rfa
c
e

C
o
n
s
tru

c
tio

n

E
v
e
n
t C

a
p
tu

rin
g

E
v
e
n
t P

ro
c
e
s
s
in

g

T
a

s
k
 C

o
n
tro

l

T
a

s
k
 S

ta
te

M
a

in
te

n
a
n
c
e

T
S

 O
p
e
ra

tio
n

D
G

 S
e
rv

ic
e
 C

o
n
tro

l

D
G

 D
a
ta

 T
ra

n
s
fe

r

D
G

 O
p
e
ra

tio
n

P
la

tfo
rm

A
b
s
tra

c
tio

n

A
p
p
lic

a
tio

n

A
b
s
tra

c
tio

n

P
la

tfo
rm

 S
e
rv

ic
e

A
p
p
lic

a
tio

n
 S

e
rv

ic
e

Presentation X X X

Domain X X X

Data Source X X

3.2 Application areas

3.2.1 Design of Software Layers

During the design of layered software architectures, a number of design decisions, described before in the
Introduction section, have to be taken. The TSLR and RTT aid the decision and documentation regarding
the design question: Which types of responsibility are assigned to each layer?
The TSLR gives a complete overview of the assigned responsibilities per layer and can be used to
consider alternatives and to decide on clear-cut separations of concerns per layer. The RTT shows the
assignment of the TSLR-responsibilities to the application-specific layers, and this overview supports
reasoning about the architecture. Finally, the documentation of the responsibilities of the layers of a system
specific layered design may be prepared by the combined use of the TSLR and RTT. An RTT makes it
easy to an architect to complement the graphical representation of the layered design with a definition of
the responsibilities of the layers, without much documentation.

Presentation

Domain

Data Source

Allowed to use

Page - 9

3.2.2 Analysis of Layered Designs

Another application area is the analysis of existing or proposed layered designs. TSLR and RTT are useful
to gain a clear insight into the division of the responsibilities over the software layers. The RTT is very
useful here, since it shows omissions and redundancies in the assignment of responsibilities to the layers
within a software architecture. This helps to evaluate the quality of the layered design and the effectiveness
in achieving the quality requirements.

3.2.3 Training

Finally, the TSLR and RTT may be helpful in the training of students, software engineers and architects.
We used the TSLR and RTT in software architecture courses for third year bachelor students Computer
Science. Drawing up or implementing a layered design requires knowledge of the different types of
responsibilities. We use the TSLR and some assignments to let the students acquire this knowledge.
Furthermore, we discuss the suitability of several layered designs to meet specified quality requirements,
and we discuss proposals for layers in student projects. The visual character of the TSLR’s classification
schema, and the overview provided by an RTT, support the explanation and discussion of different design
alternatives regarding the assignment of responsibilities to layers.

4. APPLICATIONS

Three cases are described below to illustrate the practical use of the TSLR and RTT.

4.1 Fowler's Three Principal Layers

To demonstrate the applicability of the TSLR and RTT as supporting tools for the analysis of an existing
layered design, we use Fowler's "Three Principal Layers". This layered design, discussed in the previous
section and shown in Fig. 4, serves well for this purpose, since it is extensively described (Fowler et al.
2003, pg. 19-22) and well known. The translation of the description of the three layers into TSLR
responsibilities was fairly easy. The resulting Responsibility Trace Table, shown in Table 6, provides a
good overview of the responsibilities per layer. Two observations are interesting to discuss.

The first observation is that the Task Specific responsibility is not assigned to a layer, which should be
regarded as an omission in the definition of a layered design. The description of the layers makes clear
that the Presentation layer and Domain layer include all responsibilities of respectively Consumer Interface
responsibility and Domain Generic responsibility from the TSLR. However, the definitions of Presentation
and Domain do not make clear where the Task Specific responsibility is allocated. In later chapters, it
appears that Task Specific responsibility may be included in both layers, Presentation and Domain,
depending on the pattern chosen. The Application Controller Pattern assigns Task Specific responsibility to
the Presentation layer. In terms of the TSLR, an Application Controller contains Task Specific
responsibility, since its two main responsibilities are defined as "deciding which domain logic to run”, and
“deciding the view with which display the response". The Service Layer Pattern is used to organize the
Domain and assigns Task Specific responsibility to the Domain layer. A service layer “encapsulates the
application’s business logic, controlling transactions and coordinating responses in the implementation of
its operations”. In terms of the TSLR a services layer contains Task Specific responsibility, especially since
it "typically includes logic that's particular to a single use case".

