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A Software Container provides an execution environment for applications sharing a host operating system, binaries, and libraries with other 
containers with strong isolation between them. Software containers although not new, have become very important to support convenient, 
secure, and low overhead applications. Containers facilitate application deployment and distribution across computing environments. We 
present a pattern for a Software Containers which describes advantages and liabilities of the container in addition to examples of existing 
solutions. Containers have made a significant difference in supporting agile development frameworks like DevOps.  
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1. INTRODUCTION 

A cloud-based computing system involves a variety of users and devices connected to it and provides multiple 
kinds of services. Typically, clouds provide three levels of service: Infrastructure as a Service (IaaS), Platform as 
a Service (PaaS), and Software as a Service (SaaS). SaaS can be directly used by consumers to access its available 
applications but also to let these consumers become in turn service providers (SPs). Virtualization is not new 
term in computing domain but it has undeniably gained popularity in recent times alongside cloud computing. 
In addition to virtual machines, another form of virtualization has been brought into focus, called operating 
system virtualization or container based virtualization. It uses a virtualization layer to run as an application in 
the OS thereby relieving the application from the OS and infrastructure dependencies. A Software Container 
provides an execution environment for applications sharing a host operating system, binaries, and libraries with 
other containers with strong isolation between them. Software containers although not new, have become very 
important to support convenient, secure, and low overhead applications. Containers facilitate application 
deployment and distribution across computing environments. Containers are being used to facilitate teams using 
agile development frameworks like DevOps [White 2014]. 

We present here a pattern for the Software Container. Our audience includes system architects and system 
designers as well as software developers who are interested in building container solutions. The Container 
pattern provides virtualization function which can be used in single user single environment scenario as well as 
in connection to a cloud. It is an important addition to cloud ecosystems. An ecosystem is the expansion of a 
software product line architecture to include systems outside the product which interact with the product 
[Bosch 2009]. Figure 1 shows a cloud ecosystem where the Cloud Reference Architecture (RA) is the main 
pattern (hub) that defines the ecosystem. The Cloud Security RA (SRA) can be derived from a Cloud RA by adding 
security patterns to control its identified threats. Cloud Web Application Firewalls and Security Group Firewalls 
provide filtering functions that can be provided as services through Virtual Network Function (VNF) or on their 
own. The Cloud Compliant Reference Architecture applies patterns to the Cloud RA to comply with regulations. 
Further elaboration about each of these components can be found in prior work of Fernandez et al. [2015a; 
2015b]. 
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Fig.1. A cloud ecosystem 

2. SOFTWARE CONTAINER PATTERN 

2.1 AKA 
Zone, Jail [Topjian 2013; Wikipedia 2015] 

2.2 Intent 
A Software Container provides an execution environment for applications sharing a host operating system, 
binaries, and libraries with other containers. Containers are lightweight, portable, extensible, reliable, and 
secure.  

2.3 Example 
Our organization has development and testing teams working at distributed locations. We generally use cloud 
computing in addition to company’s local infrastructure. We need a quick and easy way to provide a standardized 
environment to execute and test all kinds of applications. Even if we have applications from different companies 
running on our system, we have to provide each one a standard platform for execution. In addition to this, 
necessary isolation between these applications is security requirement. We have to furnish frequent releases of 
our software so the deployment process and distribution is becoming difficult. For a cost-effective operation we 
need to reduce overhead and improve security. Our applications execute in a few commonly used operating 
systems, we do not have very specific customized platform requirements.  

2.4 Context   
Software developers/Institutions developing many applications that will execute in multiple computer systems 
and/or cloud-based virtual environments and using a few types of operating systems. Security, reliability, and 
overhead are concerns.    

2.5 Problem 
We want to be able to run applications in a self-contained environment in such a way that both (application and 
execution environment) can be treated as a single unit.   
The solution to this problem is guided by the following forces:  
� Overhead: We want the overhead of the execution environment to be as low as possible; otherwise, we can 

use more flexible solutions such as virtual machines.  
� Portability: We want applications to be portable across execution environments; that is, they should be able 

to be moved, for example, from one location to another location, without large modifications. 
� Controlled Execution: We want to control application execution in a simple and convenient way.  
� Cost: The cost of running applications should be as low as possible in terms of resources.  
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� Isolation: When multiple applications are running in the same OS we want a strong isolation between them 
so that if one of them is malicious, compromised, or fails, attacks or errors do not propagate to other 
applications.  

� Opaqueness: Applications running on the same OS should not be aware of each other to ensure security.  
� Transparency: The specific environment should be transparent to the application.  
� Scalability: The number of applications sharing one type of OS should be scalable.  
� Extensibility: It should be possible to dynamically provide additional services to the hosted applications like 

logging/auditing, filtering, persistence, and others 
� Recovery: We need to be able to recover/replicate the application easily. 

2.6 Solution 
Provide a runtime environment that can support the isolated execution of applications on a shared Host OS, this 
is a Software Container (Figure 2). Multiple processes can share one container in special circumstance [Docker 
2015b]. They also may share binaries and libraries with other containers. Containers provide isolated execution 
and extensible services to the application.  
 

 
Fig. 2. Two Containers sharing one OS 

2.7 Structure 
Figure 3 shows the class diagram for this pattern. A Container controls a set of Applications sharing a Host OS 
that provides a set of Resources.  An Interceptor mediates the services provided to the application by the 
container. Applications hosted in containers can be accessed remotely through Proxies, where the Container acts 
as a broker. The client interacts with the Application Proxy, which represents the application. The application 
interacts with the Client Proxy, which represents the client. The Container provides a set of Services to the 
applications. Container Images are stored in image repositories. 