The second observation is that the name of the third Principle Layer, the Data Source layer, does
represent only a part of its contents. A more general name should enhance the interpretability of this layer,
since it is not only responsible for the communication with data sources in the infrastructure, but also for
the communication with the rest of the infrastructure, like transaction monitors, other applications, and
messaging systems.

Page - 10

4.2 Layered Design of HUSACCT

To demonstrate the applicability of the TSLR and RTT as supporting tools for the design of a layered
architecture, we use the case of the development of HUSACCT (HU University Software Architecture
Compliance Checking Tool). We have been working on HUSACCT for several years during a specialization
semester “Advanced Software Engineering” for third year bachelor students. HUSACCT can be used to: 1)
Define the intended modular architecture: layers, subsystems, components, external systems, and rules
constraining their properties and relations (Pruijt, Köppe, & Brinkkemper, 2013); 2) Analyze the
implemented architecture embedded in the source code (Java, C#); and 3) Validate the compliance
between intended and implemented architecture.

Based on the requirements, the layers model was drawn up, shown in Fig. 5, and the responsibilities
per layer were specified in a RTT, shown in Table 7. The layered design of HUSACT, combined with a
domain model and a logical component model, served well to address the key requirement, divide the work
over six teams, and identify and specify the required communication between the system’s components.

Fig.5 Layered design of HUSACCT

Table 7 Responsibility Trace Table of HUSACCT’s Layered design

Main Type of

Responsibility
→

Consumer Interface Task Specific Domain Generic Infrastructure
Abstraction

Infrastructure

TSLR

Responsibility
→

Software Layer
↓

In
te

rfa
c
e

C
o
n
s
tru

c
tio

n

E
v
e
n
t

C
a
p
tu

rin
g

E
v
e
n
t

P
ro

c
e
s
s
in

g

T
a

s
k
 C

o
n
tro

l

T
a

s
k
 S

ta
te

M

a
in

te
n
a
n
c
e

T
S

 O
p
e
ra

tio
n

D
G

 S
e
rv

ic
e

C
o
n
tro

l

D
G

 D
a
ta

T
ra

n
s
fe

r

D
G

 O
p
e
ra

tio
n

P
la

tfo
rm

A
b
s
tra

c
tio

n

A
p
p
lic

a
tio

n

A
b
s
tra

c
tio

n

P
la

tfo
rm

S

e
rv

ic
e

A
p
p
lic

a
tio

n

S
e
rv

ic
e

Task X X X X X X

Domain X X X

Abstraction X

Infrastructure X

The Task layer includes two main types of responsibility from the TSLR: Consumer Interface responsibility,
and Task Specific responsibility. The restrictions of two strictly separated layers for these responsibilities
seemed to impose more cons than pros. For reasons of analyzability, separate packages were created for
these types of responsibility within the Task Layer, but the communication between these packages is not
restricted by the default rules of a layered design. The abstraction layer was introduced to implement the
analysis of source code as programming language independent as possible; since an important
requirement was that the tool should be expandable with regard to the analysis of other programming
languages. Since certain processes within the Task layer need direct access to abstracted infrastructural
services, a skip call is allowed from the Task layer to these services of the Abstraction Layer. The layered
design of HUSACCT illustrates that the number and names of system specific layers do not have to match
the TSLR’s types of responsibility.

Task

Domain

Abstraction

Allowed to use

Infrastructure

Page - 11

4.3 Layered Architecture of a Large Software System

To demonstrate the applicability of the TSLR and RTT for large systems, we use a case of a complex,
governmental administration system, aimed at a user base of approximately 6000 end users and
distributed across 75 different physical locations. The system's layering schema, part of the well-
documented software architecture, is shown in Fig. 6. The layers and their constituting components are
described concisely below. The mapping of the layers and their components to the TSLR responsibilities
was done in retrospect, and the result is visible in the Responsibility Trace Table, shown in Table 8.

Fig. 6 Layering schema of the case system

The system's architecture was based primarily on the Microsoft .Net reference architecture for .Net
version 1.1. However, it deviated from Microsoft practices in the following manner: a) the system made
heavily use of object orientation conform the domain model pattern (Fowler et al., 2003) to handle the large
quantity of business rules in a classic OO style; b) the system was split up in a Smart Client application and
a Business Domain Server application.

The Smart Client is the implementation of the User Interface layer, responsible for capturing input and
calling the Business Domain Server through web services. It was designed to be user-friendly while having
only a minimal amount of business knowledge. The User Interface layer contains five types of components.
User Interface Components (1) are responsible for showing data to the users, for collecting and syntactical
validating data entered by the user and for interpreting events. The UI Process Components (2) are
responsible for coordination of the user process and management of the process state. Client business
entities (3) are the “less intelligent” cousin classes of the Business Entities found in the domain server.
They typically have very little domain knowledge and are used to enforce required fields, field formats,
restrict list values etc. The business domain server provides an xml structure, which states what fields are
required and what list selections are appropriate for the given state of the object being viewed. UI Service
Agents (4) have the responsibility of making available data to the system and can be seen as a courier
used to handle the conversation with the Domain Server. User Interface Data Access Logic Components
(5) are responsible for providing access to the data cache in this layer. This cache is used to minimize
bandwidth usage and overall response time.

The Business Domain Server is responsible for processing the requests from the client and other
channels, while maintaining integrity and security. It is organized in three layers and three cross cutting
concerns. The Workflow layer is responsible for coordinating workflow in a future release of the system. In
the current release, it only had the responsibility to provide a facade to access the underlying domain
functionality. Service Interface Components (6) provide the services that the application offers in a simple,
secure manner and hide the underlying system implementation. The service interfaces are implemented

Business

Domain

Server

Elementary
Components

Smart

Client

Application

User
Interface

 Serv.Agents

Workflow Service Interface

Process
Components

Business Entities

Buss. Workflow

Business Components

DALC

7

8

6

 Serv. Agents 1110

9

4 DALC 5

Client Business Ent. 3

UI Process Comp. 2

UI Components 1
 O

p
e
ra

tio
n
a
l M

a
n
a
g
e
m

e
n
t

C
o
m

m
u
n
ic

a
tio

n

S
e
c
u
rity

Oracle

12DM

Cache

14 161513

Page - 12

with web services. The Business Workflow component (7) is included to enable the integration of an
external workflow application in a future release of the system. The Process Components layer is
responsible for coordinating the processing of single business events that happened during the workflow.
This layer contains two types of Business Components (8). Task Controllers are responsible for controlling
the underlying Process Controllers and persisting (or undoing at a failure) all activities as one transaction.
Process Controllers are reusable business activities and are responsible for coordinating the data
transformations. The Elementary Components layer contains Business Entities (9), responsible for
maintaining the integrity of the information, and Data Access Logic Components (10), EC Service Agents
(11) and Data Mappers (12), responsible for storage and retrieval of the information in the Oracle database
(13) or in external systems.
The Crosscutting Concerns (MSDN, 2009) Communication (14), Operational Management (15) and
Security (16) were handled by services of the application platform infrastructure. Only access to the
security library was abstracted by means of service interface classes.

Table 8 Responsibility Trace Table of the case system's principal layers and components

Main Type of

Responsibility →

Consumer
Interface

Task Specific Domain Generic Infrastructure
Abstraction

Infrastructure

TSLR

Responsibility →

↓ Software Layer /

 Component

 In
te

rfa
c
e

C
o
n
s
tru

c
tio

n

 E
v
e
n
t

C
a
p
tu

rin
g

 E
v
e
n
t

P
ro

c
e
s
s
in

g

 T
a

s
k
 C

o
n
tro

l

 T
a

s
k
 S

ta
te

M

a
in

te
n
a
n
c
e

 T
S

 O
p
e
ra

tio
n

 D
G

 S
e
rv

ic
e

C
o
n
tro

l

 D
G

 D
a
ta

T

ra
n
s
fe

r

 D
G

 O
p
e
ra

tio
n

 P
la

tfo
rm

A
b
s
tra

c
tio

n

 A
p
p
lic

a
tio

n

A
b
s
tra

c
tio

n

 P
la

tfo
rm

S

e
rv

ic
e

 A
p
p
lic

a
tio

n

S
e
rv

ic
e

User Interface 1 X X X

 2 X X X

 3 X X

 4 X

 5 X

Workflow 6 X X X

 7 X

Process Comp. 8 X X X X

Elementary Comp. 9 X X

 10 X

 11 X

 12 X X

 13 X

Crosscutting Conc. 14 X

 15 X

 16 X

Page - 13

5. DISCUSSION

Since the research was intended to deliver an artifact relevant to the professional practice, our study can
be characterized as design-science research (Peffers & Tuunanen, 2008). Based on a practical problem,
we defined research questions, studied leading literature about software layers, designed instruments in
line with this literature, and evaluated the instruments.