2.8 Dynamics 
Figure 4 shows a use case to execute an application in a container. A remote client executes an application 
through its proxy. The container transmits client requests to the Application through the Client Proxy. In order 
to execute the request or access a resource, application issues an OS call. This call goes to the interceptor before 
it is forwarded to Host OS.  

2.9 Implementation 
� In a virtualized environment containers can be mixed with virtual machines or bare metal servers. In other 

words, we can execute applications directly in a physical processor, in a virtual processor, or in a container.   
� The Host OS should be able to have primitives to execute each process in strongly isolated execution 

environment; for example, Linux-based containers such as Docker use kernel namespaces and cgroups to 
isolate containers. Docker uses the libcontainer library to build implementations on top of libvirt, LXC [LXC 
2015; LXD 2015]. In this way, resources can be isolated and services restricted to let applications have a 
specific view of the operating system [Docker 2015a].    

2.10 Known Uses 
� Docker provides portable, lightweight containers, using Linux virtualization [Docker 2015a]. Docker was 

known to have security vulnerabilities but few security feature were added recently including hardware 
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signing for container image developers, digital signatures for authenticating images in repository and image 
scanning for known vulnerabilities [Babcock 2015]. 

� Cisco - Cisco Virtual Application Container Services automate the provisioning of virtual private data centers 
and deploy applications with compliant, secure containers [Cisco 2015].   

� Rocket - A product of CoreOS. This container attempts to be composable, secure, open format and runtime 
components, and simple discoverable images [Polvi 2014].   

In addition to these, Windows server containers and Hyper V containers supported for Windows Server 2016. 
[Bisson 2015]. Other container providers include Google, Amazon Web Services, IBM, Microsoft, and HP.    
 

 
Fig. 3. Class diagram of the Container pattern 

 

Fig. 4. Sequence diagram for the use case ‘Execute an application in container’ 
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2.11 Consequences 
This pattern presents the following advantages:   
� Overhead: Containers are more efficient since they do not require separate guest OSs as for the case of VMs 

(Compare Figure 5 with Figure 2). They will however, be slower as compared to directly executing an 
application on Host OS without virtualization. 

� Portability: Containers can be executed in any processor and they can relieve application developers and 
testers of worrying about application distribution.    

� Controlled Execution: Containers can control application execution as they can control and filter interactions 
with the Host OS.    

� Cost: Host OS is shared by multiple containers, so unlike VMs we do not need to purchase separate licenses 
for Guest OSs on each VM.   

� Isolation: The Container can use the facilities of the host OS to provide isolation between applications 
running on the same OS. This feature protects the other applications of attacks or errors in applications 
running in different containers.  

� Opaqueness: Applications running in separate containers on the same OS are not aware of each other, which 
can prevent attacks.  

� Transparency: The specific environment becomes transparent to the application when executed within a 
container. Changes made to the OS or Application can be handled by container modification, without 
affecting other containers.  

� Scalability: Containers make the system more scalable since the number of applications sharing one OS can 
be increased provided enough hardware resources are available. 

� Extensibility: Interceptors allow adding services such as logging/auditing, security, or others to an 
application. 

 
Fig. 5. A Virtual Machine 

Liabilities of the pattern include the following:  
� Use of containers can slow down application execution since we are using an additional layer of interceptors 

for indirection of messages between OS and application.  However, this overhead should be smaller than 
using separate virtual machines.  

� Containers are meant to provide isolation between applications, so if there is a need for collaboration 
between applications, the task becomes more difficult if they are executing in separate containers. This can 
be still be achieved for example, Docker provides an option to securely link containers through ‘bridge’ 
network [Links 2015]. 

� We can only use one OS in each container. If we need different operating systems we can have separate sets 
of containers or use virtual machines.  

� Security or reliability flaws in the common OS affect all the applications running on it.  
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2.12 Example Resolved 
The company started using containers on their servers. They built images for their applications so that each 
could run in a separate container. This provided lower overhead and more security for the whole system. In 
addition the use of containers and application images made distribution and deployment of applications very 
easy. 

2.13 See also (related patterns) 
� Interceptor [Schmidt et al. 2000]--allows services to be added transparently to a framework and 

triggered automatically in the present of specific events.   
� Broker [Buschmann et al. 1996]--the Broker structures distributed systems with separate components 

that interact by remote service calls. A broker coordinates communications, including forwarding 
requests and sending back results and exceptions.    

� Reference Monitor [Fernandez 2013]. In a computational environment in which users or processes 
make requests for data or resources, this pattern enforces declared access restrictions when an active 
entity requests resources. It describes how to define an abstract process that intercepts all requests for 
resources and checks them for compliance with authorizations   

� Virtual Machine Operating System [Fernandez 2013]--provides a set of replicas of the hardware 
architecture (Virtual Machines) that can be used to execute (maybe different) operating systems with a 
strong isolation between them.   

� Controlled Virtual Address Space (Sandbox) [Fernandez 2013]. How to control access by processes to 
specific areas of their virtual address space (VAS) according to a set of predefined access rights?  Divide 
the VAS into segments that correspond to logical units in the programs. Use special words (descriptors) 
to represent access rights for these segments. 

A formal analysis of component containers is presented in [Sridar 2006]. 
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