To evaluate the typology and its related trace table, the instruments were reviewed by experts, applied
in practical cases, and used in training courses for bachelor students. Five experts in the field of software
architecture reviewed our proposals on completeness and accuracy. In their responses, they provided
useful feedback, which was used for improvements. Some names were discussed and changed,
descriptions were improved and examples added. A lot of discussion focused on an unambiguous name
for the first type of responsibility in the TSLR and resulted in "Consumer Interface responsibility". In
addition to the expert review, the completeness and accuracy of the TSLR was evaluated by means of a
case study of the software architecture of a large software system. The outcome of the evaluation was
positive; no responsibilities were found missing in the TSLR, and the arrangement and naming of the
responsibilities appeared accurate. The mapping of the system's responsibilities on these of the typology
required several iterations in which the architect's knowledge of the TSLR was deepened, as well as the
researcher's knowledge of the particular software architecture. In this process, the trace table proved to be
a valuable instrument. The visual overview supported architectural reasoning and helped to recognize
omissions and redundancies in the initial versions of the system's RTT.

There are some limitations to our research so far. One important limitation is that our research focused
on responsibilities of the software of business information systems. Therefore, other types of systems, like
embedded systems and games, might contain responsibilities not included in the TSLR. Another limitation
has to do with the completeness of the typology. Despite our extensive literature study and validation
activities, we cannot ensure that all types of responsibilities, common in business information systems, are
represented in the TSLR. However, future additions and evolution are taken into account; the meta-model
of the typology enables extensions in width and depth. Finally, the typology could be viewed and used as a
layered model. However, the typology is not intended to be a template for layered designs, with layers
exactly matching the main types of responsibility of the typology. Layered designs in practice should be
designed to meet the specific requirements of the system. The number and names of the required layers
may vary, the responsibilities per layer may vary, and a layer may contain sub-responsibilities from
different main types of responsibility within the TSLR.

6. CONCLUSIONS

In this paper, we proposed two novel instruments to support software architects in their task to design
layered architectures of high quality: the Typology of Software Layer Responsibility (TSLR) and the
complementary Responsibility Trace Table (RTT). These instruments, together with some illustrations of
their practical use, provide answers to the research questions, which formed the basis of this study. We
started with the observation that the terminology regarding layered designs is not clear and sometimes
contradictory. We finished with a proposed typology and a trace table to aid the practical use of the
typology.

The TSLR provides an overview of the distinct types of responsibility commonly found in the software of
business information systems. The TSLR may be used when a layered design is drawn up and when an
existing layered design is analyzed or reviewed. Furthermore, it is useful in training courses to discuss and
exercise the different possibilities to divide responsibilities over the layers and their impact on the quality
characteristics of the software system. The TSLR responsibilities are distilled from leading literature on
layers in the field of software architecture. The TSLR separates and groups the responsibilities, gives them
unambiguous names, specifies them and exemplifies them. At the level of infrastructural responsibilities a
connection is established to the TOGAF Technical Reference Model (The Open Group, 2009), which
classifies a huge number of infrastructural services.

The Responsibility Trace Table (RTT) shows the assignment of the TSLR responsibilities to the
different software layers. The RTT is an instrument to complement a system's graphical representation of
the layered design with a specification of the responsibilities of the layers. In addition, the RTT may be
used to assess and enhance the quality of a layered design, since it shows omissions and redundancies in
the assignment of the responsibilities.

Page - 14

To illustrate the application of the instruments three cases were presented: a design case, a review
case, and a complex case of al large governmental software system. These cases were also used to
evaluate the completeness, accuracy, and applicability of the instruments. Furthermore, experts in the field
of software architecture conducted a review, and the instruments were used in training courses for
bachelor students.

Further research may be aimed on the applicability and scope of the TSLR and RTT. At first, it will be
interesting to study the effectiveness of the TSLR and RTT when practitioners and students apply these
instruments. Next, to enlarge the field of application of the TSLR, literature and case studies are needed on
the responsibilities of other types of software systems (other than business information systems). Finally, it
will be interesting to study the applicability of the instruments in the context of other software architecture
patterns.

ACKNOWLEDGEMENTS

The authors want to thank Rik Bos, Christian Köppe, Maurice Driessen, Arnoud ten Hoedt, Jurriaan van
Reijsen, Erik van der Starre, Fenne Verhoeven and Johan Versendaal for their contributions to the initial
versions of this paper. Furthermore, many thanks to our shepherd Uwe Zdun for his valuable feedback,
and also to the participants of the PLOP 2013 writers workshop on software architecture: Ronald Bijvank,
Mihaela Cardei, Brahim Hamid, Michael John, Jiwon Kim, James Nobel, Peter Sommerlad, Rebecca Wirfs-
Brock, and Joseph Yoder.

REFERENCES

Allen, P., & Frost, S. (1997). Component Based Development for Enterprise Systems: Applying the Select Approach. Cambridge
University Press.

Avgeriou, P., & Zdun, U. (2005). Architectural Patterns Revisited — A Pattern Language. 10th European Conf. Pattern Languages of
Programs (EuroPLoP) (pp. 431–470).

Bass, L., Clements, P., & Kazman, R. (2012). Software Architecture in Practice (Third Edit., p. 624). Addison-Wesley.
Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal, M. (1996). Pattern-Oriented Software Architecture: A System of

Patterns, Volume 1 (p. 476). John Wiley & Sons.
Clements, P., Bachmann, F., Bass, L., Garlan, D., Merson, P., Ivers, J., Little, R., et al. (2010). Documenting Software Architectures:

Views and Beyond (p. 537). Pearson Education.
Clements, P., & Nord, R. (2000). Documenting a Layered Software Architecture. Fourth International Software Architecture Workshop

Limerick (pp. 121–124).
Cockburn, A. (1997). Structuring Use Cases with Goals. Journal of Object-Oriented Programming, (Sep.-Oct. (part I) and Nov.-Dec.

(part II)).
Dijkstra, E. W. (1968). The structure of the “THE”-multiprogramming system. Communications of the ACM, 11(5), 341–346.
Erl, T. (2008). SOA Design Patterns. Prentice Hall.
Evans, E. (2004). Domain-Driven Design: Tackling Complexity in the Heart of Software (p. 529). Addison-Wesley Professional.
Fowler, M., Rice, D., Foemmel, M., Hieatt, E., Mee, M., & Stafford, R. (2003). Patterns of enterprise application architecture. Addison-

Wesley, Boston, MA, USA.
Gamma, E., Helm, R., Johnson, R., & Vlissedes, J. (1995). Design Patterns: Elements of Reusable Object-Oriented Software.

Pearson Education.
Gorton, I. (2006). Essential Software Architecture. Springer Berlin Heidelberg.
Harrison, N. B., & Avgeriou, P. (2008). Analysis of Architecture Pattern Usage in Legacy System Architecture Documentation.

Seventh Working IEEE/IFIP Conference on Software Architecture (WICSA 2008) (pp. 147–156). IEEE Comput. Soc.
Krafzig, D., Banke, K., & Slama, D. (2005). Service-Oriented Architecture Best Practices. Prentice-Hall.
Kruchten, P., Lago, P., & Vliet, H. Van. (2006). Building up and reasoning about architectural knowledge. Quality of Software

Architectures, 43–58.
Lankhorst, M. (2009). Enterprise Architecture at Work. Springer, Berlin.
Larman, C. (2005). Applying UML And Patterns (p. 703). Prentice Hall PTR.
MSDN. (2009). Microsoft Application Architecture Guide, 2nd ed. Microsoft Corporation.
Parnas, D. L. (1972). On the criteria to be used in decomposing systems into modules. Communications of the ACM, 15(12), 1053–

1058.
Peffers, K., & Tuunanen, T. (2008). A design science research methodology for information systems research. Journal of

Management Information Systems, 4, 45–78.
Pruijt, L., Köppe, C., & Brinkkemper, S. (2013). Architecture Compliance Checking of Semantically Rich Modular Architectures: A

Comparison of Tool Support. 29th International Conference ofn Software Maintenance (p. 220-229). IEEE Computer Society
Press.

Savolainen, J., & Myllarniemi, V. (2009). Layered architecture revisited—Comparison of research and practice. WICSA/ECSA (pp.
317–320).

Shaw, M., & Garlan, D. (1996). Software Architecture: Perspectives on an Emerging Discipline. Prentice Hall.
Snoeck, M., Poelmans, S., & Dedene, G. (2000). A layered software specification architecture. Conceptual Modeling—ER 2000.
The Open Group. (2009). The Open Group Architecture Framework: Version 9, Enterprise Edition.
Winter, R., & Fischer, R. (2007). Essential layers, artifacts, and dependencies of enterprise architecture. Journal of Enterprise

Architecture, (May), 1–12.

